JPH0446050A - Production of bismuth-containing superconducting ceramics - Google Patents

Production of bismuth-containing superconducting ceramics

Info

Publication number
JPH0446050A
JPH0446050A JP2015422A JP1542290A JPH0446050A JP H0446050 A JPH0446050 A JP H0446050A JP 2015422 A JP2015422 A JP 2015422A JP 1542290 A JP1542290 A JP 1542290A JP H0446050 A JPH0446050 A JP H0446050A
Authority
JP
Japan
Prior art keywords
gel
mixture
bismuth
firing
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015422A
Other languages
Japanese (ja)
Inventor
Daiki Miyamoto
大樹 宮本
Isamu Inamura
稲村 偉
Takashi Miyamoto
敬 宮本
Yuzuru Takahashi
高橋 弓弦
Hozumi Endo
穂積 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Osaka Prefecture
Original Assignee
Mitsubishi Kasei Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Osaka Prefecture filed Critical Mitsubishi Kasei Corp
Priority to JP2015422A priority Critical patent/JPH0446050A/en
Publication of JPH0446050A publication Critical patent/JPH0446050A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To attain homogenization by adding a bismuth alkoxide to a mixture contg. the acetates of Sr, Ca and Cu, converting the resulting sol into gel and firing this gel. CONSTITUTION:The acetates of Sr, Ca and Cu are mixed in a desired atomic ratio, water is added and they are concentrated by heating to 50-90 deg.C while adjusting the pH to 3-5 to obtain a mixture. A bismuth alkoxide is then added and allowed to react with the mixture at 50-90 deg.C until the amt. is reduced to 1/2-3/5. The resulting sol is converted into gel by cooling to room temp. and this gel is fired at 830-850 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野y 本発明は、13i系超伝導セラミツクス、特に高温相で
あるB i zs r zCazc uffoxの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application y) The present invention relates to a method for producing 13i-based superconducting ceramics, particularly B i zs r z cazc uffox, which is a high temperature phase.

(従来技術とその問題点) 従来Bi系超超伝導セラミックス、固相反応法によって
作製されている。しかし一般に低温相のB i z S
 r Z Ca Cu t Oxと高温相のl3tzS
rzCazCu、Oxが共存し、高温相の単相のみを合
成することは困難であり、pbを添加することによって
単相化が可能とされている。
(Prior art and its problems) Conventionally, Bi-based superconducting ceramics have been produced using a solid phase reaction method. However, in general, the low temperature phase B i z S
r Z Ca Cu t Ox and high temperature phase l3tzS
Since rzCazCu and Ox coexist, it is difficult to synthesize only a single high-temperature phase, and it is said that it is possible to create a single phase by adding pb.

また、一般のセラミックスの製法に適用されているブル
ーゲル法は、原料の溶液状態で均一に混合するものであ
り、生成物は均質性に秀れているが、Bi系超超伝導セ
ラミックス原料関しては、例えば金属アルコシト等が検
討されているが、分解、結晶化等がおこり、なかなか均
一にゾル化するものが得られていないというのが現状で
あった。
In addition, the blue gel method, which is applied to the production of general ceramics, uniformly mixes the raw materials in the solution state, and the product is excellent in homogeneity. For example, metal alkosites have been studied, but the current situation is that decomposition, crystallization, etc. occur, and it is difficult to obtain a material that can be uniformly converted into a sol.

本発明者等はこれらの点に鑑み検討を重ねた結果、Sr
、Ca、Cuの酢酸塩の混合体にBiアルコキシドを添
加して成る混合ゾルは安定でファイバー化も容易であり
、又室温に冷却することにより容易にゲル化し、このゲ
ルを焼成することによりBi系超超伝導セラミックス製
造することに成功し本発明に到達した。すなわち本発明
は、Sr、Ca、Cuの酢酸塩の混合体にBiアルコキ
シトを添加して成る混合ゾルをゲル化、焼成して均質な
バルク、ファイバー等の形でBi系超超伝導セラミック
ス得ることに存する。
As a result of repeated studies in view of these points, the inventors have found that Sr.
A mixed sol made by adding Bi alkoxide to a mixture of acetate salts of Ca, Cu, and Cu is stable and easy to form into fibers, and is easily gelled by cooling to room temperature, and by baking this gel, Bi alkoxide is added. The present invention was achieved by successfully producing superconducting ceramics. That is, the present invention obtains a Bi-based superconducting ceramic in the form of a homogeneous bulk, fiber, etc. by gelling and firing a mixed sol made by adding Bi alkoxide to a mixture of Sr, Ca, and Cu acetates. In particular.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明においては超伝導セラミックスを構成する基本元
素のB 11  S r +  Ca + Cu + 
の中、Sr、Ca、Cuの混合体を先ず形成することが
重要である。基本的にはこれら3種の元素の酢酸塩を均
一に混合すれば良いが、より好ましくは、Sr、Ca、
Cuの酢酸塩を所望の原子比、特に高温相の場合はほぼ
原子比で2:2:3の割合で混合、水を加え、pHを3
〜5に調整しつつ、50〜90℃、好ましくは70〜8
0℃にて攪拌しながら混合し、加熱濃縮する。
In the present invention, the basic elements constituting superconducting ceramics, B 11 S r + Ca + Cu +
It is important to first form a mixture of Sr, Ca, and Cu. Basically, acetate salts of these three types of elements may be uniformly mixed, but more preferably, Sr, Ca,
Mix Cu acetate in the desired atomic ratio, especially in the case of high-temperature phase, at a ratio of approximately 2:2:3, add water, and adjust the pH to 3.
50-90°C, preferably 70-8
Mix while stirring at 0°C, and heat and concentrate.

この混合体は、一部反応をも生じていても良いが、次に
この混合体にBiのアルコキシドを添加する。使用し得
るアルコキシドは広い範囲から選択されるが入手の容易
さ、取扱いの容易さ等の観点からC5〜、のアルコキサ
イド、特にメトキサイド、エトキサイド、プロポキサイ
ド等が好適に使用される。
This mixture may undergo some reaction, and then Bi alkoxide is added to this mixture. The alkoxides that can be used are selected from a wide range, but from the viewpoint of ease of availability and handling, C5~ alkoxides, particularly methoxide, ethoxide, propoxide, etc., are preferably used.

Bi−アルコキサイドの添加、混合は、その結果4成分
を均一に含有したゾル体が形成される限り特に制限され
ないが、より好ましくはこの後、Bi−アルコキサイド
を加えて1/2〜315位になるまで50〜90℃、好
ましくは80〜90℃にて攪拌、反応を進め、高粘性ゾ
ルを作製する。
The addition and mixing of Bi-alkoxide is not particularly limited as long as a sol body containing the four components uniformly is formed as a result, but it is more preferable to add Bi-alkoxide after this to obtain a position of 1/2 to 315. Stirring and reaction are continued at 50 to 90°C, preferably 80 to 90°C, to produce a highly viscous sol.

こうして得られたゾルは、安定で吸湿性もなく、ファイ
バー化も容易である。
The sol thus obtained is stable, non-hygroscopic, and can be easily made into fibers.

このゾルは、室温まで冷却するとゲル化する。This sol gels when cooled to room temperature.

こうして得られるゲルを、焼成して超伝導セラミックス
を作製する。
The gel thus obtained is fired to produce superconducting ceramics.

焼成温度は、830〜850℃が適当である。A suitable firing temperature is 830 to 850°C.

又、焼成時間は、焼成方法により異なる。すなわち、最
初低温相が生成するのだが更に焼成し続けることにより
徐々に高温相の割合が増える。また焼成物を更に粉砕、
成形、焼成する工程を繰返すことにより、高温相の成長
速度がアップする。
Furthermore, the firing time varies depending on the firing method. That is, initially a low temperature phase is generated, but as the firing continues, the proportion of the high temperature phase gradually increases. In addition, the fired product is further crushed,
By repeating the molding and firing steps, the growth rate of the high-temperature phase increases.

また、本発明で重要なことは、本発明の原料ゾルが高粘
性、高安定である為、ドローイング法等によりファイバ
ー状にすることが簡単にできることである。またこのフ
ァイバーをスパイラル状にまいてコイルにもできる他、
ゾルを基板にコーティングしたり、バルク状に成形する
こともできる。
Moreover, what is important in the present invention is that since the raw material sol of the present invention has high viscosity and high stability, it can be easily made into a fiber form by a drawing method or the like. This fiber can also be made into a coil by winding it into a spiral shape.
The sol can also be coated onto a substrate or molded into bulk form.

更にこの様な種々の形状のまま焼成することができる。Furthermore, it can be fired in various shapes as described above.

ファイバードローイングは50〜60℃で行うと、好適
である。
Fiber drawing is preferably carried out at 50-60°C.

次に本発明を実施例により更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例I Sr  (CH,Coo)!  1/2  HzOO,
005mo 1.Ca  (CHsCOO)zHzo 
 O,005mo  1.  Cu  (CH3COO
)zHzo   0.0 075mofに、HzO30
m1加え、ホットプレート上にて60〜70℃に730
分攪拌、N H40H水溶液2.1 m l、氷酢酸4
.0 m lでI)Hを約4に調整しながら70〜80
℃でかくはん反応させ、全体量が約1/2になる様に濃
縮混合する。更にB i  (OCzHs)s 0.0
05mo l、氷酢酸5mlを加えp H4,5になる
よう調整しつつ80〜90℃にてかくはん反応させ、高
粘性ゾルを得る。
Example I Sr (CH,Coo)! 1/2 HzOO,
005mo 1. Ca (CHsCOO)zHzo
O,005mo 1. Cu (CH3COO
) zHzo 0.0 075mof, HzO30
Add ml and heat to 60-70℃ on a hot plate at 730℃.
2.1 ml of N H40H aqueous solution, 4 ml of glacial acetic acid
.. 70-80 while adjusting I)H to about 4 at 0 ml.
Stir and react at ℃, and concentrate and mix so that the total volume becomes about 1/2. Furthermore, B i (OCzHs)s 0.0
Add 0.5 mol of glacial acetic acid and 5 ml of glacial acetic acid, adjust the pH to 4.5, and react by stirring at 80 to 90°C to obtain a highly viscous sol.

こうして得られたゾルは安定で吸湿性もなくファイバー
化も容易であるが、50〜60を程度の状態でドローイ
ング法により1m以上の長さのファイバー前駆体を作製
した。このファイバー前駆体は数秒でゲル化し、直径1
00μm〜300μmのゲルファイバーが得られた。得
られたゲルファイバーは非常に安定で空気中に数日放置
しても切れたり結晶化するようなことは全くなかった。
The sol thus obtained was stable, non-hygroscopic and easy to form into fibers, and a fiber precursor with a length of 1 m or more was prepared using a drawing method in a state of about 50 to 60 ml. This fiber precursor gels in seconds and has a diameter of 1
Gel fibers of 00 μm to 300 μm were obtained. The gel fibers obtained were very stable and did not break or crystallize even after being left in the air for several days.

次にゲルファイバーを10’C/hrで昇温し845℃
、5時間焼成したファイバーのSEM像を第1図に示す
0表面に亀裂がみられるが空洞は殆んど無く、断面の全
てにわたって中実であることがわかる。845℃、5時
間焼成したファイバーを4端子法により電気抵抗を測定
した。結果を第2図に示す。
Next, the gel fiber was heated at 10'C/hr to 845°C.
Figure 1 shows a SEM image of a fiber fired for 5 hours. Although cracks are seen on the surface, there are almost no cavities and it is clear that the fiber is solid throughout the entire cross section. The electrical resistance of the fibers fired at 845° C. for 5 hours was measured by a four-terminal method. The results are shown in Figure 2.

実施例2 実施例1と全く同様にして高粘性ゾルを得、そのまま室
温で冷却しゲルを得る。これを各回粉砕しながら845
℃、24hr、848℃、50hr、sso℃、50h
rにて3回繰返し合計148hr焼成したものの各工程
におけるXRDパターンを第3図に示す。845℃、2
4hrでは低温相のみであるが、粉砕、成形、焼成工程
をくりかえすことにより高温相が成長、845℃、48
hrで高温相の回折ピーク強度が低温相の回折ピークを
既に上回り、同工程を4回行い合計148hr焼成によ
りほぼ高温和のみの回折ピークとなっている。高温相単
相試料の指数付けしたXRDパターンを第4図に示す。
Example 2 A highly viscous sol was obtained in exactly the same manner as in Example 1, and then cooled at room temperature to obtain a gel. While crushing this each time, 845
℃, 24hr, 848℃, 50hr, sso℃, 50h
FIG. 3 shows the XRD patterns of each process after repeated firing for a total of 148 hours three times. 845℃, 2
At 4 hours, only the low temperature phase is present, but by repeating the crushing, molding, and sintering steps, the high temperature phase grows.
hr, the diffraction peak intensity of the high temperature phase has already exceeded the diffraction peak intensity of the low temperature phase, and after performing the same process 4 times and firing for a total of 148 hr, the diffraction peak becomes almost only the high temperature sum. The indexed XRD pattern of the high temperature single phase sample is shown in FIG.

<001)の回折ピークが強く現れている。<001) diffraction peaks appear strongly.

第5図に高温相単相試料のSEM像を示す。2〜5μm
の平板状の粒子が全体に均一に成長していることがわか
る。この試料の電気抵抗を4@子法で測定した結果を第
6図に示す。室温においても抵抗値は低く、110にで
超伝導転移を示し始め、90にで零抵抗を示した。高温
相の間にX線回折では確認できないほどごく少量の低温
相又は他の化合物が存在しているためと考えられる。こ
の試料を液体ちっ素温度に冷却し磁気浮上をさせた写真
を第7図に示す。試料は安定して浮上しており、はぼB
 i 2S r zc a @CuffOx単一相で不
純物の量が少ないことがわかる。
FIG. 5 shows an SEM image of the high-temperature single-phase sample. 2~5μm
It can be seen that the tabular grains grow uniformly throughout. The electrical resistance of this sample was measured using the 4@son method and the results are shown in FIG. Even at room temperature, the resistance value was low, starting to show superconducting transition at 110, and showing zero resistance at 90. This is thought to be due to the presence of a very small amount of low temperature phase or other compounds between the high temperature phases that cannot be confirmed by X-ray diffraction. Figure 7 shows a photograph of this sample cooled to liquid nitrogen temperature and magnetically levitated. The sample is floating stably, and the
It can be seen that the i 2S r zc a @CuffOx single phase has a small amount of impurities.

発明の効果 本発明により、均質で安定なりi系超伝導セラミックス
の前駆体ゾルを得ることができ、これをファイバー状、
コイル状、基板へのコート及びバルク等様々な形状に成
形することが容易である。
Effects of the Invention According to the present invention, it is possible to obtain a homogeneous and stable precursor sol of i-based superconducting ceramics, which can be formed into fibers,
It is easy to mold into various shapes such as coil shape, coating on a substrate, and bulk.

またこの様な形状のまま焼成することができ応用範囲が
広い。
In addition, it can be fired in this shape and has a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で作成したファイバーのSEM像、
第2図は、実施例1で作成したファイバーの電気抵抗、
第3図は、実施例2の焼結試料の各工程におけるXRD
パターン、第4図は、高温和単相試料の指数付けしたX
RDパターン、第5図は、高温相単相試料のSEM像、
第6図は高温相単相試料の電気抵抗、第7図は高温相単
相試料の磁気浮上写真である。 莞 2θ((’ukq>/de9ree /θ 3θ 4θ 2θ(CukoVdegree 第 屁 傭 藁 図 ℃=ツ 手続補正書(方式) %式% 事件の表示 平成2年特許願第15422号 発明の名称 ビスマス系超伝導セラミックスの製造法補正をする者
Figure 1 is an SEM image of the fiber created in Example 1;
Figure 2 shows the electrical resistance of the fiber prepared in Example 1;
Figure 3 shows XRD at each step of the sintered sample of Example 2.
The pattern, Figure 4, is the indexed X of a high-temperature single-phase sample.
RD pattern, Figure 5 is a SEM image of a high temperature single phase sample,
FIG. 6 shows the electrical resistance of the high-temperature single-phase sample, and FIG. 7 shows a magnetic levitation photograph of the high-temperature single-phase sample. guan 2θ (('ukq>/de9ree /θ 3θ 4θ 2θ Person who corrects the manufacturing method of conductive ceramics

Claims (2)

【特許請求の範囲】[Claims] (1)ストロンチウム、カルシウム、銅の酢酸塩の混合
体に、ビスマスアルコキシドを添加して成る混合ゾルを
ゲル化し、更に焼成することを特徴とするビスマス系超
伝導セラミックスの製造法。
(1) A method for producing bismuth-based superconducting ceramics, which comprises gelling a mixed sol made by adding bismuth alkoxide to a mixture of strontium, calcium, and copper acetates, and then firing the mixture.
(2)ストロンチウム、カルシウム、銅の酢酸塩の混合
体に、ビスマスアルコキシドを添加して成る混合ゾルを
繊維状に成形し、ゲル化し更に焼成することを特徴とす
る繊維状ビスマス系超伝導セラミックスの製造法。
(2) A fibrous bismuth-based superconducting ceramic characterized by forming a mixed sol made by adding bismuth alkoxide to a mixture of strontium, calcium, and copper acetates into a fibrous form, gelling it, and then firing it. Manufacturing method.
JP2015422A 1990-01-25 1990-01-25 Production of bismuth-containing superconducting ceramics Pending JPH0446050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015422A JPH0446050A (en) 1990-01-25 1990-01-25 Production of bismuth-containing superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015422A JPH0446050A (en) 1990-01-25 1990-01-25 Production of bismuth-containing superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH0446050A true JPH0446050A (en) 1992-02-17

Family

ID=11888331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015422A Pending JPH0446050A (en) 1990-01-25 1990-01-25 Production of bismuth-containing superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH0446050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465395A (en) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol Superconducting fibrous crystal and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465395A (en) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol Superconducting fibrous crystal and its production

Similar Documents

Publication Publication Date Title
US5135907A (en) Manufacture of high purity superconducting ceramic
US5999833A (en) Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
US5100871A (en) Method for preparing rare earth-barium-cuprate pre-ceramic resins and superconductive materials prepared therefrom
JPH0446050A (en) Production of bismuth-containing superconducting ceramics
JPH05279141A (en) Preparation of lithium aluminosilicate or lithium aluminate ceramics having controlled stoichiometry and microstructure
JPH0574528B2 (en)
JPH0238359A (en) Production of superconductor
KR960003803B1 (en) Process for producing (bipb)2sr2ca2cu3o10+x superconductor
JP2792024B2 (en) Manufacturing method of superconducting material
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JPH059059A (en) Production of oxide superconductor
KR0149421B1 (en) Superconductive materials synthesized by using sol-gel process
JP2849704B2 (en) Bismuth-vanadium oxide compound for oxide ion conductor and method for producing the same
JPS6325224A (en) Production of ferrite powder
Sun et al. Synthesis of high purity 110 K phase in the Bi (Pb)-Sr-Ca-Cu-O superconductor by the sol-gel method
JPH0580404B2 (en)
JPH0474715A (en) Production of compound oxide powder
JPH03279219A (en) Thallium-based oxide superconductor material and production thereof
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JPS63282120A (en) Production of superconductive conjugated metal oxide
JPH04164820A (en) Solution for producing high-temperature phase bi-based oxide superconductor and precursor of high-temperature phase bi-based oxide superconductor
JPS63291815A (en) Production of superconductor
JPH026304A (en) Production of compound oxide
JPH01201060A (en) Production of superconductor
JPH0431321A (en) Production of aqueous solution for producing superconductor and superconductor thin film