JPH01131098A - Production of oxide superconductor crystal - Google Patents

Production of oxide superconductor crystal

Info

Publication number
JPH01131098A
JPH01131098A JP62288117A JP28811787A JPH01131098A JP H01131098 A JPH01131098 A JP H01131098A JP 62288117 A JP62288117 A JP 62288117A JP 28811787 A JP28811787 A JP 28811787A JP H01131098 A JPH01131098 A JP H01131098A
Authority
JP
Japan
Prior art keywords
oxide superconductor
crystal
oxide
solution
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288117A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Fukuda
福田 勝義
Joshi Nishio
譲司 西尾
Toru Katsumata
徹 勝亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62288117A priority Critical patent/JPH01131098A/en
Publication of JPH01131098A publication Critical patent/JPH01131098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To facilitate the production of plural oxide superconductor of good quality by using flux containing vanadium oxide, when the crystal of plural oxide superconductor is allowed to grow by the liquid-phase growth method. CONSTITUTION:A solution 7 of flux containing vanadium oxide such as V2O5, and raw materials of plural oxide superconductor such as a mixture of Y2O3, 2BaO, and 3CuO, is charged in the crucible 3 in the single crystal-pulling up unit. Then, the solution 7 is heated with heater 2 at about 1,200-1,300 deg.C and cooled down to about 700 deg.C. Then, the seed crystal such as of Y-Ba-Cu-O single crystal on the top of the pulling-up shaft 8 is allowed to contact with the solution 7 and the oxide superconductor is pulled up, as an oxygen gas is fed from pipe 12. Thus, crystals of oxide supercouductor with high homogeneity of superconductive transition point and large critical current can be produced with high reproducibility.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、多元系酸化物超電導体結晶の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a multi-component oxide superconductor crystal.

(従来の技術) 最近、液体窒素温度程度の高温で超電導を示す高温超電
導体材料として、ペロブスカイト構造の多元系酸化物超
電導体が注目されている。これまでに報告されている酸
化物超電導体の代表的なものは、YBa 2 Cu 3
O7−6や(La 。
(Prior Art) Recently, multi-component oxide superconductors with a perovskite structure have attracted attention as high-temperature superconductor materials that exhibit superconductivity at temperatures as high as liquid nitrogen temperatures. A typical oxide superconductor reported so far is YBa 2 Cu 3
O7-6 and (La.

Ba)2 Cu O4□等である。これらの酸化物超電
導材料は、焼結法、蒸着法、スパッタ法等により得られ
ている。
Ba)2CuO4□, etc. These oxide superconducting materials are obtained by sintering, vapor deposition, sputtering, or the like.

今後これらの酸化物超電導体を具体的な素子に応用する
に当たって、超電導転移温度を高く安定に保ち、また大
きい臨界電流を得、素子特性の均−件、信頼性を優れた
ものとするためには、ある程度大きい面積の単結晶基板
或いは単結晶層として実現することが強く望まれる。
When applying these oxide superconductors to specific devices in the future, we will need to maintain a high and stable superconducting transition temperature, obtain a large critical current, and improve the uniformity of device characteristics and reliability. It is strongly desired to realize this as a single-crystal substrate or a single-crystal layer with a relatively large area.

(発明が解決しようとする問題点) 以上のように、多元系酸化物超電導材料の素子応用に当
たっては、均一性の優れた単結晶が望まれるが、これま
でそのような酸化物単結晶を形成する有効な方法は提案
されていない。
(Problems to be Solved by the Invention) As described above, when applying multi-component oxide superconducting materials to devices, single crystals with excellent uniformity are desired, but so far it has not been possible to form such oxide single crystals. No effective method has been proposed.

本発明は上記した点に鑑み、多元系酸化物超電導体の結
晶の製造方法を提供することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide a method for producing a crystal of a multi-component oxide superconductor.

[発明の構成] (問題点を解決するための手段) 本発明の方法は、バナジウム酸化物を含むフラックスを
用いた液相成長法(キポラス法)により多元系酸化物超
電導体結晶を製造することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The method of the present invention involves manufacturing a multi-component oxide superconductor crystal by a liquid phase growth method (Kiporas method) using a flux containing vanadium oxide. It is characterized by

例えば、YBa 2 Cu 3O7−J結晶のエピタキ
シャル成長を行うには、50%以上のV2O5を含むフ
ラックスを用いることが好ましい。
For example, in order to epitaxially grow a YBa 2 Cu 3O7-J crystal, it is preferable to use a flux containing 50% or more of V2O5.

(作用) 本発明によれば、キポラス法を用いることにより、低い
温度で多元系酸化物超電導体結晶の成長が可能であり、
超電導体の相転移が効果的に防止される。これにより、
超電導転移温度の均一性がよく、臨界電流が大きい所望
の酸化物超電導素子用ウェーハを再現性よく得ることが
できる。そして本発明により得られた結晶ウェーハを用
いれば、各種超電導素子を再現性よく作ることが可能に
なる。
(Function) According to the present invention, multi-component oxide superconductor crystals can be grown at low temperatures by using the Kiporus method,
Phase transition of the superconductor is effectively prevented. This results in
A desired wafer for an oxide superconducting element having good uniformity of superconducting transition temperature and large critical current can be obtained with good reproducibility. By using the crystal wafer obtained according to the present invention, it becomes possible to manufacture various superconducting elements with good reproducibility.

(実施例) 以下、本発明の詳細な説明する。実施例では、YBa 
2 Cu 3O7−a結晶に製造法を説明する二 第3図は、その結晶の引上げ装置を示す。第3図におい
て1は、アルミナシールド祠であり、この中に白金ヒー
タ2が配置され、その中心部に白金ルツボ3が支持台4
上に配置されている。支持台4は炉外部とつながる支持
棒5と一体化され、回転可能になっている。6は熱電対
である。ルツボ3内には、(1/2)V2O5が70%
モル比のフラックスに3O%モル比の(1/2)Y’2
03 、 2 Ba o、  3 Cu Oよりなる原
料を収容する。
(Example) The present invention will be described in detail below. In the example, YBa
Figure 3, which explains the method for producing 2Cu3O7-a crystal, shows an apparatus for pulling the crystal. In FIG. 3, 1 is an alumina shield shrine, in which a platinum heater 2 is arranged, and a platinum crucible 3 is placed in the center of the shrine on a support stand 4.
placed above. The support stand 4 is integrated with a support rod 5 connected to the outside of the furnace, and is rotatable. 6 is a thermocouple. In crucible 3, (1/2) V2O5 is 70%
Molar ratio of flux to 30% molar ratio of (1/2) Y'2
Contains raw materials consisting of 03, 2 BaO, and 3CuO.

第4図は、V20S  Ba O系の相図であり、この
系で適当なモル比を選ぶことにより、700℃以下で液
相状態が得られる。従ってこの系をフラックスとして用
いることにより、比較的低温でY−Ba−Cu−0系結
晶を引上げるための溶液を得ることが可能である。
FIG. 4 is a phase diagram of the V20S Ba 2 O system, and by selecting an appropriate molar ratio in this system, a liquid phase state can be obtained at 700° C. or lower. Therefore, by using this system as a flux, it is possible to obtain a solution for pulling Y-Ba-Cu-0 system crystals at a relatively low temperature.

このようにしてルツボ3内に所望の溶液7を形成し、こ
れを1200〜13O0℃で約10時間放置した後、溶
液温度を下げて約700℃に設定する。そしてこの溶液
7に引上げ軸8の先端に取付けられたY−Ba−Cu−
0系単結晶からなる種子結晶を浸し、十分にこの種子結
晶を馴染ませる。その後、0.1〜0.5℃/hという
小さい冷却速度で結晶9を引上げる。この引上げに際し
、溶液7の表面にはガス導入パイプ12を介して酸素ガ
スを100m、ff/min程度供給する。10は内部
観察用光入射窓であり、11は内部観察窓である。
In this way, a desired solution 7 is formed in the crucible 3, and after being left at 1200-1300C for about 10 hours, the solution temperature is lowered and set at about 700C. Then, in this solution 7, a Y-Ba-Cu-
A seed crystal consisting of a 0-series single crystal is immersed in the solution, and the seed crystal is thoroughly absorbed. Thereafter, the crystal 9 is pulled up at a low cooling rate of 0.1 to 0.5°C/h. During this pulling, oxygen gas is supplied to the surface of the solution 7 through the gas introduction pipe 12 for 100 m at a rate of about ff/min. 10 is a light entrance window for internal observation, and 11 is an internal observation window.

こうして、直径108以上のYBa2Cu3O7−6結
晶を引上げることができる。この場合、結晶引上げに際
して酸素ガスを供給することにより、溶液中および成長
結晶中の酸素欠陥の発生を防止することができる。
In this way, a YBa2Cu3O7-6 crystal with a diameter of 108 or more can be pulled. In this case, by supplying oxygen gas during crystal pulling, it is possible to prevent the generation of oxygen defects in the solution and in the grown crystal.

このようにして得られたY−Ba−Cu−0系結晶をス
ライス加工し、鏡面研磨して良質の超電導結晶基板を得
ることができた。
The Y-Ba-Cu-0 crystal thus obtained was sliced and mirror-polished to obtain a high-quality superconducting crystal substrate.

上記実施例ではYBa 2 Cu 3O7−11結晶を
成長させた場合を説明したが、Yの代わりにYb。
In the above example, the case where YBa 2 Cu 3O7-11 crystal was grown was explained, but Yb was used instead of Y.

Ho、Dy、Eu、Er、Tm、Luなど他の希土類元
素が入った酸化物超電導体結晶の場合にも本発明は有効
であり、また、Sc −Ba −Cu −O系、Sr 
−La −Cu−0系、更にSrをBa。
The present invention is also effective for oxide superconductor crystals containing other rare earth elements such as Ho, Dy, Eu, Er, Tm, and Lu;
-La -Cu-0 system, further Sr and Ba.

Caなどで置換した系等、他のペロブスカイト構造を有
する多元系酸化物超電導体結晶を成長させる場合にも本
発明は有効である。
The present invention is also effective when growing multi-component oxide superconductor crystals having other perovskite structures, such as those substituted with Ca or the like.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、酸化バナジウムをフ
ラックスとするキポラス法により、多元系酸化物超電導
体の良質の結晶を得ることができる。
[Effects of the Invention] As described above, according to the present invention, high-quality crystals of a multi-component oxide superconductor can be obtained by the Kiporas method using vanadium oxide as a flux.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のY−Ba−Cu−〇系結晶
の引上げ装置を示す図、第2図はV205−Ba O系
の相図である。 1・・・アルミナシールド材、2・・・白金ヒータ、3
・・・白金ルツボ、4・・・支持台、5・・・支持棒、
6・・・熱電対、7・・・フラックスを含む溶液、8・
・・引上げ軸、9・・・Y−Ba−Cu−0系結晶、1
0・・・内部観察用光照射窓、11・・・内部観察窓、
12・・・ガス導入パイプ。 出願人代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a diagram showing a pulling device for a Y-Ba-Cu-〇-based crystal according to an embodiment of the present invention, and FIG. 2 is a phase diagram of a V205-Ba 2 O-based crystal. 1... Alumina shield material, 2... Platinum heater, 3
...Platinum crucible, 4...Support stand, 5...Support rod,
6... Thermocouple, 7... Solution containing flux, 8...
... Pulling axis, 9 ... Y-Ba-Cu-0 system crystal, 1
0... Light irradiation window for internal observation, 11... Internal observation window,
12...Gas introduction pipe. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)バナジウム酸化物を含むフラックスを用いた液相
成長法により多元系酸化物超電導体結晶を成長させるこ
とを特徴とする酸化物超電導体結晶の製造方法。
(1) A method for producing an oxide superconductor crystal, which comprises growing a multi-component oxide superconductor crystal by a liquid phase growth method using a flux containing vanadium oxide.
(2)前記多元系酸化物超電導体は、 ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)であり、前記フラックスはV_2O_5である特許請
求の範囲第1項記載の酸化物超電導体結晶の製造方法。
(2) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
2. The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is V_2O_5.
(3)前記多元系酸化物超電導体は ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)であり、前記フラックスはV_2O_5が50モル%
以上の溶液である特許請求の範囲第1項記載の酸化物超
電導体結晶の製造方法。
(3) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
Ho, Dy, Eu, Er, Tm, Lu), and the flux contains 50 mol% of V_2O_5.
The method for producing an oxide superconductor crystal according to claim 1, which is the above solution.
(4)前記結晶成長に際し、溶液表面に酸素ガスを供給
する特許請求の範囲第1項記載の酸化物超電導体結晶の
製造方法。
(4) The method for producing an oxide superconductor crystal according to claim 1, in which oxygen gas is supplied to the surface of the solution during the crystal growth.
JP62288117A 1987-11-13 1987-11-13 Production of oxide superconductor crystal Pending JPH01131098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288117A JPH01131098A (en) 1987-11-13 1987-11-13 Production of oxide superconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288117A JPH01131098A (en) 1987-11-13 1987-11-13 Production of oxide superconductor crystal

Publications (1)

Publication Number Publication Date
JPH01131098A true JPH01131098A (en) 1989-05-23

Family

ID=17726026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288117A Pending JPH01131098A (en) 1987-11-13 1987-11-13 Production of oxide superconductor crystal

Country Status (1)

Country Link
JP (1) JPH01131098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672712A (en) * 1990-04-13 1994-03-15 Nippon Steel Corp Oxide superconducting material containing rare-earth element and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672712A (en) * 1990-04-13 1994-03-15 Nippon Steel Corp Oxide superconducting material containing rare-earth element and its production

Similar Documents

Publication Publication Date Title
Klemenz et al. Liquid phase epitaxy of high-Tc superconductors
CN88100501A (en) Oxide superconductor
JP3008970B2 (en) Oxide crystal film having Y123 type crystal structure
US5407907A (en) Method of preparing metal oxide crystal
EP0767258B1 (en) Method of manufacturing oxide crystal
JP2651481B2 (en) How to make superconducting materials
CN1970849A (en) Oxygen atmosphere control preparation method for alpha-axis oriented Yt-Ba-Cu-O superconductive thick film
JPH01131098A (en) Production of oxide superconductor crystal
JP2672533B2 (en) Method for producing oxide superconductor crystal
JPS63310799A (en) Production of oxide superconducting crystal
JPH01148794A (en) Production of oxide superconductor crystal
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPS63310798A (en) Production of oxide superconducting element wafer
Goto et al. Texture formation on the melt-growth process of solution-spun Y1Ba2Cu3Ox filament
JP2963604B2 (en) Method for producing ReBa2Cu3Oy crystal from melt
JP2550253B2 (en) Method for producing oxide high temperature superconductor
JPH01249691A (en) Production of superconducting thin film
Mansori et al. Bi-2201, Bi-2212 and (Bi, Pb)-2223 fibers have been grown using the micro-pulling down (μ-PD) technique
JP2833640B2 (en) Method for producing Pr123 crystal
JPS63310797A (en) Oxide superconducting element wafer
RU2038655C1 (en) High-temperature superconductive epitaxial structure
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPS63310796A (en) Oxide superconducting element wafer
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof