JPH05105573A - Production of oxide superconductor single crystal - Google Patents

Production of oxide superconductor single crystal

Info

Publication number
JPH05105573A
JPH05105573A JP29188991A JP29188991A JPH05105573A JP H05105573 A JPH05105573 A JP H05105573A JP 29188991 A JP29188991 A JP 29188991A JP 29188991 A JP29188991 A JP 29188991A JP H05105573 A JPH05105573 A JP H05105573A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
gas
crystal
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29188991A
Other languages
Japanese (ja)
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Taku Kondo
近藤  卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29188991A priority Critical patent/JPH05105573A/en
Publication of JPH05105573A publication Critical patent/JPH05105573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize a high-quality large-sized single crystal of an oxide superconductor by a standing slow-cooling method. CONSTITUTION:A single crystal is produced by carrying out the standing slow- cooling of synthesized raw material powder while blasting a gas to a crucible 4, thereby applying effective temperature gradient. For example, a powdery mixture having the composition of Tl2Ba2CuO6+KCl is sealed in a gold crucible 4 and slowly cooled from 920 deg.C at a cooling rate of 5 deg.C/hr while blasting oxygen gas to a point on the upper part of the crucible. The growth of ten odd number of single crystals of several mm square and about 0.01 mm thick is observed around the part blasted with the gas and the crystal exhibits sharp transition to superconductivity at 85K. (When the above process is carried out under the same condition except for the blast of gas, there is no growth of single crystal and only powder is deposited on the bottom of the crucible.)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の超伝導応用装置
や超伝導素子に使用される酸化物超伝導材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting material used in various superconducting devices and superconducting devices.

【0002】[0002]

【従来の技術】金属・合金系超伝導材料、化合物超伝導
材料は、ジョセフソン素子や超伝導マグネットの線材と
して既に広く利用されている。ジョセフソン接合はその
磁場に対する高い感度のためSQUIDを初めとする精
密計測に応用されているほか、その高速性から電子計算
機への応用が期待されている。また、通常導体では得ら
れないような高磁場を発生できる超伝導マグネットは、
NMR−CTなどの医療機器や浮上型リニアモ―タ―カ
―等にも応用されている。超伝導体の応用を考えた場
合、超伝導転移温度Tcはできる限り高いことが望まれ
る。金属・合金系超伝導体や化合物系超伝導体は、冷媒
として高価で希少な液体ヘリウムを用いなければなら
ず、このことがこれらの超伝導体の広い分野への応用を
妨げる一因となっている。この点では銅酸化物系超伝導
体は、従来の超伝導体よりもはるかに優れており、19
87年にBa−Y−Cu−O系超伝導体が発見されて以
来、Bi−Sr−Ca−Cu−O系、Tl−Ba−Ca
−Cu−O系などの液体窒素温度を越えるTcをもつ超
伝導体が相次いで発見されている。これらの酸化物超伝
導体が実用化されれば、今まで考えられなかったような
分野にまでその応用の可能性が広がるとして、現在も研
究開発が盛んに行われている。
2. Description of the Related Art Metal / alloy type superconducting materials and compound superconducting materials have already been widely used as wire rods for Josephson devices and superconducting magnets. The Josephson junction has been applied to precision measurement including SQUID because of its high sensitivity to a magnetic field, and is expected to be applied to an electronic computer because of its high speed. In addition, a superconducting magnet that can generate a high magnetic field that cannot be obtained with a normal conductor is
It has also been applied to medical equipment such as NMR-CT and floating linear motors. Considering the application of superconductors, the superconducting transition temperature Tc is desired to be as high as possible. Metal-alloy superconductors and compound superconductors must use expensive and rare liquid helium as a refrigerant, which is one of the factors that hinder the application of these superconductors to a wide range of fields. ing. In this respect, the copper oxide-based superconductor is far superior to the conventional superconductor.
Since the Ba-Y-Cu-O-based superconductor was discovered in 1987, Bi-Sr-Ca-Cu-O-based and Tl-Ba-Ca
Superconductors having a Tc above the liquid nitrogen temperature, such as the —Cu—O system, have been discovered one after another. If these oxide superconductors are put into practical use, the possibility of their application will be expanded to fields that were previously unthinkable, and research and development are still being actively conducted.

【0003】[0003]

【発明が解決しようとする課題】現在研究されている酸
化物超伝導体試料のほとんどは多結晶体である。超伝導
体の多結晶試料では、その結晶粒界に無数の超伝導の弱
結合が存在するため、望む特性を持つジョセフソン接合
を制御性良く作ることが困難である。また、多結晶体が
含んでいる各種の欠陥や不均質性が超伝導特性の安定性
に悪い影響を与えることも考えられるため、デバイスな
どへの応用には単結晶体を用いることが望ましい。単結
晶の合成方法の中でも、比較的簡便な方法として静置徐
冷法がある。この方法は結晶や坩堝の可動機構を持つ特
別な電気炉を用いなくても結晶合成が行える利点がある
が、坩堝内の温度勾配が電気炉の自然な温度勾配によっ
て決定されるため、均熱性のよい拡散炉等の横型炉を用
いた場合には単結晶の合成が困難になる。本発明の目的
は、静置徐冷法による酸化物超伝導体の合成において、
坩堝内に適度な温度勾配を導入することにより、充分な
大きさを持つ良質な酸化物超伝導体単結晶を製造する方
法を提供することにある。
Most of the oxide superconductor samples currently studied are polycrystalline. In a polycrystalline superconductor sample, it is difficult to make a Josephson junction with desired properties with good controllability because there are numerous weak superconducting bonds at the grain boundaries. Further, various defects and inhomogeneities contained in the polycrystal may adversely affect the stability of the superconducting property, so that it is desirable to use the monocrystal for application to devices and the like. Among the methods for synthesizing a single crystal, a static annealing method is a relatively simple method. This method has the advantage that crystals can be synthesized without using a special electric furnace that has a moving mechanism for the crystal and the crucible, but the temperature gradient in the crucible is determined by the natural temperature gradient of the electric furnace, so When using a horizontal furnace such as a good diffusion furnace, it becomes difficult to synthesize a single crystal. The object of the present invention is to synthesize an oxide superconductor by a stationary annealing method,
It is an object of the present invention to provide a method for producing a good-quality oxide superconductor single crystal having a sufficient size by introducing an appropriate temperature gradient into the crucible.

【0004】[0004]

【課題を解決するための手段】本発明は、酸化物超伝導
体単結晶の製造方法において、結晶合成する原料を入れ
た坩堝を徐冷する際にガスを吹き付けつつ行うことを特
徴とする酸化物超伝導体単結晶の製造方法である。
The present invention is a method for producing an oxide superconductor single crystal, characterized in that when a crucible containing a raw material for crystal synthesis is gradually cooled, it is carried out while blowing a gas. It is a method for producing a superconductor single crystal.

【0005】[0005]

【作用】Tl2Ba2CuO6+KClなる組成の混合粉
を、金坩堝に封入した後、坩堝の上部の一点に酸素ガス
を吹き付けながら、920℃から徐冷速度5℃/hou
rで徐冷したところ、ガスを吹き付けた箇所を中心に数
mm角で厚み0.01mm程度の大きさの単結晶が10
数個程成長していることが確認された。これらの結晶
は、85Kでシャ―プな超伝導転移を示した。同一の条
件でガス吹き付けを行わない場合には、単結晶は得られ
ず坩堝の底に粉ができるだけであった。
After the mixed powder having the composition of Tl 2 Ba 2 CuO 6 + KCl is sealed in the metal crucible, oxygen gas is blown to one point on the upper part of the crucible from 920 ° C to the slow cooling rate of 5 ° C / hou.
When gradually cooled with r, a single crystal having a size of several mm square and a thickness of about 0.01 mm centering on the position where the gas was blown was 10
It was confirmed that some of them were growing. These crystals showed a sharp superconducting transition at 85K. When the gas was not blown under the same conditions, a single crystal was not obtained and only powder was formed on the bottom of the crucible.

【0006】[0006]

【実施例】以下、実施例により、本発明を具体的に説明
する。 実施例1 出発原料として純度99.9%以上の酸化タリウム(T
23)、酸化バリウム(BaO)、酸化第二銅(Cu
O)、塩化カリウム(KCl)を使用した。まず、Tl
23+2BaO+CuOで混合した粉末をプレスした
後、860〜870℃で焼成して、Tl2Ba2CuO6
焼結体を合成した。得られた焼結体の粉末とKClを混
合し、20mmφ×25mmの金坩堝に封入した後、図
2に示す10mmφの石英管1付きの横50mm×高さ
20mmの石英ボ―ト2に乗せて拡散炉に挿入した。ノ
ズル5の径は、坩堝4の大きさと必要とする吹き付けガ
ス量に応じて選ばれる。結晶合成時の最高温度は920
℃、徐冷速度は5℃/hourとした。結晶の取り出し
はKClを水で洗い流すことによって行った。図1に合
成装置である電気炉の構成を示す。この装置では、炉芯
管3全体を流れるガス量と坩堝4に吹き付けるガス量を
独立に制御することができる。表1に全体を流れるガス
量L1(l/min)、坩堝に吹き付けるガス量L2
(l/min)と、得られた結晶の大きさを示す。ガス
吹き付けを行わない場合(L2=O)、この冷却条件で
は坩堝内の温度が極めて均一になるため目に見えるサイ
ズの結晶は生成しなかった。ガス吹き付けを行ったとき
には、ガスの吹き付けられた箇所を中心に10数個の単
結晶が成長しており、平均の大きさは数mm角×0.0
1mm程度であった。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 As a starting material, thallium oxide (T
l 2 O 3 ), barium oxide (BaO), cupric oxide (Cu
O) and potassium chloride (KCl) were used. First, Tl
The powder mixed with 2 O 3 + 2BaO + CuO was pressed and then fired at 860 to 870 ° C. to give Tl 2 Ba 2 CuO 6
A sintered body was synthesized. The powder of the obtained sintered body and KCl were mixed and sealed in a 20 mmφ × 25 mm metal crucible, and then placed on a quartz boat 2 of 50 mm wide × 20 mm high with a 10 mmφ quartz tube 1 shown in FIG. It was inserted into the diffusion furnace. The diameter of the nozzle 5 is selected according to the size of the crucible 4 and the amount of blowing gas required. The maximum temperature during crystal synthesis is 920
℃, the slow cooling rate was 5 ℃ / hour. The crystals were taken out by flushing KCl with water. FIG. 1 shows the configuration of an electric furnace which is a synthesizer. In this device, the amount of gas flowing through the entire furnace core tube 3 and the amount of gas blown onto the crucible 4 can be controlled independently. Table 1 shows the total amount of gas L1 (l / min) and the amount of gas L2 sprayed on the crucible.
(L / min) and the size of the obtained crystal are shown. In the case where the gas was not blown (L2 = O), the temperature in the crucible was extremely uniform under this cooling condition, and no visible size crystal was formed. When the gas was blown, ten or more single crystals were grown around the place where the gas was blown, and the average size was several mm square × 0.0.
It was about 1 mm.

【0007】[0007]

【表1】 Tl2BaCuO6+KClから得られるTl2Ba2CuO6単結晶の大きさ ───────────────────────────────── 試料 L1 L2 サイズ 番号 (l/min) (l/min) (mm) ───────────────────────────────── 1 5 0 坩堝の底に粉が堆積 2 4 1 2*2*0.01 3 4 2 3*3*0.04 4 3 2 5*5*0.05 5 2 3 5*5*0.04 6 1 4 4*4*0.03 7 0 5 4*4*0.02 ─────────────────────────────────[Table 1] Size of Tl 2 Ba 2 CuO 6 single crystal obtained from Tl 2 BaCuO 6 + KCl ───────────────────────────── ────── Sample L1 L2 Size number (l / min) (l / min) (mm) ─────────────────────────── ──────── 1 5 0 Powder accumulated on the bottom of the crucible 2 4 1 2 * 2 * 0.01 3 4 2 3 * 3 * 0.04 4 3 2 5 * 5 * 0.05 5 2 3 5 * 5 * 0.04 6 1 4 4 * 4 * 0.03 7 0 5 4 * 4 * 0.02 ──────────────────────────────────

【0008】実施例2 出発原料として酸化ビスマス(Bi23)、酸化ストロ
ンチウム(SrO)、酸化カルシウム(CaO)、酸化
銅(CuO)を用いた。これらの原料をBi:Sr:C
a:Cu=2:2:2:5の比で混合し白金坩堝にい
れ、実施例1に記載のガラス管付き石英ボ―トにセット
して、拡散炉中で950℃から10℃/hourで冷却
した。フラックスであるCuOとBi2Sr2CaCu2
8単結晶の混合塊をたがねで割って結晶をとりだし
た。表2にガス量と結晶の大きさを示す。この場合もガ
ス吹き付けを行わない場合には得られる結晶は小さい。
ガス吹き付けにより得られる結晶のサイズは向上する。
Example 2 Bismuth oxide (Bi 2 O 3 ), strontium oxide (SrO), calcium oxide (CaO), and copper oxide (CuO) were used as starting materials. These raw materials are Bi: Sr: C.
a: Cu = 2: 2: 2: 5 and mixed in a platinum crucible, set in the quartz tube with a glass tube described in Example 1, and set in a diffusion furnace at 950 ° C. to 10 ° C./hour. Cooled in. Flux CuO and Bi 2 Sr 2 CaCu 2
The mixed lump of O 8 single crystal was broken with a chisel to take out the crystal. Table 2 shows the gas amount and crystal size. In this case as well, the crystals obtained are small when gas is not blown.
The size of the crystals obtained by gas blowing is improved.

【0009】[0009]

【表2】 Bi23+SrO+CaO+2.5CuOから得られるBi2Sr2CaCu2 8単結晶の大きさ ───────────────────────────────── 試料 L1 L2 サイズ 番号 (l/min) (l/min) (mm) ───────────────────────────────── 8 10 0 0.2*0.2*0.01 9 8 2 1*1*0.03 10 6 4 5*5*0.08 11 4 6 8*8*0.1 12 2 8 8*8*0.1 13 0 10 7*7*0.09 ─────────────────────────────────[Table 2]Bi 2 O 3 + SrO + CaO obtained from + 2.5CuO Bi 2 Sr 2 CaCu 2 Size of O 8 single crystal ───────────────────────────────── Sample L1 L2 Size number (l / min) (l / min) (mm ) ───────────────────────────────── 8 10 0 0.2 * 0.2 * 0.01 9 8 2 1 * 1 * 0.03 10 6 4 5 * 5 * 0.08 11 4 6 8 * 8 * 0.1 12 2 8 8 * 8 * 0.1 13 0 10 7 * 7 * 0.09 ─────────────────── ───────────────

【0010】[0010]

【発明の効果】本発明の製造方法によれば、良質で大型
の酸化物超伝導体単結晶を得ることができるため、超伝
導材料の工業利用にとって極めて有用なものである。
According to the manufacturing method of the present invention, a large-sized oxide superconductor single crystal of good quality can be obtained, which is extremely useful for industrial use of superconducting materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる単結晶合成装置の一
例の構成図である。
FIG. 1 is a configuration diagram of an example of a single crystal synthesizing apparatus used in a method of the present invention.

【図2】本発明の方法に用いられる石英管付き石英ボ―
トの側面図である。
FIG. 2 is a quartz tube with a quartz tube used in the method of the present invention.
FIG.

【符号の説明】[Explanation of symbols]

1 石英管 2 石英ボート 3 炉芯管 4 坩堝 5 ノズル 1 Quartz tube 2 Quartz boat 3 Furnace core tube 4 Crucible 5 Nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 卓 東京都港区芝5丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Taku Kondo 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超伝導体単結晶の製造方法におい
て、結晶合成する原料を入れた坩堝を徐冷する際にガス
を吹き付けつつ行うことを特徴とする酸化物超伝導体単
結晶の製造方法。
1. A method for producing an oxide superconductor single crystal, which is characterized in that a gas is blown when gradually cooling a crucible containing a raw material for crystal synthesis. Method.
JP29188991A 1991-10-14 1991-10-14 Production of oxide superconductor single crystal Pending JPH05105573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29188991A JPH05105573A (en) 1991-10-14 1991-10-14 Production of oxide superconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29188991A JPH05105573A (en) 1991-10-14 1991-10-14 Production of oxide superconductor single crystal

Publications (1)

Publication Number Publication Date
JPH05105573A true JPH05105573A (en) 1993-04-27

Family

ID=17774767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29188991A Pending JPH05105573A (en) 1991-10-14 1991-10-14 Production of oxide superconductor single crystal

Country Status (1)

Country Link
JP (1) JPH05105573A (en)

Similar Documents

Publication Publication Date Title
US5817172A (en) Preparation of oxide crystals
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
Assmus et al. Crystal growth of HTSC materials
US5149684A (en) Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
JP2822451B2 (en) Superconductor manufacturing method
JPH06122588A (en) Preparation of oxide crystal
Enstrom et al. Compounds and Alloys for Superconducting Applications
JPH05105573A (en) Production of oxide superconductor single crystal
JP2672533B2 (en) Method for producing oxide superconductor crystal
US5962374A (en) Preparation of oxide crystals
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JPS63310799A (en) Production of oxide superconducting crystal
JP2697334B2 (en) Method for producing oxide superconductor single crystal
JPH05279191A (en) Production of oxide superconductor single crystal
Raina et al. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection
Morita et al. EFFECT OF SYNTHESIS CONDITIONS ON MICROSTRUCTURE AND SUPERCONDUCTING PROPERTIES" OF BULK YBaoCuoO.. BY QUENCH AND MELT GROWTH (QMG) PROCESS
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP3000137B2 (en) Method for producing superconductor PrBa2Cu3Oy single crystal
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JPH07157311A (en) Production of oxide superconductor
JPH04202093A (en) Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH01148794A (en) Production of oxide superconductor crystal
JPH0818910B2 (en) Method for producing oxide superconducting single crystal