JP2684432B2 - Superconducting oxide single crystal and method for producing the same - Google Patents

Superconducting oxide single crystal and method for producing the same

Info

Publication number
JP2684432B2
JP2684432B2 JP1326039A JP32603989A JP2684432B2 JP 2684432 B2 JP2684432 B2 JP 2684432B2 JP 1326039 A JP1326039 A JP 1326039A JP 32603989 A JP32603989 A JP 32603989A JP 2684432 B2 JP2684432 B2 JP 2684432B2
Authority
JP
Japan
Prior art keywords
crystal
cuo
oxide
single crystal
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1326039A
Other languages
Japanese (ja)
Other versions
JPH02275800A (en
Inventor
弘直 兒嶋
功 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPH02275800A publication Critical patent/JPH02275800A/en
Priority to US07/973,608 priority Critical patent/US5444040A/en
Priority claimed from US07/973,608 external-priority patent/US5444040A/en
Application granted granted Critical
Publication of JP2684432B2 publication Critical patent/JP2684432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温に臨界温度を持つ超伝導酸化物特にNd
2-xCexCuO4、YBa2Cu3O7-x、BiSrCaCu2Ox、Tl2Ba2Ca2Cu3
Ox等の単結晶及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a superconducting oxide having a critical temperature at high temperature, particularly Nd.
2-x Ce x CuO 4 , YBa 2 Cu 3 O 7-x , BiSrCaCu 2 O x , Tl 2 Ba 2 Ca 2 Cu 3
The present invention relates to a single crystal such as O x and a method for producing the same.

[従来の技術] 1986年、J.G.BedonorzとK.A.Muller両博士によって酸
化物でも高温で超伝導特性を示すことが発見されて以来
世界中で数多くの超伝導酸化物の研究が行われてきた。
[Prior Art] Since the discovery in 1986 by Drs. JG Bedonorz and KA Muller that even oxides exhibit superconducting properties at high temperatures, many researches on superconducting oxides have been conducted all over the world.

ある種の酸化物例えばLa2-xAxCuO4(A:Sr,Ba)、Nd
2-xCexCuO4、YBa2Cu3O7-x、BiSrCaCu2Ox、Tl2Ba2Ca2Cu3
Ox等は電子の状態密度が極めて低いにもかかわらず、従
来の金属系超伝導物質よりも高い臨界温度で超伝導性を
示すことが知られている。
Some oxides such as La 2-x A x CuO 4 (A: Sr, Ba), Nd
2-x Ce x CuO 4 , YBa 2 Cu 3 O 7-x , BiSrCaCu 2 O x , Tl 2 Ba 2 Ca 2 Cu 3
It is known that O x and the like exhibit superconductivity at a higher critical temperature than conventional metal-based superconducting substances, although the density of states of electrons is extremely low.

これらの酸化物の多くの研究は、多に焼結物質や薄膜
を取り扱っており、結晶構造,化学組成と臨界温度との
関係については、かなり詳細な研究が行われている。し
かし、これら酸化物超伝導物質の超伝導発現の機構につ
いては未だ確定された原理は見出されていない。
Most of the studies on these oxides deal with sintered materials and thin films, and quite detailed studies have been conducted on the relationship between the crystal structure and the chemical composition and the critical temperature. However, the established principle has not been found yet regarding the mechanism of the superconductivity of these oxide superconductors.

現在まで報告されている酸化物超伝導物質は、ほとん
どがペロブスカイト格子を基本構造としており、金属或
いは合金超伝導物質と異なり、立方晶ではなく正方晶或
いは斜方晶に属している。そのため多結晶体の集合であ
る焼結物質からの物性からでは異方性の情報が得られ
ず、薄膜では厚み方向の情報を得るのが難しく、超伝導
発現の機構の構築が難しいと思われる。
Most of the oxide superconducting materials reported to date have a perovskite lattice as a basic structure, and unlike metal or alloy superconducting materials, belong to tetragonal or orthorhombic rather than cubic. Therefore, information on anisotropy cannot be obtained from the physical properties of the sintered material, which is an aggregate of polycrystals, and it is difficult to obtain information in the thickness direction on a thin film, which makes it difficult to establish the mechanism of superconductivity development. .

酸化物の磁気的及び電気的性質の異方性等の物性を厳
密に測定し、異方性の情報を得て、その超伝導性を解明
するには、良質で大型の単結晶体が必要とされ、この為
にも良質で大形結晶の育成が望まれている。
To measure the physical properties such as anisotropy of magnetic and electrical properties of oxides precisely, to obtain information on anisotropy, and to elucidate its superconductivity, a large single crystal with good quality is required. Therefore, for this reason, it is desired to grow a large crystal of good quality.

現在まで育成されたと報告されている酸化物の高温超
伝導物質の単結晶は、La−Sr−Cu−O系、Nd−Ce−Cu−
O系、Y−Ba−Cu−O系及びBi−Ca−Ba−CuO系などで
ある。これらの物質のほとんどが分解溶融化合物である
と考えられるので、単結晶を育成するのに、一般の酸化
物単結晶を用いられている引上げ法,ブリッジマシン法
など溶融固化という方法は適用できない。
Single crystals of oxide high-temperature superconducting materials that have been reported to have been grown to date include La-Sr-Cu-O-based and Nd-Ce-Cu-
O-based, Y-Ba-Cu-O-based, Bi-Ca-Ba-CuO-based, and the like. Since most of these substances are considered to be decomposed and melted compounds, the melting and solidification methods such as the pulling method and the bridge machine method, which are used for general oxide single crystals, cannot be applied to grow single crystals.

主に用いられている方法はフラックス法及びフラック
ス法を工夫したトップシード法であり、Bi系単結晶につ
いては、竹川らによって浮遊帯域法(floating zone me
thod)を用いての試みが報告されている。J.Cryst.Grow
th,92(1988)687 またLa2CuO4とCuOの共晶組成のものについても後述す
る第1表に示す如く報告されている。L.Trouilleux.G.D
halenne and A.Revcolevschi:Cryst.Growth,91(1988)
268 フラックス法で用いられている溶媒は、多くの場合、
CuOでセルフフラックスと呼ばれるものであり、結晶育
成後、フラックスと生成結晶の分離を機械的に行ってお
り、溶媒と育成結晶の分離が難しい。
The method mainly used is the flux method and the top seed method, which is a devised version of the flux method. For Bi-based single crystals, the floating zone method (floating zone method) was used by Takekawa et al.
Attempts using thod) have been reported. J.Cryst.Grow
th, 92 (1988) 687. Also, a eutectic composition of La 2 CuO 4 and CuO is reported as shown in Table 1 below. L.Trouilleux.GD
halenne and A. Revcolevschi: Cryst.Growth, 91 (1988)
268 The solvents used in the flux method are often
CuO is called self-flux, and after crystal growth, the flux and the generated crystal are mechanically separated, and it is difficult to separate the solvent and the grown crystal.

しかし、ランタン系のLa2-xAxCuO4単結晶の例では、
フラックス中で成長し、るつぼの底に沈んだ結晶をすく
いあげ、溶媒との分離を試みている。
However, in the example of a lanthanum-based La 2-x A x CuO 4 single crystal,
It grows in flux and scoops the crystals that settled at the bottom of the crucible, trying to separate it from the solvent.

いずれの場合でも、フラックス法により育成された結
晶の大きさは、余り大きくなく、大きいものではフラッ
クスの含有がみられる。またc軸方向に薄い板状結晶が
一般的に育成されている。
In any case, the size of the crystal grown by the flux method is not so large, and if it is large, the content of the flux is observed. Further, thin plate-like crystals are generally grown in the c-axis direction.

ランタン系単結晶について、現在まで報告されている
育成結晶の大きさ、用いられた溶媒及び育成方法,臨界
温度などを第1表に示す。
Table 1 shows the size of the grown crystal, the solvent used and the growing method, the critical temperature, and the like, which have been reported so far regarding the lanthanum-based single crystal.

第1表からわかるように育成された結晶は、前述した
ようにほとんどが板状結晶である。トップシード法で育
成された結晶の大きさは25×25×5mmと割と大きいが臨
界温度が非常に低い。固溶しているSr(Ba)が原料組成
より少ないためではないかと考える。また第1表の最後
に示してある浮遊帯域法による例では結晶も大きくて、
臨界温度も他の方法よりも高めであるが、原料組成がCu
Oとの共晶組成であり、育成された結晶もCuOを含む共晶
物であり、単一相の結晶とはいえない。
As can be seen from Table 1, most of the grown crystals are plate crystals as described above. The size of the crystal grown by the top seed method is as large as 25 × 25 × 5 mm, but the critical temperature is very low. This is probably because the solid solution of Sr (Ba) is less than the raw material composition. Also, in the example by the floating zone method shown at the end of Table 1, the crystals are large,
The critical temperature is higher than other methods, but the raw material composition is Cu
Since it has a eutectic composition with O, and the grown crystal is a eutectic containing CuO, it cannot be said to be a single-phase crystal.

[発明が解決しようとする課題] 以上の如く、従来の超伝導酸化物の結晶の大きさは余
り大きくなく、大きいものではフラックスの含有がみら
れ、またc軸方向に薄い板状結晶であるので、酸化物の
磁気的及び電気的性質の異方性等の物性を厳密に測定
し、異方性の情報が得られるのが難しく、超伝導発現の
機構の構築が難しい。
[Problems to be Solved by the Invention] As described above, the crystal size of the conventional superconducting oxide is not so large. If it is large, the inclusion of flux is observed, and it is a thin plate crystal in the c-axis direction. Therefore, it is difficult to strictly measure physical properties such as anisotropy of magnetic and electrical properties of oxides, and it is difficult to obtain information on anisotropy, and it is difficult to construct a mechanism for manifesting superconductivity.

従って、本発明の目的は、酸化物の超伝導性を解明す
る為の良質で、超伝導性を示す大形結晶の酸化物単結晶
を得るにある。
Therefore, an object of the present invention is to obtain a large-sized oxide single crystal having high quality and superconductivity for clarifying the superconductivity of an oxide.

[課題を解決するための手段] 本発明に係る超伝導酸化物の単結晶は、正方晶系で異
方性ならびに超伝導性を示す酸化物で、超伝導酸化物の
化学量論組成に実質的に同一の焼成原料棒を、0.15MPa
以上の酸素圧下の赤外線集中加熱炉中に配置された酸化
銅を主体とする溶媒中に溶解し、種結晶上に析出して得
られた結晶であって、結晶が正方晶系であり且つ種結晶
の成長方向がa軸であることを特徴とするものであり、 前記超伝導酸化物が、 Nd2-xCexCuO4、 YBa2Cu3O7-x、 BiSrCaCu2Ox、 Tl2Ba2Ca2Cu3Ox であり、かつ直径5mm以上,長さ40mm以上である超伝導
酸化物の単結晶である。
[Means for Solving the Problems] A single crystal of a superconducting oxide according to the present invention is an oxide that exhibits anisotropy and superconductivity in a tetragonal system, and has a substantial stoichiometric composition. The same burning raw material rod as 0.15MPa
Dissolved in a solvent mainly composed of copper oxide placed in an infrared concentrated heating furnace under the above oxygen pressure, a crystal obtained by depositing on a seed crystal, wherein the crystal is a tetragonal system and seed growth direction of the crystal is characterized in that an a-axis, the superconducting oxide, Nd 2-x Ce x CuO 4, YBa 2 Cu 3 O 7-x, BiSrCaCu 2 O x, Tl 2 It is a single crystal of superconducting oxide that is Ba 2 Ca 2 Cu 3 O x and has a diameter of 5 mm or more and a length of 40 mm or more.

本発明に係る超伝導酸化物の単結晶の製造方法は、原
料酸化物と種結晶との間に配設された溶媒が、加熱溶融
されて原料酸化物と種結晶に接触する状態で種結晶と加
熱源との相対位置を移動させて種結晶上に原料酸化物と
実質的に同一組成の酸化物を制御された雰囲気下で析出
させる超伝導酸化物の単結晶の製造方法であって、原料
酸化物の化学量論組成が超伝導酸化物と実質的に同一で
あり、溶媒が酸化銅を主体としかつ雰囲気の酸素圧力が
0.15MPa以上であることを特徴とするものであり、又 前記超伝導酸化物が、 Nd2-xCexCuO4、 YBa2Cu3O7-x、 BiSrCaCu2Ox、 Tl2Ba2Ca2Cu3Ox であり、さらに、 前記単結晶の育成に当たって、55〜91mol%CuO組成の
溶媒中に溶解した後、 酸素圧:0.15MPa以上、 育成温度:1100〜1300℃ 育成速度:0.5〜3mm/h の育成条件で、単結晶を育成大型化するものであり、 前記単結晶育成に当たり、種結晶を用いることを特徴
とし、その種結晶がネッキング育成により、a軸方向に
結晶育成を行う超伝導酸化物の単結晶の製造方法であ
り、さらに又 前記単結晶化した結晶を酸素又は窒素中でさらにアニ
ールすることを特徴とする超伝導酸化物の単結晶の製造
方法である。
The method for producing a single crystal of a superconducting oxide according to the present invention, the solvent disposed between the raw material oxide and the seed crystal, the seed crystal in a state of being heated and melted and in contact with the raw material oxide and the seed crystal. A method for producing a single crystal of a superconducting oxide, in which a relative position of a heating source is moved and a starting oxide is deposited on a seed crystal in a controlled atmosphere to precipitate an oxide having substantially the same composition as the starting oxide, The stoichiometric composition of the raw material oxide is substantially the same as that of the superconducting oxide, the solvent is mainly copper oxide, and the oxygen pressure of the atmosphere is
And characterized in that at 0.15MPa or more, and the superconducting oxide, Nd 2-x Ce x CuO 4, YBa 2 Cu 3 O 7-x, BiSrCaCu 2 O x, Tl 2 Ba 2 Ca 2 Cu 3 O x , further, in growing the single crystal, after dissolved in a solvent of 55-91 mol% CuO composition, oxygen pressure: 0.15 MPa or more, growth temperature: 1100 ~ 1300 ℃ growth rate: 0.5 ~ Under a growth condition of 3 mm / h, a single crystal is grown in a large size. A seed crystal is used for growing the single crystal, and the seed crystal grows in the a-axis direction by necking growth. It is a method for producing a single crystal of a superconducting oxide, and is a method for producing a single crystal of a superconducting oxide, which is characterized in that the single-crystallized crystal is further annealed in oxygen or nitrogen.

[作用] 本発明は、溶媒移動浮遊帯域法:Traveling Solvent F
loating Zone Method(TSFZ法という)により、超伝導
酸化物単結晶を育成し、大型化するものである。
[Operation] The present invention is based on the solvent transfer floating zone method: Traveling Solvent F
By the loating zone method (TSFZ method), a superconducting oxide single crystal is grown and enlarged.

このTSFZ法については、G.A.Wolff:“CRYSTALGROWTH
Theory and Techniques pp194−230"G.H.L.Goodman Ed,
(Prenum,1974)に述べられているが、このTSFZ法は一
般的には分解溶融化合物及び固溶体単結晶に適用でき
る。例えば第12図(a)に示すような状態図が化合物AB
について明らかになっていると、この化合物は温度T1
分解し、固相のAとpの液相組成になる。この化合物の
単結晶を育成するとすれば、温度T1以下の温度で育成し
なければならない。
About this TSFZ method, GAWolff: “CRYSTALGROWTH
Theory and Techniques pp 194-230 "GHL Goodman Ed,
(Prenum, 1974), the TSFZ method is generally applicable to decomposed molten compounds and solid solution single crystals. For example, the phase diagram shown in FIG.
, The compound decomposes at the temperature T 1 into a liquid phase composition of A and p in the solid phase. If a single crystal of this compound is to be grown, it must be grown at a temperature of T 1 or lower.

温度T1以下の温度では、固体ABは共晶温度までの液相
線上の組成の液相と平衡にある。この点を利用したのが
TSFZ法である。
At temperatures below the temperature T 1 , the solid AB is in equilibrium with the liquid phase of the composition on the liquidus up to the eutectic temperature. I used this point
This is the TSFZ method.

即ち、固体ABと平衡にあるsの組成物を、第12図
(b)に示してあるように、原料焼結棒と種結晶との間
にサンドイッチ状にはさみ、このsの組成物をまず溶融
させ、原料焼結棒と種結晶に融合させる。その後全体を
ゆっくり下げていくと種結晶上に組成ABが析出し始め
る。これが定常的になれば原料の組成ABが溶解し、種結
晶上に組成ABが析出し、組成ABの単結晶が育成できる。
That is, the composition of s in equilibrium with the solid AB was sandwiched between the raw material sintered rod and the seed crystal, as shown in FIG. 12 (b), and the composition of s was first prepared. It is melted and fused with the raw material sintered rod and the seed crystal. After that, when the whole is slowly lowered, the composition AB begins to precipitate on the seed crystal. If this becomes steady, the composition AB of the raw material is dissolved, the composition AB is deposited on the seed crystal, and a single crystal of the composition AB can be grown.

つまりTSFZ法は、溶媒を用いて、原料を溶媒中に溶解
させ、溶媒から所定のものを析出させるものであるが、
一方、徐冷浮遊帯域溶融法(Slow Cooling Floating Zo
ne method;SCFZ法という)は状態図作成に利用するが、
このSCFZ法は、ある組成のものを溶融し、その溶融帯を
冷却しながら切り離していくと、融点の高いものから順
次に固まっていくので、後でそれを分析すると、どの相
が最初に出て、次には何がということで状態図を作るこ
とが出来る。
That is, the TSFZ method uses a solvent, dissolves the raw materials in the solvent, and precipitates a predetermined substance from the solvent.
On the other hand, Slow Cooling Floating Zo
ne method; called SCFZ method) is used to create a state diagram,
In this SCFZ method, if one of a certain composition is melted and the molten zone is separated while cooling, the ones with higher melting points solidify in sequence, so when analyzing it later, which phase appears first. Then, what you can do next is to make a state diagram.

本発明はこのTSFZ法を利用したものである。 The present invention utilizes this TSFZ method.

また単結晶の育成に当たって用いる加熱炉は、赤外線
集中加熱炉特に、後述する実施例の第1図及び第2図に
示すような単楕円型或いは双楕円型の回転楕円面鏡を用
いた赤外線集中加熱炉が望ましい。
The heating furnace used for growing the single crystal is an infrared concentrating heating furnace, particularly an infrared concentrating furnace using a single elliptical or bi-elliptical spheroidal mirror as shown in FIG. 1 and FIG. A heating furnace is desirable.

本発明は、酸化物がNd2-xCexCuO4、YBa2Cu3O7-x、BiS
rCaCu2Ox又はTl2Ba2Ca2Cu3Oxを対象としており、La2-xA
xCuO4(A:Sr、Ba)を含まないものであるがLa2-xAxCuO4
(A:Sr、Ba)の特性が、上記Nd2-xCexCuO4、YBa2Cu3O
7-x、BiSrCaCu2Ox又はTl2Ba2Ca2Cu3Oxと同様であるとい
う知見が得られたことで実現されたものである。そして
後述する作用及び実施例においては主としてLa2-xAxCuO
4(A:Sr、Ba)の特性等を中心に説明しているが、これ
は上記Nd2-xCexCuO4、YBa2Cu3O7-x、BiSrCaCu2Ox又はTl
2Ba2Ca2Cu3Oxの特性を説明するための、あくまでも便宜
上(所有データの関係)のものでありLa2-xAxCuO4(A:S
r、Ba)は本発明には含まれない。
The present invention, oxide Nd 2-x Ce x CuO 4 , YBa 2 Cu 3 O 7-x, BiS
Targeting rCaCu 2 O x or Tl 2 Ba 2 Ca 2 Cu 3 O x , La 2-x A
La 2-x A x CuO 4 without x CuO 4 (A: Sr, Ba)
The characteristics of (A: Sr, Ba) are Nd 2-x Ce x CuO 4 , YBa 2 Cu 3 O
It was realized by the finding that it is similar to 7-x , BiSrCaCu 2 O x or Tl 2 Ba 2 Ca 2 Cu 3 O x . In the actions and examples described later, mainly La 2-x A x CuO
4 (A: Sr, Ba), etc. are mainly described, but these are Nd 2-x Ce x CuO 4 , YBa 2 Cu 3 O 7-x , BiSrCaCu 2 O x or Tl.
2 Ba 2 Ca 2 Cu 3 O x It is just for convenience (relationship of owned data) to explain the characteristics of La 2 x A x CuO 4 (A: S
r, Ba) are not included in the present invention.

本発明者等は、第13図に示すLa2O3−CuO系の状態図よ
り、固溶させるとSrはLaの所に置換すると考えると、La
2-xAxCuO4の結晶の育成は、La2O3−CuO系状態図を参考
にすればよいことを知見した。
From the phase diagram of the La 2 O 3 —CuO system shown in FIG. 13, the inventors of the present invention consider that Sr substitutes for La when it forms a solid solution.
2-x A x crystal growth of CuO 4 was found that the La 2 O 3 -CuO phase diagram may be helpful.

第14図はLaO1.5−CuO系状態図である。Figure 14 is a phase diagram of the LaO 1.5- CuO system.

本発明の予備的な実験として、La2O380mol%,CuO20mo
l%の組成物を0.1MPaの酸素雰囲気中で溶融させ、溶融
生成物を同定するとLa2CuOとLa2O3の混合物が生成して
いた状態図からは、この組成ではLa2CuO4とCuOの混合物
が生成する筈であるが、CuOが蒸発し組成がLa2O3側へず
れたためにLa2O3の生成が認められたものと思われる。
As a preliminary experiment of the present invention, La 2 O 3 80 mol%, CuO20mo
The l% of the composition is melted in an oxygen atmosphere at 0.1 MPa, from the state diagram mixture was produced of the identifying molten product La 2 CuO and La 2 O 3, in this composition the La 2 CuO 4 A mixture of CuO should be formed, but it is considered that the formation of La 2 O 3 was recognized because CuO was evaporated and the composition was shifted to the La 2 O 3 side.

そこでCuOの蒸発を防ぐために酸素ガス圧を0.2MPaに
した結果、溶融生成物はLa2CuO4とCuOとの混合物であっ
た。このことから単結晶化するに当たって、育成時の雰
囲気を酸素ガスを0.2MPa以上に加圧すると良好な結晶が
育成できることを知見したものである。
Therefore, as a result of setting the oxygen gas pressure to 0.2 MPa in order to prevent the evaporation of CuO, the molten product was a mixture of La 2 CuO 4 and CuO. From this, it was found that, when single crystallizing, a good crystal can be grown by pressurizing the atmosphere during growth with oxygen gas at 0.2 MPa or more.

酸素ガスを0.2MPa以上に加圧したときの蒸発は0.1MPa
の時より可なり抑えられLa2CuO4とCuOが生成しているこ
とが実験により明らかになった。
Evaporation is 0.1MPa when oxygen gas is pressurized above 0.2MPa
It was clarified by experiments that La 2 CuO 4 and CuO were generated, which was suppressed much more than when.

この結果より、本発明では赤外線集中加熱炉を用い
て、その雰囲気を0.15MPa以上好ましくは0.2〜0.25MPa
の加圧酸素雰囲気中で結晶育成を行うものである。但
し、長時間にわたって結晶育成を行うとCuOが蒸発して
シャフトや石英管に付着する。育成速度は0.5〜3mm/hが
好ましい。
From this result, in the present invention, using an infrared concentrated heating furnace, the atmosphere is 0.15MPa or more, preferably 0.2 ~ 0.25MPa.
The crystal is grown in the pressurized oxygen atmosphere. However, when the crystal is grown for a long time, CuO evaporates and adheres to the shaft and the quartz tube. The growth rate is preferably 0.5 to 3 mm / h.

育成温度は、1100℃未満では溶融が不十分であり、13
00℃を超えると他の相が析出するようになるので、1100
〜1300℃が好ましい。
If the growth temperature is less than 1100 ° C, melting is insufficient.
If the temperature exceeds 00 ° C, other phases will begin to precipitate.
-1300 ° C is preferred.

以上から本発明では、育成条件を、 酸素圧:0.15MPa以上、 育成温度:1100〜1300℃ 育成速度:0.5〜3mm/h とした。以上の結果、本発明の超伝導酸化物の単結晶は
直径5mm以上,長さ40mm以上のものが得られ、これ等超
伝導酸化物の物性を調査研究することを可能とした。
From the above, in the present invention, the growth conditions were oxygen pressure: 0.15 MPa or more, growth temperature: 1100 to 1300 ° C., growth rate: 0.5 to 3 mm / h. As a result, a single crystal of the superconducting oxide of the present invention having a diameter of 5 mm or more and a length of 40 mm or more was obtained, which made it possible to investigate and study the physical properties of these superconducting oxides.

その1つの成果としては、結晶が正方晶系であり、か
つ種結晶の成長方向がa軸であるので、この方向に電流
を流してやれば、通常の金属的振舞を保持したまま臨界
温度で高温超伝導特性が得られる。
One of the achievements is that the crystal is tetragonal and the growth direction of the seed crystal is the a-axis, so if a current is passed in this direction, the temperature will rise at the critical temperature while maintaining the normal metallic behavior. Superconducting properties can be obtained.

次に実施例について述べる。 Next, examples will be described.

[実施例] 第1図及び第2図は本発明の超伝導酸化物単結晶の製
造に用いるそれぞれ単楕円型或いは双楕円型の回転楕円
面鏡を有する赤外線集中加熱炉の説明図である。
Example FIG. 1 and FIG. 2 are explanatory views of an infrared concentrated heating furnace having a single elliptical or bielliptical spheroidal mirror used for producing a superconducting oxide single crystal of the present invention.

図において、1は単楕円回転面鏡、1aは双楕円回転面
鏡、2は赤外線ランプ(ハロゲン又はキセノンラン
プ)、3は溶媒、4は焼結原料棒、5は上部回転軸、6
は種結晶、7は下部回転軸、8は透明石英管、9はレン
ズ、10はスクリーン、11は雰囲気ガス入口、12は雰囲気
ガス出口である。
In the figure, 1 is a mono-elliptical rotary mirror, 1a is a bi-elliptical rotary mirror, 2 is an infrared lamp (halogen or xenon lamp), 3 is a solvent, 4 is a sintering raw material rod, 5 is an upper rotary shaft, 6
Is a seed crystal, 7 is a lower rotary shaft, 8 is a transparent quartz tube, 9 is a lens, 10 is a screen, 11 is an atmospheric gas inlet, and 12 is an atmospheric gas outlet.

第2図により、本発明の実施例について説明する。 An embodiment of the present invention will be described with reference to FIG.

双楕円回転面鏡1aは、赤外線を効率よく反射させると
共に耐久性を持たせるために金鍍金を施してあり、その
双楕円回転面鏡1aの外側焦点の加熱光源として、1.5kW
のハロゲン又はキセノンランプの赤外線ランプ2が配置
され、これから発した赤外線は中心部の他の焦点に集光
する。
The bi-elliptical rotary surface mirror 1a is plated with gold in order to efficiently reflect infrared rays and to have durability, and as a heating light source for the outer focal point of the bi-elliptical rotary surface mirror 1a, 1.5kW is used.
Infrared lamp 2 such as a halogen or xenon lamp is arranged, and infrared rays emitted from the infrared lamp 2 are focused on another focal point in the central portion.

この焦点には溶媒3が配置されている。温度調整はラ
ンプの電圧の昇降により0℃〜2150℃に調整可能であ
る。
The solvent 3 is arranged at this focal point. The temperature can be adjusted from 0 ° C to 2150 ° C by raising or lowering the voltage of the lamp.

溶媒3の上部には焼結原料棒4が上部回転軸5に吊り
下げられている。
Above the solvent 3, a sintering raw material rod 4 is suspended on an upper rotary shaft 5.

また溶媒3の下部には種結晶6が下部回転軸7に支え
られ、上部回転軸5及び下部回転軸7は同時に移動させ
ることができ、さらに上部回転軸5を移動させて上下回
転軸の間隔を自由に調整でき、各回転軸は夫々回転でき
るようになっている。
A seed crystal 6 is supported by a lower rotary shaft 7 below the solvent 3, and the upper rotary shaft 5 and the lower rotary shaft 7 can be moved at the same time. Can be freely adjusted, and each rotating shaft can be rotated independently.

透明石英管8により、これら溶媒3の周辺は外気から
遮断されているので雰囲気及びその圧力を変えることが
できる。雰囲気ガス入口11より例えば酸素を封入せしめ
て、酸素圧を印加させることができる。
The transparent quartz tube 8 shields the surroundings of the solvent 3 from the outside air, so that the atmosphere and its pressure can be changed. For example, oxygen can be sealed from the atmosphere gas inlet 11 to apply oxygen pressure.

またレンズ9により、溶融帯域の状況がスクリーン10
上に写しだされるので、結晶の溶融状況を観察しながら
成長させることができる。
In addition, the condition of the melting zone is displayed by the lens 9 on the screen 10.
Since it is shown above, it is possible to grow while observing the melting state of the crystal.

そのほか楕円面鏡1内に圧縮空気を吹込み加熱源のラ
ンプを冷却したり、楕円面鏡の過熱防止のため、また回
転軸の保持部は溶融帯域の伝導熱,対流熱を防止するた
めに水冷するようになっている。
In addition, in order to cool the lamp of the heating source by blowing compressed air into the ellipsoidal mirror 1, to prevent overheating of the ellipsoidal mirror, and to prevent conduction heat and convection heat in the melting zone in the holding portion of the rotating shaft. It is designed to be water cooled.

次に前記装置を用いて単結晶を育成した例について述
べる。
Next, an example in which a single crystal is grown using the above apparatus will be described.

[実施例1] 出発原料として、純度99.9%のLa2O3、SrCO3とCuO
(いずれもフルウチ化学(株)製;純度99.9%)を用
い、これらの試薬をLa2-xSrxCuO4(x=0.15)化学量論
組成比に秤量し、エタノールで湿式混合した後、空気中
で850℃,12時間焼成した。
[Example 1] As starting materials, La 2 O 3 , SrCO 3 and CuO having a purity of 99.9% were used.
(Both manufactured by Furuuchi Kagaku Co., Ltd .; purity 99.9%), these reagents were weighed to a La 2-x Sr x CuO 4 (x = 0.15) stoichiometric composition ratio and wet-mixed with ethanol, It was calcined in air at 850 ° C for 12 hours.

次に焼成原料を粉砕して、市販のゴム風船に詰め、こ
れに1ton/cm2(100MPa)の圧力をかけて、径5mm、長さ5
0mm程度の丸棒状に成型する所謂ラバープレス法により
成形した後、酸素中1100〜1200℃で12時間焼結し、これ
をLa1.85Sr0.15CuO4の組成の焼結原料棒4とした。
Next, the calcined raw material is crushed and packed in a commercially available rubber balloon, and a pressure of 1 ton / cm 2 (100 MPa) is applied to this, a diameter of 5 mm and a length of 5
After forming by a so-called rubber press method of forming into a round bar shape of about 0 mm, it was sintered in oxygen at 1100 to 1200 ° C. for 12 hours to obtain a sintering raw material rod 4 having a composition of La 1.85 Sr 0.15 CuO 4 .

溶媒はSr/(La+Sr)比0.075〜0.10で、55〜80mol%C
uOの組成に秤量し、CuO78mol%,La2O321.8mol%及びSr
0.02mol%の組成にしたものを原料棒4と同様の方法で
作製した。
Solvent has Sr / (La + Sr) ratio of 0.075 to 0.10 and 55 to 80 mol% C
Weighed to the composition of uO, CuO 78mol%, La 2 O 3 21.8mol% and Sr
A material having a composition of 0.02 mol% was manufactured by the same method as the raw material rod 4.

単結晶育成には、2個の1.5kWのハロゲンランプを加
熱光源とした第2図に示す双楕円型赤外線集中加熱炉を
使用した。
For growing a single crystal, a bi-elliptical infrared concentrated heating furnace shown in FIG. 2 using two 1.5 kW halogen lamps as a heating light source was used.

育成条件は育成速度を1.0mm/h、また、酸化銅の蒸発
を防ぐため、育成雰囲気をガス圧2kg/cm2(0.2MPa)の
純粋な加圧酸素中で育成した。
The growth conditions were a growth rate of 1.0 mm / h, and to prevent evaporation of copper oxide, the growth atmosphere was grown in pure pressurized oxygen with a gas pressure of 2 kg / cm 2 (0.2 MPa).

また融液を細くし結晶の核の生成を小数にし核を少な
くするため、ネッキング育成により種結晶を育成し、a
軸方向に結晶育成を行った。
Further, in order to reduce the number of nuclei in the melt by making the melt thin and reducing the number of crystal nuclei, a seed crystal is grown by necking growth, and a
Crystal growth was carried out in the axial direction.

生成結晶の写真を第3図に示す。第3図に明らかなよ
うに、直径6mmで長さ40mm大の黒色の単結晶であり、金
属光沢を示す丸棒状のものが得られた。又育成結晶表面
上に成長方向にファセットが見られた。
A photograph of the produced crystals is shown in FIG. As is clear from FIG. 3, a black single crystal having a diameter of 6 mm and a length of 40 mm was obtained, and a round bar-like material having a metallic luster was obtained. Also, facets were observed in the growth direction on the surface of the grown crystal.

第5図にファセットの背面ラウエ写真を示す。Figure 5 shows a backside Laue photograph of the facets.

育成結晶をX線背面ラウエ法で評価したところ第5図
に示すように、シャープな斑点がみられ単結晶であるこ
とが確認された。
When the grown crystal was evaluated by the X-ray back surface Laue method, as shown in FIG. 5, sharp spots were observed and it was confirmed that the crystal was a single crystal.

育成結晶表面上に見られたファセットは(001)面で
あることが明らかになった。
It was revealed that the facets on the surface of the grown crystal were (001) faces.

又、中性子散乱実験によるモザイク構造の分布は0.2
度以下で良質の単結晶であった。
In addition, the distribution of the mosaic structure by the neutron scattering experiment is 0.2.
It was a good-quality single crystal below the temperature.

また、育成結晶をEPMAで直径方向及び成長方向の組成
分析を行ったところ組成はほとんど変わらずに均一であ
った。EPMAを用いての定量分析結果と粉末X線回折法に
よる格子定数の測定結果を第2表に示す。
In addition, the composition of the grown crystal was uniform in the direction of diameter and the direction of growth by EPMA, and the composition was almost unchanged. Table 2 shows the quantitative analysis results using EPMA and the measurement results of the lattice constant by the powder X-ray diffraction method.

この第2表に示すように育成結晶の組成は、La1.86Sr
0.14CuO4であり、Laの量は原料棒より多く、又SrとCuの
量は結晶中には少なかった。
As shown in Table 2, the composition of the grown crystal is La 1.86 Sr.
It was 0.14 CuO 4 , the amount of La was larger than that of the raw material rod, and the amounts of Sr and Cu were small in the crystal.

次に超伝導性について評価した。 Next, superconductivity was evaluated.

育成結晶の電気抵抗測定結果を第4図に示す。第4図
に示すように、臨界温度Tconset(超伝導転移の開始温
度Tcという)が37位で完全に電気抵抗が0オームとなる
ΔTend(ΔTcという)のは30Kであり、超伝導性を示し
た。
The electric resistance measurement result of the grown crystal is shown in FIG. As shown in Fig. 4, the critical temperature T conset (referred to as the superconducting transition start temperature T c ) is 37th, and ΔT end (referred to as ΔT c ) at which the electric resistance is completely 0 ohm is 30 K. It showed conductivity.

次に育成結晶のa軸及びc軸方向の電気抵抗の温度変
化を第6図に示す。第6図に明らかなように、a軸方向
(Cu−O面)の電気抵抗がc軸方向と比較して数百倍も
小さく、温度変化と共に金属的挙動を示している。しか
るにc軸方向の抵抗の温度変化は200K付近までは金属的
であるが、それ以下の温度では半導体的挙動を示してい
る。
Next, FIG. 6 shows the temperature change of the electrical resistance of the grown crystal in the a-axis and c-axis directions. As is clear from FIG. 6, the electric resistance in the a-axis direction (Cu-O plane) is several hundred times smaller than that in the c-axis direction, and shows a metallic behavior with temperature change. However, the temperature change of the resistance in the c-axis direction is metallic up to about 200 K, but at a temperature lower than that, it behaves like a semiconductor.

又、200K付近の挙動はテトラ→オルソ転移に対応して
いるのではないかと思われる。このように育成結晶は大
きな異方性を示すことが明らかになった。
Also, the behavior around 200K seems to correspond to the tetra-> ortho transition. Thus, it was revealed that the grown crystal exhibited a large anisotropy.

[実施例2] 実施例1と同様な方法で得られた育成結晶(a)及び
得られた結晶(a)を酸素中で500℃、50時間アニール
し得られたもの(b)とをマイスナー効果の測定を行っ
た。その結果を第7図に示す。
[Example 2] A grown crystal (a) obtained in the same manner as in Example 1 and a crystal (a) obtained by annealing the obtained crystal (a) in oxygen at 500 ° C for 50 hours (Meissner) The effect was measured. The results are shown in FIG.

第7図に示すように、いずれも超伝導性を示し、アニ
ール効果が認められた。
As shown in FIG. 7, all exhibited superconductivity and an annealing effect was observed.

[実施例3] 初めにNd−Ce−CuO−O系の単結晶を合成するうえに
不可欠なNd2O3−CuO系、Nd2O3−CeO2−CuO系状態図につ
いて調べた。
Example 3 First, a phase diagram of Nd 2 O 3 —CuO system and Nd 2 O 3 —CeO 2 —CuO system, which are indispensable for synthesizing Nd—Ce—CuO—O system single crystal, was investigated.

Nd2,O3,CeO2,CuOの粉末の夫々を、所定の組成になる
ように秤量し、約30分間乳鉢で混合し、850℃で24時間
焼成した。焼成した試料は、示差熱天秤TG−DTAによっ
て高温に於ける相変化を調べた。測定条件は、加熱及び
冷却を速度5℃/minで行い、標準試料としてAl2O3粉末
を用い、雰囲気は0.1MPa酸素中で行った。
Each of the powders of Nd 2 , O 3 , CeO 2 , and CuO was weighed so as to have a predetermined composition, mixed in a mortar for about 30 minutes, and baked at 850 ° C. for 24 hours. The fired sample was examined for phase change at high temperature by a differential thermal balance TG-DTA. The measurement conditions were such that heating and cooling were performed at a rate of 5 ° C./min, Al 2 O 3 powder was used as a standard sample, and the atmosphere was 0.1 MPa oxygen.

また、焼成した試料は、直径8mmの丸棒状にし100MPa
で静水圧プレスを施した後、 Nd2O3:CuO=1:1の試料は1200℃で、それ以外の組成の
試料は1000℃で焼結した。
In addition, the fired sample is made into a round bar with a diameter of 8 mm and 100 MPa.
After isostatic pressing, the sample of Nd 2 O 3 : CuO = 1: 1 was sintered at 1200 ° C, and the other samples were sintered at 1000 ° C.

溶融試験には、1.5KWハロゲンランプを加熱光源とし
た第1図に示す単楕円赤外線集中加熱炉を用い、前述の
SCFZ法により種々の組成の試料を溶融固化した。
For the melting test, the single elliptical infrared concentrated heating furnace shown in Fig. 1 using a 1.5 KW halogen lamp as a heating light source was used.
Samples of various compositions were melted and solidified by the SCFZ method.

このSCFZ法によって得られた試料は、EPMAにより観察
し、組成分析を行った。
The sample obtained by this SCFZ method was observed by EPMA and its composition was analyzed.

Nd2O3/CuO=1/1の組成の試料をTG−DTAで分析した結
果、昇温時に1050℃と1270℃に吸熱ピークが現れた。ま
た、この溶融した試料を粉末X線回折法で調べたとこ
ろ、Nd2CuO4の他にNd3O3も認められた。
As a result of TG-DTA analysis of a sample having a composition of Nd 2 O 3 / CuO = 1/1, endothermic peaks appeared at 1050 ° C and 1270 ° C when the temperature was raised. When the molten sample was examined by powder X-ray diffractometry, Nd 3 O 3 was found in addition to Nd 2 CuO 4 .

そして、60mol%CuOの焼結体をSCFZ法により溶融・固
化し、EPMAにより観察したところ、初晶部にNd2O3が、
そして先端部にCuOとCu2Oがそれぞれ多く存在してい
た。
Then, when the sintered body of 60 mol% CuO was melted and solidified by the SCFZ method and observed by EPMA, Nd 2 O 3 was found in the primary crystal part,
And CuO and Cu 2 O were present in the tip part in large numbers.

このことから、Nd2CuO4は、1270℃以上で、Nd2O3+Li
quidに分解溶融し、Nd2CuO4の共晶点は1050℃であるこ
とが判った。
From this, Nd 2 CuO 4 can be used at temperatures above 1270 ℃ for Nd 2 O 3 + Li.
After decomposition and melting into quid, it was found that the eutectic point of Nd 2 CuO 4 was 1050 ° C.

次に、Nd2CuO4と平衡共存する液相組成を決定するた
めに、CuO rich組成の試料についてTG−DTAを行ったと
ころ、79mol%CuO以上の試料から融液が固化する温度が
下がり始め、91mol%CuOの時、最も共晶点に近付いた。
Next, in order to determine the liquid phase composition in equilibrium with Nd 2 CuO 4 , TG-DTA was performed on samples with a CuO rich composition, and the temperature at which the melt solidified from 79 mol% CuO or higher samples began to fall. , 91mol% CuO, it was closest to the eutectic point.

そして、85mol%CuOの試料をSCFZ法により溶融・固化
しEPMAにより観察したところ、Nd2O3は生成せず初晶
は、Nd2CuO4であった。つまり、79〜91mol%CuOの時にN
d2CuO4と融液が平衡にある液相線が存在すことが判っ
た。
When a sample of 85 mol% CuO was melted and solidified by the SCFZ method and observed by EPMA, Nd 2 O 3 was not produced and the primary crystal was Nd 2 CuO 4 . In other words, when 79 to 91 mol% CuO, N
It was found that there is a liquidus line where d 2 CuO 4 and the melt are in equilibrium.

また、CuO rich組成にしたところ、昇温時は二つの吸
熱ピークであったが、溶融後の降温時には三つ発熱ピー
クになっていた。この三つのピークのうち高温側の二つ
は昇温時の吸熱ピークにそれぞれ対応していたが、1000
℃付近の第三のピークに対応するものがない。さらに、
このピークは、溶媒であるCuOが増えれば増えるほどそ
の強度が大きくなることから、試料が溶融する時にはCu
Oが分解することによって生成するCu2Oによるものでは
ないかと思われる。これらのこのことから導かれたNd2O
3−CuO系の状態図を第8図に示す。
In addition, when the CuO rich composition was used, there were two endothermic peaks when the temperature was raised and three exothermic peaks when the temperature was lowered after melting. Of the three peaks, the two on the high temperature side corresponded to the endothermic peaks during temperature rise,
There is no one corresponding to the third peak near ℃. further,
This peak increases in intensity as the solvent CuO increases, so when the sample melts, Cu
It seems that it is due to Cu 2 O generated by the decomposition of O. Nd 2 O derived from these things
A phase diagram of the 3- CuO system is shown in FIG.

次に(92.5%Nd2O3+7.5%CeOC)/CuO=30/70と15/85
の焼結体をSCFZ法により溶融・固化した部分をEPMAによ
り観察した。70mol%CuOの試料は初晶として、Nd2-xCex
O3+δの固溶体が析出した。
Then (92.5% Nd 2 O 3 + 7.5% CeOC) / CuO = 30/70 and 15/85
The part of the sintered body obtained by melting and solidifying by the SCFZ method was observed by EPMA. The sample of 70 mol% CuO was Nd 2-x Ce x
A solid solution of O 3 + δ was deposited.

また85mol%CuOの試料の場合には、固溶体の析出はな
くNd1.85Ce0.15CuO4-yの相が最初に析出した。
In the case of the 85 mol% CuO sample, the solid solution was not precipitated and the Nd 1.85 Ce 0.15 CuO 4-y phase was precipitated first.

また、TG−DTAの結果より、共晶点には変化がなかっ
たが、包晶点は1315℃となり、Nd2O3−CuO系よりも45℃
程度高くなった。そして、Nd1.85Ce0.15CuO4-yと融液が
平衡にある液相線の組成範囲が、78から91mol%CuOと、
多少広がったことが判った。
Also, from the results of TG-DTA, there was no change in the eutectic point, but the peritectic point was 1315 ℃, 45 ℃ than Nd 2 O 3 -CuO system.
It became higher. And, the composition range of the liquidus line where Nd 1.85 Ce 0.15 CuO 4-y and the melt are in equilibrium is 78 to 91 mol% CuO,
It turned out that it spread a little.

また、Ce添加の試料においても1000℃付近にCu2Oが固
化するときの発熱ピークが見られた。
In addition, the exothermic peak when Cu 2 O solidified near 1000 ° C was also observed in the sample with Ce added.

以上のことから第9図にNd2O3−CeO2−CuO系の状態図
を、Nd2-xCexO3+δ−CuO系の疑似二成分系で表した。
From the above, the phase diagram of the Nd 2 O 3 —CeO 2 —CuO system is shown in FIG. 9 as a pseudo binary system of the Nd 2−x Ce x O 3 + δ− CuO system.

この第9図は、TSFZ法により、79〜91mol%CuOの組成
の溶媒を用いることにより、Nd2-xCexCuO4の単結晶の育
成が可能であることを示している。
This FIG. 9 shows that it is possible to grow a single crystal of Nd 2−x Ce x CuO 4 by the TSFZ method by using a solvent having a composition of 79 to 91 mol% CuO.

Ce=0.15としたNd2-xCexCuO4の単結晶の育成をTSFZ法
により行った。
A single crystal of Nd 2-x Ce x CuO 4 with Ce = 0.15 was grown by the TSFZ method.

実施例1と同様な装置で、原料棒4としてはNd2-xCex
CuO4の化学量論組成比の割合に、Nd2O3とCeO2及びCuOの
夫々の酸化物粉末を秤量し、混合し、850℃,24時間焼成
した後、実施例1と同様にラバープレス法で径6mm、長
さ50mm程度の丸棒状に成型した後、炭素中1100〜1200℃
で12時間焼結したものを焼結原料棒4とした。
Using the same apparatus as in Example 1, the raw material rod 4 was Nd 2-x Ce x.
Oxide powders of Nd 2 O 3 , CeO 2 and CuO were weighed and mixed with the ratio of the stoichiometric composition ratio of CuO 4 , mixed and fired for 24 hours at 850 ° C. Molded into a round bar with a diameter of 6 mm and a length of 50 mm by the press method, then in carbon 1100-1200 ℃
Sintering raw material rod 4 was obtained by sintering for 12 hours.

次に、溶媒は80mol%CuOの組成に秤量した後、原料棒
4と同様の方法で合成した。
Next, the solvent was weighed to a composition of 80 mol% CuO, and then synthesized in the same manner as the raw material rod 4.

単結晶育成には、実施例1と同様の双楕円型赤外線集
中加熱炉を使用した。
The same bi-elliptical infrared concentrated heating furnace as in Example 1 was used for growing the single crystal.

育成条件は、育成速度を0.5〜3.0mm/h,育成雰囲気を
純粋な酸素でガス圧を0.1〜0.25MPaで行った。また、ネ
ッキング育成により種結晶を育成し、a軸方向に結晶育
成を行った。
As for the growth conditions, the growth rate was 0.5 to 3.0 mm / h, the growth atmosphere was pure oxygen, and the gas pressure was 0.1 to 0.25 MPa. Also, seed crystals were grown by necking growth, and crystals were grown in the a-axis direction.

その結果、育成されたNd2-xCexCuO4の単結晶には大量
のNd1.48Ce0.523+δの固溶体を含有し、脆弱であっ
た。
As a result, the grown Nd 2-x Ce x CuO 4 single crystal contained a large amount of a solid solution of Nd 1.48 Ce 0.52 O 3 + δ and was fragile.

第10図に85mol%CuOを用いて育成した場合のNd2-xCex
CuO4の育成単結晶の構造写真を示す。
Figure 10 shows Nd 2-x Ce x when grown using 85 mol% CuO.
The structural photograph of the grown single crystal of CuO 4 is shown.

育成結晶は5mm直径50mm長さの金属光沢のない黒色
で、c−平面に沿って平行なへき開面を有していた。
The grown crystal was 5 mm in diameter and 50 mm in length, black with no metallic luster, and had parallel cleavage planes along the c-plane.

単結晶は微量の亜粒界組織及びCuOを幾らか含んでい
たが、約2×3×5mm3の単結晶が得られた。この結晶の
組成は、EPMAによる定量分析の結果、組織はNd1.86Ce
0.14CuO4と決定され、それは供給のNd1.85Ce0.15CuO4
りCeが僅かながら少なかった。
Although the single crystal contained a slight amount of subgrain boundary structure and some CuO, a single crystal of about 2 × 3 × 5 mm 3 was obtained. As a result of quantitative analysis by EPMA, the composition of this crystal was found to be Nd 1.86 Ce
It was determined to be 0.14 CuO 4 , which was slightly less Ce than the feed Nd 1.85 Ce 0.15 CuO 4 .

CuOの沈澱が、溶融帯の組成変化の結果として起り、
よりCurich側の組成に変ったものである。従って、溶液
の最適な組成は、80〜85mol%CuOであることが判る。
CuO precipitation occurs as a result of composition changes in the melt zone,
The composition changed to that on the Curich side. Therefore, it can be seen that the optimum composition of the solution is 80 to 85 mol% CuO.

次に磁性の評価を行なった。 Next, the magnetic properties were evaluated.

育成されたNd1.86Ce0.14CuO4の結晶からはマイスナー
効果は得られなかった。
The Meissner effect was not obtained from the grown Nd 1.86 Ce 0.14 CuO 4 crystal.

還元状態でアニールされたNd2-xCexCuO4の単結晶は超
伝導体となり、また脱酸素圏内でTSFZ法で育成された、
Nd2-xCexCuO4の単結晶はTcが10K以下の超伝導性を持つ
ことが報ぜられているが、しかし、本試験による単結晶
は、酸化銅の蒸発を防ぐために酸素圏内で育成されたの
で、超伝導性とはならなかった。
The single crystal of Nd 2-x Ce x CuO 4 annealed in the reduced state became a superconductor and was grown by the TSFZ method in the deoxygenation zone.
The single crystal of Nd 2-x Ce x CuO 4 has been reported to have superconductivity with T c of 10 K or less, however, the single crystal according to the present test shows that the single crystal of this test has an oxygen group to prevent evaporation of copper oxide. Since it was grown in, it was not superconducting.

このようにして、Nd1.86Ce0.14CuO4の結晶は、気体窒
素中で900℃,70時間アニールされた後、マイスナー効果
を調べた。その結果を第11図に示す。第11図はNd1.86Ce
0.14CuO4のアニール結晶の磁性化の温度依存性を示す。
In this way, the Nd 1.86 Ce 0.14 CuO 4 crystal was annealed in gaseous nitrogen at 900 ° C. for 70 hours, and then the Meissner effect was examined. The results are shown in FIG. Figure 11 shows Nd 1.86 Ce
The temperature dependence of the magnetization of 0.14 CuO 4 annealed crystals is shown.

第11図が示すように、Nd1.86Ce0.14CuO4のアニール結
晶のTcは19Kであり、その温度は先に報告されたNd2-xCe
xCuO4の単結晶よりも低かった。その温度降下は、育成
された結晶中のCuOの沈澱及びアニール条件に原因があ
ると思われる。
As shown in FIG. 11, the T c of the annealed crystal of Nd 1.86 Ce 0.14 CuO 4 is 19 K, and the temperature is Nd 2-x Ce reported previously.
It was lower than that of x CuO 4 single crystal. The temperature drop seems to be due to the precipitation of CuO in the grown crystal and the annealing conditions.

以上の如く、超伝導性を示すNd2-xCexCuO4は本発明の
製造方法によって、単結晶の育成大型化が可能であるこ
とが明らかになったが、YBa2Cu3O7-X、BiSrCaCu2Ox、Tl
2Ba2Ca2Cu3Oxについても同様に本発明が適用出来るもの
である。
As described above, it has been clarified that Nd 2-x Ce x CuO 4 exhibiting superconductivity can be grown and enlarged in size of a single crystal by the production method of the present invention, but YBa 2 Cu 3 O 7- X , BiSrCaCu 2 O x , Tl
The present invention can be similarly applied to 2 Ba 2 Ca 2 Cu 3 O x .

[発明の効果] 本発明の超伝導酸化物単結晶は超伝導酸化物の超伝導
性を解明する為の良質で、結晶が正方晶系であり、かつ
種結晶の成長方向がa軸であるような超伝導性を示す大
形結晶であり、本発明により酸化物の磁気的及び電気的
性質の異方性等の物性が厳密に測定出来、異方性の情報
が得られて、その超伝導性を解明し超伝導発現の機構の
研究に資することが大である。
[Effects of the Invention] The superconducting oxide single crystal of the present invention is of good quality for elucidating the superconducting property of the superconducting oxide, the crystal is tetragonal, and the seed crystal growth direction is the a-axis. It is a large crystal exhibiting such superconductivity, and according to the present invention, physical properties such as anisotropy of magnetic and electrical properties of an oxide can be strictly measured, and information on anisotropy can be obtained. It is important to clarify the conductivity and contribute to the research of the mechanism of superconductivity.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の超伝導酸化物単結晶の製造
に用いる単楕円型或いは双楕円型の回転楕円面鏡の赤外
線集中加熱炉の説明図、第3図は本発明の実施例1にお
けるLa2-xSrxCuO4(x=0.15)の育成結晶の構造写真、
第4図はLa2-xSrxCuO4(x=0.15)の育成結晶の電気抵
抗−温度特性の測定グラフ、第5図はファセットの背面
ラウエ結晶写真、第6図は育成La0.186Sr0.14CuO4結晶
のa軸及びc軸方向の電気抵抗の温度変化説明図、第7
図は本発明の実施例2におけるマイスナー効果の測定グ
ラフ、第8図はNd2O3−CuO系の状態図、第9図は(Nd,C
e)2O3+δ−CuO系の状態図、第10図は本発明の実施例
3におけるNd2-xCexCuO4の育成結晶の構造写真、第11図
は本発明の実施例3におけるマイスナー効果の測定グラ
フ、第12図(a)はTSFZ法による分解溶融化合物ABの模
式状態図、第12図(b)はTSFZ法の原理説明図、第13図
は空気中におけるLa2O3−CuO系状態図、第14図はLaO1.5
−CuO系状態図である。 図において、 1a:双楕円回転面鏡、2:赤外線ランプ、 3:溶媒、4:焼結原料棒、 5:上部回転軸、6:種結晶、 7:下部回転軸、8:透明石英管、 9:レンズ、10:スクリーン、 11:雰囲気ガス入口、12:雰囲気ガス出口。
1 and 2 are explanatory views of an infrared concentrated heating furnace of a mono-ellipsoidal or bi-elliptic spheroidal mirror used for producing a superconducting oxide single crystal of the present invention, and FIG. 3 is an embodiment of the present invention. Structural photograph of the grown crystal of La 2-x Sr x CuO 4 (x = 0.15) in Example 1,
Fig. 4 is a measurement graph of the electric resistance-temperature characteristics of the grown crystal of La 2-x Sr x CuO 4 (x = 0.15), Fig. 5 is a photograph of the facet rear Laue crystal, and Fig. 6 is the grown La 0.186 Sr 0.14 Explanatory drawing of temperature change of electric resistance in the a-axis and c-axis directions of CuO 4 crystal
FIG. 8 is a measurement graph of the Meissner effect in Example 2 of the present invention, FIG. 8 is a state diagram of the Nd 2 O 3 —CuO system, and FIG. 9 is (Nd, C
e) Phase diagram of 2 O 3 + δ- CuO system, FIG. 10 is a structural photograph of a grown crystal of Nd 2−x Ce x CuO 4 in Example 3 of the present invention, and FIG. 11 is Meissner in Example 3 of the present invention. A measurement graph of the effect, FIG. 12 (a) is a schematic state diagram of decomposed and molten compound AB by the TSFZ method, FIG. 12 (b) is an explanatory view of the principle of the TSFZ method, and FIG. 13 is La 2 O 3 − in air. CuO system phase diagram, Figure 14 shows LaO 1.5
It is a CuO system phase diagram. In the figure, 1a: bi-elliptical rotating surface mirror, 2: infrared lamp, 3: solvent, 4: sintering raw material rod, 5: upper rotating shaft, 6: seed crystal, 7: lower rotating shaft, 8: transparent quartz tube, 9: lens, 10: screen, 11: atmospheric gas inlet, 12: atmospheric gas outlet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/22 ZAA C30B 29/22 ZAA 特許法第30条第1項適用申請有り Journal o f CRYSTAL GROWTH Vol.96 N o.3 p711〜715に発表(1989−7) 審判番号 平6−17207 (56)参考文献 特開 昭63−230594(JP,A) 特開 昭63−274697(JP,A) 特開 平1−179790(JP,A) 日本化学会第57秋季会講演予講集第 232頁(昭63−9−6) 第33回人工鉱物討論会講演要旨集第71 〜72頁(昭63−9−24)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C30B 29/22 ZAA C30B 29/22 ZAA Patent Law Article 30 Clause 1 Application for application Journal of CRYSTAL GROWTH Vol. 96 No. 3 Published on p711-715 (1989-7) Judgment No. 6-17207 (56) Reference JP-A-63-230594 (JP, A) JP-A-63-274697 (JP, A) JP-A-1-179790 (JP, A) Proceedings of the 57th Autumn Meeting of the Chemical Society of Japan, page 232 (sho 63-9-6), Proc. Of the 33rd Symposium on Artificial Minerals, pages 71-72 (sho 63-9-24)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正方晶系で異方性ならびに超伝導性を示す
酸化物で、前記超伝導酸化物の化学量論組成に実質的に
同一の焼成原料棒を、0.15MPa以上の酸素圧下の赤外線
集中加熱炉中に配置された酸化銅を主体とする溶媒中に
溶解し、種結晶上に析出して得られた結晶であって、 該結晶が正方晶系であり且つ前記結晶の成長方向がa軸
であり、且つ 前記超伝導酸化物が、 Nd2-xCexCuO4、 YBa2Cu3O7-x、 BiSrCaCu2Ox又は、 Tl2Ba2Ca2Cu3Ox であることを特徴とする超伝導酸化物の単結晶。
1. A tetragonal oxide exhibiting anisotropy and superconductivity, and a firing raw material rod having substantially the same stoichiometric composition as the superconducting oxide is treated under an oxygen pressure of 0.15 MPa or more. A crystal obtained by dissolving in a solvent mainly composed of copper oxide placed in an infrared concentrated heating furnace and depositing on a seed crystal, the crystal being a tetragonal system and the growth direction of the crystal. there is a shaft, and wherein the superconducting oxide is the Nd 2-x Ce x CuO 4 , YBa 2 Cu 3 O 7-x, BiSrCaCu 2 O x or, Tl 2 Ba 2 Ca 2 Cu 3 O x A single crystal of a superconducting oxide characterized in that
【請求項2】前記単結晶の直径が5mm以上、長さ40mm以
上であることを特徴とする請求項1記載の超伝導酸化物
の単結晶。
2. The single crystal of superconducting oxide according to claim 1, wherein the single crystal has a diameter of 5 mm or more and a length of 40 mm or more.
【請求項3】原料酸化物と種結晶との間に配設された溶
媒が、加熱溶融されて前記原料酸化物と前記種結晶に接
触する状態で前記種結晶と加熱源との相対位置を移動さ
せて前記種結晶上に結晶が正方晶系であり且つ前記結晶
の成長方向がa軸である酸化物を、制御された雰囲気下
で析出させる超伝導酸化物の単結晶の製造方法であっ
て、 前記原料酸化物の化学量論組成が前記超伝導酸化物と実
質的に同一であり、前記溶媒が酸化銅を主体としかつ前
記雰囲気の酸素圧力が0.15MPa以上であり、且つ 前記超伝導酸化物が、 Nd2-xCexCuO4、 YBa2Cu3O7-x、 BiSrCaCu2Ox又は、 Tl2Ba2Ca2Cu3Ox であることを特徴とする超伝導酸化物の単結晶の製造方
法。
3. The relative position between the seed crystal and the heating source is set in a state in which a solvent disposed between the raw material oxide and the seed crystal is heated and melted and is in contact with the raw material oxide and the seed crystal. A method for producing a single crystal of a superconducting oxide, which comprises moving an oxide having a tetragonal crystal structure on the seed crystal and a crystal growth direction of which is an a-axis in a controlled atmosphere. The stoichiometric composition of the raw material oxide is substantially the same as the superconducting oxide, the solvent is mainly copper oxide and the oxygen pressure of the atmosphere is 0.15 MPa or more, and the superconducting oxide, Nd 2-x Ce x CuO 4, YBa 2 Cu 3 O 7-x, BiSrCaCu 2 O x , or the superconducting oxide, characterized in that the Tl 2 Ba 2 Ca 2 Cu 3 O x Method for producing single crystal.
【請求項4】前記単結晶の育成に当たって、 溶媒組成:55〜91mol%CuO 育成温度:1100〜1300℃ 育成速度:0.5〜3mm/h であることを特徴とする請求項3記載の超伝導酸化物の
単結晶の製造方法。
4. The superconducting oxidation according to claim 3, wherein in growing the single crystal, the solvent composition is 55 to 91 mol% CuO, the growing temperature is 1100 to 1300 ° C., and the growing rate is 0.5 to 3 mm / h. Method for producing a single crystal of a product.
【請求項5】前記単結晶を酸素又は窒素中でアニールす
ることを特徴とする請求項4記載の超伝導酸化物の単結
晶の製造方法。
5. The method for producing a single crystal of superconducting oxide according to claim 4, wherein the single crystal is annealed in oxygen or nitrogen.
JP1326039A 1988-12-29 1989-12-18 Superconducting oxide single crystal and method for producing the same Expired - Fee Related JP2684432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/973,608 US5444040A (en) 1989-12-18 1992-11-06 Superconductive oxide single crystal and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33123388 1988-12-29
JP63-331234 1988-12-29
JP63-331233 1988-12-29
JP33123488 1988-12-29
US07/973,608 US5444040A (en) 1989-12-18 1992-11-06 Superconductive oxide single crystal and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP6277299A Division JPH07172995A (en) 1994-11-11 1994-11-11 Single crystal of superconducting oxide and method for using the same
JP10335497A Division JP3262738B2 (en) 1988-12-29 1997-04-21 Method for producing and using single crystal of superconducting oxide

Publications (2)

Publication Number Publication Date
JPH02275800A JPH02275800A (en) 1990-11-09
JP2684432B2 true JP2684432B2 (en) 1997-12-03

Family

ID=27340469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326039A Expired - Fee Related JP2684432B2 (en) 1988-12-29 1989-12-18 Superconducting oxide single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP2684432B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719518B2 (en) * 1989-01-25 1998-02-25 東京大学長 Manufacturing method of oxide superconducting material
JP2740427B2 (en) * 1992-05-25 1998-04-15 財団法人国際超電導産業技術研究センター Preparation method of oxide crystal
JP2733197B2 (en) * 1994-02-25 1998-03-30 工業技術院長 Method for producing rare earth element-containing single crystal
JP5288122B2 (en) * 2009-03-04 2013-09-11 大成建設株式会社 Detoxification processing equipment for waste to be processed
JP4863316B2 (en) * 2009-03-27 2012-01-25 独立行政法人産業技術総合研究所 An apparatus for melting and detoxifying waste to be treated by light heating and a method of detoxifying melting using the same.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818909B2 (en) * 1987-03-19 1996-02-28 日本電信電話株式会社 Oxide superconductor single crystal growth method
JPS63274697A (en) * 1987-05-01 1988-11-11 Agency Of Ind Science & Technol Production of cupric acid-lanthanum single crystal
JPH01179790A (en) * 1988-01-12 1989-07-17 Ube Ind Ltd Production of single crystal of high temperature superconductor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本化学会第57秋季会講演予講集第232頁(昭63−9−6)
第33回人工鉱物討論会講演要旨集第71〜72頁(昭63−9−24)

Also Published As

Publication number Publication date
JPH02275800A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
Tanaka et al. Single crystal growth of superconducting La2-xSrxCuO4 by the TSFZ method
Cima et al. Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy
US4824826A (en) Millimeter size single crystals of superconducting YBa2 Cu3 O.sub.
Nicolas et al. Sm2O3 Ga2O3 and Gd2O3 Ga2O3 phase diagrams
US5444040A (en) Superconductive oxide single crystal and manufacturing method thereof
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JP3262738B2 (en) Method for producing and using single crystal of superconducting oxide
Wang et al. Double crucible method for the growth of large superconducting YBCO single crystals
JPH07172995A (en) Single crystal of superconducting oxide and method for using the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
RU2701752C1 (en) METHOD OF PRODUCING HIGH-TEMPERATURE SUPERCONDUCTING CERAMICS Bi2Sr2CaCu2O8
JPH06321693A (en) Production of oxide superconducting material
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
RU2104939C1 (en) METHOD FOR PRODUCTION OF SUPERCONDUCTING MATERIAL MBa2Cu3O7-x
JPH0226897A (en) Production of crystal of bi-based superconducting material
Ionescu et al. Growth and characterization of Bi 2 Sr 2 Ca 1 Cu 2 O 8+ x single crystals
JP3000137B2 (en) Method for producing superconductor PrBa2Cu3Oy single crystal
Pandey et al. Single crystal growth of Bi2CaSr2Cu2O8+ x superconductor by travelling zone method
Fu et al. Solidification characteristics of metastable and stable
JPH0471877B2 (en)
RU2182194C1 (en) Method of production of high-temperature superconducting compounds
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JPH0512317B2 (en)
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JPH05124819A (en) Bismuth-containing oxide superconductor and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees