JP2001233696A - Seed crystal of oxide superconductive material and method for producing oxide superconductive material using the same - Google Patents

Seed crystal of oxide superconductive material and method for producing oxide superconductive material using the same

Info

Publication number
JP2001233696A
JP2001233696A JP2000213263A JP2000213263A JP2001233696A JP 2001233696 A JP2001233696 A JP 2001233696A JP 2000213263 A JP2000213263 A JP 2000213263A JP 2000213263 A JP2000213263 A JP 2000213263A JP 2001233696 A JP2001233696 A JP 2001233696A
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
rare earth
combination
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213263A
Other languages
Japanese (ja)
Other versions
JP4153651B2 (en
Inventor
Mitsuru Sawamura
充 澤村
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000213263A priority Critical patent/JP4153651B2/en
Publication of JP2001233696A publication Critical patent/JP2001233696A/en
Application granted granted Critical
Publication of JP4153651B2 publication Critical patent/JP4153651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a seed crystal for producing a high quality oxide superconductive bulk material in a large amount at a low cost, and to provide a method for producing the oxide superconductive bulk material using the seed crystal. SOLUTION: This seed crystal for the oxide superconductive material, characterized in that the seed for producing a REBa2Cu3O7-x-based superconductor (RE is one or more of rare earth elements including Y) is a crystal having a K2NiF4 or Sr3Ti2O7 type crystal structure. By the method for producing the oxide superconductive material using the seed crystal, the oxide superconductive material can be produced in a large amount in an improved production yield in high workability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、90K級の臨界温度
を有する希土類系酸化物超電導体の種結晶およびこれを
用いた酸化物超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seed crystal of a rare-earth oxide superconductor having a critical temperature of 90 K class and a method for producing an oxide superconductor using the same.

【0002】[0002]

【従来の技術】RE2BaCuO5相がREBa2Cu3O7-x(ここでREは
Yを含む希土類元素の1種類又はその組み合わせ) 中に
微細分散した希土類系酸化物超電導体は、他の酸化物超
電導体に比較して磁束ピンニング力が大きく、特に液体
窒素温度(77K)に近い高 温でも臨界電流密度が高いた
め、その利用が期待されている。通常溶融法で作製され
るバルク材料には、微量のPt、Rh、Ceなどが添加され、
1μm程度のRE2BaCuO5相の微細化が行われている。しか
しながら、この超電導体は、結晶粒界 が著しく臨界電
流密度を低下させるため、結晶粒が高度に配向している
必要がある。
BACKGROUND ART RE 2 BaCuO 5 phase is REBa 2 Cu 3 O 7-x (where RE is
The rare earth-based oxide superconductor finely dispersed in the rare earth element containing Y (or a combination thereof) has a higher magnetic flux pinning force than other oxide superconductors, and is particularly close to liquid nitrogen temperature (77K). Since the critical current density is high even at high temperatures, its use is expected. A small amount of Pt, Rh, Ce, etc. is added to the bulk material usually produced by the melting method,
Refinement of the RE 2 BaCuO 5 phase of about 1 μm has been performed. However, in this superconductor, the crystal grain boundaries must be highly oriented because the crystal grain boundaries significantly lower the critical current density.

【0003】QMG(Quench and Melt Growth)法(特開
平2-153803号公報、特開平5-193938号公報、等)に代表
される溶融法は、一度RE2BaCuO5相又はRE4Ba2Cu2O10
とBa-Cu-Oを主成分とした液相が共存する温度領域まで
昇温し、これをREBa2Cu3O7-xが生成する包晶温度直上ま
で冷却し、その温度から徐冷を行なうことにより結晶成
長させ、核生成と結晶方位の制御を行い、単一の結晶粒
からなる大型のバルク材を得る手法である。
The melting method represented by the QMG (Quench and Melt Growth) method (Japanese Patent Application Laid-Open No. 2-153803, Japanese Patent Application Laid-Open No. 5-139938, etc.) is a method of once using RE 2 BaCuO 5 phase or RE 4 Ba 2 Cu The temperature was raised to the temperature range where the 2 O 10 phase and the liquid phase mainly composed of Ba-Cu-O coexisted, and this was cooled to just above the peritectic temperature at which REBa 2 Cu 3 O 7-x was formed. In this method, crystal growth is performed by performing slow cooling from the substrate to control nucleation and crystal orientation to obtain a large bulk material including a single crystal grain.

【0004】特開平5-193938号公報に開示した包晶温度
が高い種結晶を使用して結晶成長させるシーディング法
では、種結晶は製造しようとするREIBa2Cu3O7-x系酸化
物超電導体より融点(包晶温度)の高いREIIBa2Cu3O7-x
結晶状試料を使用する。REIBa2Cu3O7-x系酸化物超電導
体の原料前駆体を、REIBa2Cu3O7-xの包晶温度とREIIBa 2
Cu3O7-xの包晶温度の中間温度まで加熱し、REIBa2Cu3O
7-xが分解してREI 2BaCuO 5相又はREI 4Ba2Cu2O10相とBa-C
u-Oを主成分とする液相の共存状態とし、その前駆体にR
EIIBa2Cu3O7-x結晶の一面を接触させる。その後、REIBa
2Cu3O7-xの包晶温度まで冷却しREIBa2Cu3O7-xを生成さ
せるが、包晶温度近傍で徐冷を行なうことによって、RE
IIBa2Cu3O7-xの接触面の結晶方位と同じ方位に結晶成長
させる方法である。
[0004] Peritectic temperature disclosed in JP-A-5-93938
Seeding method for growing crystals using seed crystals with high
Now, the seed that we are going to produce is REIBaTwoCuThreeO7-xSystem oxidation
RE with higher melting point (peritectic temperature) than superconductorIIBaTwoCuThreeO7-xsingle
Use a crystalline sample. REIBaTwoCuThreeO7-xOxide superconductivity
Raw material precursorIBaTwoCuThreeO7-xPeritectic temperature and REIIBa Two
CuThreeO7-xHeated to an intermediate temperature of the peritectic temperature of REIBaTwoCuThreeO
7-xIs disassembled and REI TwoBaCuO FivePhase or REI FourBaTwoCuTwoOTenPhase and Ba-C
The liquid phase containing u-O as the main component is coexisted, and the precursor is R
EIIBaTwoCuThreeO7-xOne side of the crystal is brought into contact. Then REIBa
TwoCuThreeO7-xCool to the peritectic temperature of REIBaTwoCuThreeO7-xGenerated
However, by slow cooling near the peritectic temperature, the RE
IIBaTwoCuThreeO7-xCrystal growth in the same orientation as the crystal orientation of the contact surface of
It is a way to make it.

【0005】特開平9-156925号公報に開示したRE-Ba-Cu
-O系酸化物超電導体の製造方法は、RE(Ba1-ySry)2Cu3O
7-x相(ここでyは0.01〜1の値をとる)を含む配向した種
結晶を用いる方法であり、Ba元素をSr元素に置換してい
る点が異なるものの、RE:Ba+Sr:Cuの比が1:2:3であり、
酸化物超電導相REBa2Cu3O7-xと同じ組成比である。
[0005] RE-Ba-Cu disclosed in Japanese Patent Application Laid-Open No. Hei 9-156925
Method for producing -O type oxide superconductor, RE (Ba 1-y Sr y) 2 Cu 3 O
This is a method using an oriented seed crystal containing a 7-x phase (here, y takes a value of 0.01 to 1), except that the Ba element is replaced with the Sr element, but RE: Ba + Sr: The ratio of Cu is 1: 2: 3,
It has the same composition ratio as the oxide superconducting phase REBa 2 Cu 3 O 7-x .

【0006】また、特開平10-310498号公報に開示した
酸化物超電導バルク材料の製造方法は、原料成形体の表
面にREBa2Cu3O7-xの包晶温度を低下させる物質(金、
銀、希土類元素、等)をコーティングした後、加熱溶融
してから冷却過程でシーディング操作を行うものであ
る。
[0006] In addition, the method of manufacturing an oxide superconducting bulk material disclosed in Japanese Patent Application Laid-Open No. 10-310498 discloses a method of reducing the peritectic temperature of REBa 2 Cu 3 O 7-x (gold,
After coating with silver, a rare earth element, etc.), heating and melting, and then performing a seeding operation in a cooling process.

【0007】このように、従来の溶融法では、原料成形
体(前駆体)と種結晶の僅かな融点の違いを利用してお
り、種結晶に融点の高い希土類系酸化物超電導体の結晶
を用いたり、原料成形体の融点を下げることにより、原
料成形体と種結晶との融点の温度差を確保して、種付け
を行なっている。
As described above, the conventional melting method utilizes a slight difference in melting point between the raw material compact (precursor) and the seed crystal, and uses a rare earth oxide superconductor crystal having a high melting point as the seed crystal. By using or lowering the melting point of the raw material molded body, the temperature difference between the melting points of the raw material molded body and the seed crystal is secured to perform seeding.

【0008】しかしながら、比較的高い融点の希土類(N
d,Sm,Eu)系酸化物超電導体のバルク材の製造には、最も
融点の高いNd系又はNd-Sm系の酸化物超電導体の結晶を
用い、さらにバルク材中に銀等を添加してバルク材の融
点を下げて、種結晶とバルク材の融点の温度差を確保し
ているものの、その温度差は僅か数十℃程度であるた
め、1000℃以上の加熱炉内の温度分布の僅かな不均一性
によって、種結晶まで溶融してしまったり、種結晶から
多結晶化することが多数見られ、良好なバルク材を安定
して製造することが難しかった。
However, the relatively high melting point of rare earths (N
(d, Sm, Eu) -based oxide superconductor bulk material is produced by using Nd-based or Nd-Sm-based oxide superconductor crystals with the highest melting point, and further adding silver or the like to the bulk material. Although the melting point of the bulk material is lowered to ensure a temperature difference between the melting point of the seed crystal and that of the bulk material, the temperature difference is only a few tens of degrees Celsius. Due to the slight inhomogeneity, the seed crystal was often melted or polycrystallized from the seed crystal, and it was difficult to stably produce a good bulk material.

【0009】また、1000℃程度の比較的低い融点の希土
類(Dy,Y,Ho,Er)系酸化物超電導体のバルク材の製造で
は、大量生産のために、大型の加熱炉内に多数の原料成
形体を配置し、これを加熱処理することで量産化を図っ
ているものの、1000℃程度に加熱されている大型炉で炉
内全体を数十℃以内の温度分布に制御することは困難で
あり、同一のバッチで処理したにもかかわらず、炉内の
配置位置によって、種結晶が溶融してしまったり、原料
成形体が溶融していないものが混在して、製品歩留りが
低くなっていた。また、1000℃もの高温下での種結晶の
接種を多数回繰り返さなければならず、作業性も必ずし
も良くなかった。
In the production of bulk materials of rare-earth (Dy, Y, Ho, Er) -based oxide superconductors having a relatively low melting point of about 1000 ° C., a large number of heating furnaces are required for mass production. Mass production is achieved by arranging and heat-treating raw material compacts, but it is difficult to control the entire furnace interior to a temperature distribution within tens of degrees Celsius in a large furnace heated to about 1000 degrees Celsius. Despite processing in the same batch, depending on the arrangement position in the furnace, the seed crystal may be melted, or the raw material compact may not be melted, resulting in a low product yield. Was. In addition, inoculation of seed crystals at a high temperature of 1000 ° C. had to be repeated many times, and workability was not always good.

【0010】一方、比較的小型の酸化物超電導体の製造
には、MgOの単結晶を種結晶に用いられている。しかし
ながら、この場合、酸化物超電導体の結晶方位を制御で
きる確率が1/3程度であり、製品歩留りが非常に低いも
のである。このように、従来の酸化物超電導体の製造方
法では、歩留り良く安定した超電導材料の大量製造がで
きないと言う問題点があった。
On the other hand, in the production of a relatively small oxide superconductor, a single crystal of MgO is used as a seed crystal. However, in this case, the probability of controlling the crystal orientation of the oxide superconductor is about 1/3, and the product yield is extremely low. As described above, the conventional method for manufacturing an oxide superconductor has a problem in that mass production of a superconducting material with good yield and stability cannot be performed.

【0011】[0011]

【発明が解決しようとする課題】そこで、本発明は、十
分に高い融点を有し、かつ確実にバルク材の結晶方位の
制御ができる種結晶を提供すると共に、これを用いた作
業性の高い酸化物超電導材料の製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a seed crystal having a sufficiently high melting point and capable of reliably controlling the crystal orientation of a bulk material, and having high workability using the seed crystal. An object is to provide a method for manufacturing an oxide superconducting material.

【0012】[0012]

【課題を解決するための手段】上記の問題点を解決する
ために鋭意検討した結果、希土類系酸化物超電導体の結
晶構造に類似した結晶構造を有する結晶を種結晶に用い
ても、希土類系酸化物超電導材料の結晶方位の制御がで
きることを見出し、本発明を完成させたものである。
As a result of intensive studies to solve the above problems, it has been found that even if a crystal having a crystal structure similar to that of a rare earth oxide superconductor is used as a seed crystal, a rare earth oxide The inventors have found that the crystal orientation of an oxide superconducting material can be controlled, and have completed the present invention.

【0013】即ち、本発明は、(1) REBa2Cu3O7-x
超電導体(ここでREはYを含む希土類元素の1種類又 は
その組み合わせ)を製造するための種結晶が、K2NiF4
の結晶構造を有する結晶であることを特徴とする酸化物
超電導材料の種結晶、(2) RE1Ba2Cu3O7-x系超電導
体(ここでRE1はYを含む希土類元素の1種類 又はその
組み合わせ)を製造するための種結晶が、RE2 2CuO4(こ
こでRE2はYを含む希土類元素の1種類又はその組み合わ
せ)であることを特徴とする酸化物超電導材料の種結
晶、(3) RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類 又はその組み合わせ)を製
造するための種結晶が(RE2 1-yMy2CuO4-z(ここ でRE
2はYを含む希土類元素の1種類又はその組み合わせ、ま
たMはアルカリ土 類金属から選ばれた1種類又はその組
み合わせ)(但し0<y<1.0、0.9y<z<1.1y)であることを
特徴とする酸化物超電導材料の種結晶、(4) RE1Ba2
Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の
1種類 又はその組み合わせ)を製造するための種結晶
が、(Nd1-ySry2CuO4-z(こ こで0<y<0.75、0.9y<z<
1.1y)であることを特徴とする酸化物超電導材料の種
結晶、(5) RE1Ba2Cu3O7-x系超電導体(ここでRE1
Yを含む希土類元素の1種類 又はその組み合わせ)を製
造するための種結晶が、Sr3Ti2O7型の結晶構造を有する
ことを特徴とする酸化物超電導材料の種結晶、(6)
RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類
元素の1種類 又はその組み合わせ)を製造するための
種結晶が、(RE2 1-yMy3Cu2O6-z(RE2はYを含む希土類
元素の1種類またはその組み合わせ、またMはアルカリ
土類 金属から選ばれた1種類又はその組み合わせ)
(但し0<y<1.0、1.35y-0.45<z<1.65y-0.55)であること
を特徴とする酸化物超電導材料の種結晶、(7) RE1B
a2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素
の1種類 又はその組み合わせ)を製造するための種結
晶が、(Nd1-ySry3Cu2O6-z(但しyの範囲が0.3≦y≦
0.4または0.5≦y≦0.7、1.35y-0.45<z<1.65y-0.55)で
あることを特徴とする酸化物超電導材料の種結晶、
(8) REBa2Cu3O7-x系超電導体(ここでREはYを含む
希土類元素の1種類又 はその組み合わせ)の原料成形
体を溶融加熱処理し、これを冷却することによってREBa
2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相が分散
した酸化物超 電導体を製造する方法において、(1)
〜(7)の何れかに記載の種結晶を用いることを特徴と
する酸化物超電導材料の製造方法、(9) 前記原料成
形体上に種結晶を載置してから溶融加熱処理を行う
(8)に記載の酸化物超電導材料の製造方法、である。
That is, the present invention relates to (1) REBaTwoCuThreeO7-xsystem
Superconductor (where RE is one of the rare earth elements including Y or
The seed crystal for producing the combination is KTwoNiFFourType
Oxide characterized by having a crystal structure of
Seed crystal of superconducting material, (2) RE1BaTwoCuThreeO7-xSuperconductivity
Body (here RE1Is one of the rare earth elements containing Y or
The seed crystal for producing the combinationTwo TwoCuOFour(This
RETwoIs one or a combination of rare earth elements including Y
Seeding of oxide superconducting material, characterized in that
Akira, (3) RE1BaTwoCuThreeO7-xSystem superconductor (here, RE1Is Y
One or a combination of rare earth elements containing
The seed crystal to make (RETwo 1-yMy)TwoCuO4-z(Here RE
TwoIs one or a combination of rare earth elements containing Y, or
M is one or a group selected from alkaline earth metals
(0 <y <1.0, 0.9y <z <1.1y)
Seed crystal of oxide superconducting material, (4) RE1BaTwo
CuThreeO7-xSystem superconductor (here, RE1Is a rare earth element containing Y
Seed crystal for producing one or a combination thereof)
But (Nd1-ySry)TwoCuO4-z(Where 0 <y <0.75, 0.9y <z <
1.1y) a kind of oxide superconducting material, characterized in that
Crystal, (5) RE1BaTwoCuThreeO7-xSystem superconductor (here, RE1Is
One or a combination of rare earth elements containing Y)
The seed crystal to make is SrThreeTiTwoO7Has a type crystal structure
(6) a seed crystal of an oxide superconducting material, characterized in that:
RE1BaTwoCuThreeO7-xSystem superconductor (here, RE1Is a rare earth containing Y
One or a combination of elements)
The seed crystal is (RETwo 1-yMy)ThreeCuTwoO6-z(RETwoIs a rare earth containing Y
One or a combination of elements, and M is alkali
One or a combination of earth metals)
(However, 0 <y <1.0, 1.35y-0.45 <z <1.65y-0.55)
Seed crystal of oxide superconducting material characterized by (7) RE1B
aTwoCuThreeO7-xSystem superconductor (here, RE1Is a rare earth element containing Y
Or a combination thereof)
A crystal is (Nd1-ySry)ThreeCuTwoO6-z(However, the range of y is 0.3 ≦ y ≦
0.4 or 0.5 ≦ y ≦ 0.7, 1.35y-0.45 <z <1.65y-0.55)
A seed crystal of an oxide superconducting material,
(8) REBaTwoCuThreeO7-xSuperconductor (where RE includes Y
Raw material molding of one or a combination of rare earth elements
The body is melted and heat-treated,
TwoCuThreeO7-xRE during the phaseTwoBaCuOFivePhase or REFourBaTwoCuTwoOTenPhase dispersed
In the method for producing a oxidized oxide superconductor, (1)
Characterized in that the seed crystal according to any one of (1) to (7) is used.
(9) A method for producing an oxide superconducting material,
Melt heat treatment after placing seed crystal on form
(8) A method for producing an oxide superconducting material according to (8).

【0014】[0014]

【発明の実施の形態】REBa2Cu3O7-x相(ここでREはYを
含む希土類元素の1種類又はその組み合わせ)中に、RE
2BaCuO5またはRE4Ba2Cu2O10が分散している酸化物超電
導材料の 製造において、これらの材料は大気中で1070
℃から900℃程度の結晶成長温度 を有している。これに
対し、La2CuO4や(La1-yBay2CuO4-z等のK2NiF4型の結
晶構造を有する材料は、1300℃程度の結晶成長温度を有
し、(Nd1-ySry3Cu2O6-z等のSr 3Ti2O7型の結晶構造を
有する材料は、1160℃程度の結晶成長温度を有し、REBa
2Cu3O7-x相にくらべ100〜200℃以上もの結晶成長温度差
を有する。このことは、これらの系の種結晶は、従来の
REBa2Cu3O7-x系の種結晶より100 〜200℃以上の高温に
耐えることを意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS REBaTwoCuThreeO7-xPhase (where RE is Y
One or a combination of rare earth elements
TwoBaCuOFiveOr REFourBaTwoCuTwoOTenOxide superconducting
In the manufacture of conductive materials, these materials are
It has a crystal growth temperature of about 900C to 900C. to this
On the other hand, LaTwoCuOFourAnd (La1-yBay)TwoCuO4-zEtc. KTwoNiFFourType tie
Materials with a crystalline structure have a crystal growth temperature of about 1300 ° C.
And (Nd1-ySry)ThreeCuTwoO6-zEtc. Sr ThreeTiTwoO7Type crystal structure
The material has a crystal growth temperature of about 1160 ° C.
TwoCuThreeO7-xCrystal growth temperature difference of 100-200 ° C or more compared to phase
Having. This means that the seed crystals of these systems
REBaTwoCuThreeO7-x100-200 ° C or higher than the seed crystal of the system
Means endurance.

【0015】また、La2CuO4、(La1-yBay)2CuO4-zおよび
(Nd1-ySry3Cu2O6-zは、希土類酸化物超電導体と構成
元素もほぼ同じであるほか、それぞれの結晶構造中に
は、REBa2Cu3O7-xと同様に、1つのCuを4つの酸素が取り
囲むことで形成されるCu-O面がある。このことにより、
格子定数はa軸が3.8Å程度とREBa2Cu3O7-xと極めて近い
値である。La2CuO4の結晶構造を図1に、(Nd1-ySry3
Cu2O6-zの結 晶構造を図2に示す。
Further, La 2 CuO 4, (La 1-y Ba y) 2 CuO 4-z and (Nd 1-y Sr y) 3 Cu 2 O 6-z also constituent elements and rare earth oxide superconductor In addition to being almost the same, each crystal structure has a Cu-O plane formed by enclosing one Cu with four oxygens, similar to REBa 2 Cu 3 O 7-x . This allows
The lattice constant of the a-axis is about 3.8 °, which is very close to REBa 2 Cu 3 O 7-x . The crystal structure of la 2 CuO 4 in FIG. 1, (Nd 1-y Sr y) 3
Figure 2 shows the crystal structure of Cu 2 O 6-z .

【0016】また、(Nd,Ce)2CuO4-zおよび(Nd,Sr,C
e)2CuO4-zは、それぞれLa2CuO4のCuの周りに6個の酸素
が配位した正八面体のブロックがCuの周りに5個の酸素
が配位したピラミッド状のブロックに、また、Cuの周り
に4個の酸素が配位した平面状のブロックに置き換えら
れた結晶構造を有する(Y.Tokura et al, Nature 337,P
345およびF.Izumi et at, Physica C 158, P440)。こ
れらの結晶構造中にも、REBa2Cu3O7-xと同様に、1つの
Cuを4つの酸素が取り囲むことで形成されるCu-O面があ
り、格子定数はa軸は3.8Å程度である。ここでは、この
様な結晶構造についてもK2NiF4型の結晶構造として含め
るものとする。
Further, (Nd, Ce) 2 CuO 4-z and (Nd, Sr, C
e) 2 CuO 4-z is a pyramid-like block in which octahedral blocks with 6 oxygens coordinated around Cu in La 2 CuO 4 are each formed with 5 oxygens coordinated around Cu, It also has a crystal structure in which four oxygen atoms coordinate around Cu and are replaced by planar blocks (Y. Tokura et al, Nature 337, P
345 and F. Izumi et at, Physica C 158, P440). In these crystal structures, as in REBa 2 Cu 3 O 7-x , one
There is a Cu-O plane formed by surrounding four oxygen atoms with Cu, and the lattice constant of the a-axis is about 3.8 °. Here, it is assumed that such a crystal structure is also included as a K 2 NiF 4 type crystal structure.

【0017】また、RE2CuO4や(RE1-yBay2CuO4-z(こ
こで、REはNd、Sm、Eu、Pr、Gd等の希土類元素)等のK2
NiF4型の結晶構造を有する材料も、大気中において1150
℃から1250℃程度の高温でも分解しないことが知られて
いる。同様にまた、(RE1-ySry3Cu2O6-z(ここでREは
La、Sm、Eu、Pr、Gd等の希土類元素)等のSr3Ti2O7型の
結晶構造を有する材料も、大気中において1100℃程度の
高温でも分解しないことが知られている。
K 2 such as RE 2 CuO 4 or (RE 1-y Ba y ) 2 CuO 4-z (where RE is a rare earth element such as Nd, Sm, Eu, Pr, and Gd)
Materials with a NiF type 4 crystal structure are also
It is known that it does not decompose even at temperatures as high as about 1250C. Similarly also, (RE 1-y Sr y ) 3 Cu 2 O 6-z ( where RE is
It is known that materials having a Sr 3 Ti 2 O 7 type crystal structure such as La, Sm, Eu, Pr, and Gd) do not decompose even at a high temperature of about 1100 ° C. in the atmosphere.

【0018】上記の理由から、RE1Ba2Cu3O7-x相(ここ
でRE1はYを含む希土類元素の1種類又はその組み合わ
せ)中に、RE1 2BaCuO5またはRE1 4Ba2Cu2O10が分散して
い る酸化物超電導材料の製造において、RE2 2CuO4、(R
E2 1-yBay2CuO4-z、(RE2 1-ySr y3Cu2O6-z(ここでRE
2はYを含む希土類元素の1種類又はその組み合わせ)
を種結晶として用いることにより、比較的高い結晶成長
温度を有する系(Nd,Sm,Eu)のバルク材製造歩留まりは
大きく向上し、さらにそれ以外の系の製造に関しても、
量産化が容易になる。ここでRE1とRE2は同一であっても
別の希土類元素であってもよい。
For the above reasons, RE1BaTwoCuThreeO7-xPhase (here
RE1Is one or a combination of rare earth elements including Y
During the RE1 TwoBaCuOFiveOr RE1 FourBaTwoCuTwoOTenAre dispersed
In the production of certain oxide superconducting materials, RETwo TwoCuOFour, (R
ETwo 1-yBay)TwoCuO4-z, (RETwo 1-ySr y)ThreeCuTwoO6-z(Here RE
TwoIs one or a combination of rare earth elements containing Y)
Relatively high crystal growth by using
Production yield of bulk materials for systems with temperature (Nd, Sm, Eu)
Greatly improved, and also for the production of other systems,
Mass production becomes easy. Where RE1And RETwoAre the same
It may be another rare earth element.

【0019】また、RE2CuO4、(RE1-yBay2CuO4-zおよ
び(RE2 1-ySry3Cu2O6-z以外にも、BaをSr,Ca,Mg等
に、SrをBa,Ca,Mg等の元素で一部または完全置換したも
の、さらにはCuおよびOを他の元素で一部置換したもの
についても、基本的にCuを 含むK2NiF4型およびSr3Ti2O
7型の結晶構造を有するものは同様に種結晶として有効
である。
Further, RE 2 CuO 4, (RE 1-y Ba y) 2 CuO 4-z and (RE 2 1-y Sr y ) 3 Cu 2 O 6-z Besides, the Ba Sr, Ca, the Mg and the like, those obtained by partly or completely replacing Sr Ba, Ca, an element such as Mg, about what further was partially substituted with other elements Cu and O even, K 2 NiF comprise essentially Cu Type 4 and Sr 3 Ti 2 O
Those having a 7- type crystal structure are also effective as seed crystals.

【0020】ここで、(RE2 1-yMy2CuO4-zもしくは(R
E2 1-yMy3Cu2O6-z(ここでRE2はYを含む希土類元素の
1種類又はその組み合わせ、またMはアルカリ土類金属
から選ばれた1種類又はその組み合わせ)について0<y<
1.0としたのは、希土類 元素とアルカリ土類金属のイオ
ン半径が、選択によってはほぼ同じ大きさを有する故、
幅広く置換されても安定に結晶構造が保持できることに
よる。また、(RE2 1-yM y)2CuO4-zでは0.9y<z<1.1y、もし
くは(RE2 1-yMy)3Cu2O6-zでは1.35y-0.45<z<1.65y-0.55
とした理由は、この範囲を超えた場合、安定に結晶構造
が 保持できないことによる。
Here, (RETwo 1-yMy)TwoCuO4-zOr (R
ETwo 1-yMy)ThreeCuTwoO6-z(Here RETwoIs a rare earth element containing Y
One or a combination thereof, and M is an alkaline earth metal
0 <y <
The value of 1.0 is for rare earth elements and alkaline earth metal ions.
Because the radius of the fan has almost the same size depending on the selection,
Being able to maintain a stable crystal structure even when widely substituted
According to Also, (RETwo 1-yM y)TwoCuO4-zThen 0.9y <z <1.1y, if
Kuha (RETwo 1-yMy)ThreeCuTwoO6-zThen 1.35y-0.45 <z <1.65y-0.55
The reason is that if it exceeds this range, stable crystal structure
Can not be held.

【0021】また、(Nd1-ySry2CuO4-zについて0<y<
0.75とした理由、および(Nd1-ySry3Cu2O6-zについて
0.3≦y≦0.4または0.5≦y≦0.7とした理由は、この範囲
を超えた場合、安定に結晶構造が保持できないことに
よる。また、同様の理由で、(Nd1-ySry)2CuO4-zでは0.9
y<z<1.1y、もしくは(Nd1-ySry)3Cu2O6-zでは1.35y-0.45
<z<1.65y-0.55としている。
Further, the (Nd 1-y Sr y) 2 CuO 4-z 0 <y <
The reason for the 0.75, and the (Nd 1-y Sr y) 3 Cu 2 O 6-z
The reason for setting 0.3 ≦ y ≦ 0.4 or 0.5 ≦ y ≦ 0.7 is that if the range is exceeded, the crystal structure cannot be stably maintained. For the same reason, the (Nd 1-y Sr y) 2 CuO 4-z 0.9
y <z <1.1y or (Nd 1-y Sr y) 3 Cu 2 O in 6-z 1.35y-0.45,
<z <1.65y-0.55.

【0022】さらに、これらの元素をNd、Srとした点に
ついて下記に述べる。結晶成長中に種結晶の構成元素
が、種結晶のごく近傍において、一部REBa2Cu3O7-x中に
拡散する場合がある。このような現象が生じたとして
も、NdやSrの元素であれば、種結晶近傍において、REBa
2Cu3O7-xの包晶温度(結晶成長開始温度)を上げることが
あっても、低下させることがない(REBa2Cu3O7-xの中
で、最も包晶温度の高いのはNdBa2Cu3O7-xであり、これ
にSr元素が添加、置換されてもほとんど包晶温度は変化
しないからである)。つまりNdやSrの元素で構成された
種結晶であれば、構成元素がREBa2Cu3O7-x中に拡散した
としても結晶近傍での包晶温度が高く、種結晶から離れ
るに従いREBa2Cu3O7-xの包晶温度を下限として低下する
ため、種結晶から順次安定して結晶成長が進展すること
ができ、種結晶としては、より好ましい。
Further, the fact that these elements are Nd and Sr will be described below. During crystal growth, the constituent elements of the seed crystal may partially diffuse into REBa 2 Cu 3 O 7-x in the vicinity of the seed crystal. Even if such a phenomenon occurs, if the element is Nd or Sr, the REBa
Even if the peritectic temperature (crystal growth starting temperature) of 2 Cu 3 O 7-x is raised, it does not decrease (the highest peritectic temperature among REBa 2 Cu 3 O 7-x Is NdBa 2 Cu 3 O 7-x , and the peritectic temperature hardly changes even if the Sr element is added to or replaced with NdBa 2 Cu 3 O 7-x ). In other words, if the seed crystal is composed of Nd and Sr elements, even if the constituent elements diffuse into REBa 2 Cu 3 O 7-x , the peritectic temperature near the crystal is high, and the REBa 2 Since the peritectic temperature of Cu 3 O 7-x is lowered as a lower limit, crystal growth can be progressed stably sequentially from the seed crystal, and the seed crystal is more preferable.

【0023】REBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba
2Cu2O10相が分散した酸化物超電導体を製造する方法に
おいて、原料成形体を溶融加熱処理し、上記の種結晶を
用い結晶成長を行うことによって、比較的高温での種結
晶の接種が可能となり、歩留り良く安定した超電導材料
の大量製造が容易になる。種結晶が高温に耐えることか
ら、原料成形体上に種結晶を載置してから溶融加熱処理
を行うことが可能となり、さらに大量製造の作業性が向
上する。なお、原料成形体中に、 REBa2Cu3O7-x相中にR
E2BaCuO5相又はRE4Ba2Cu2O10相をより分散させるため
に、Pt、Rh、Ce等を添加したり、REBa2Cu3O7-xの包晶温
度を下げるために、Ag等を添加しても良い。
The REBa 2 Cu 3 O 7-x phase contains RE 2 BaCuO 5 phase or RE 4 Ba
In the method of manufacturing an oxide superconductor in which 2 Cu 2 O 10 phase is dispersed, the raw material compact is melt-heat treated, and the seed crystal is grown at a relatively high temperature by performing crystal growth using the above-described seed crystal. , And mass production of a stable superconducting material with good yield becomes easy. Since the seed crystal withstands high temperatures, it is possible to perform the melting heat treatment after placing the seed crystal on the raw material compact, and the workability of mass production is further improved. It should be noted that R in the REBa 2 Cu 3 O 7-x phase
To further disperse the E 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase, add Pt, Rh, Ce, or the like, or to lower the peritectic temperature of REBa 2 Cu 3 O 7-x , Ag or the like may be added.

【0024】[0024]

【実施例】(実施例1)Sm2O3、BaO2とCuOの各原料粉末
を各金属元素のモル比(Sm:Ba:Cu)が(13:17:24)になるよ
うに混合し、さらにこの混合粉に0.5質量%のPtを添加
し、混合した原料粉末を作製した。この原料粉末を900
℃、酸素気流中で仮焼した。この仮焼粉をラバープレス
機を用いて、2ton/cm2の圧力で直径30mm、厚さ20mmの円
盤状成形体に成形した。
EXAMPLES Example 1 Raw material powders of Sm 2 O 3 , BaO 2 and CuO were mixed so that the molar ratio of each metal element (Sm: Ba: Cu) was (13:17:24). Further, 0.5% by mass of Pt was added to the mixed powder to prepare a mixed raw material powder. 900 of this raw material powder
Calcination was performed in an oxygen stream at ℃. This calcined powder was formed into a disc-shaped compact having a diameter of 30 mm and a thickness of 20 mm using a rubber press at a pressure of 2 ton / cm 2 .

【0025】これを大気中で1150℃まで8時間で昇温
し、1時間保持した。その後、1080℃で、La2CuO4の種結
晶を用い、盤面の法線がc軸にほぼ一致するように種結
晶を配置した。しかる後、1060℃に30分で降温し、さら
に1040℃まで120時間かけて徐冷し、結晶成長を行っ
た。続いて、室温まで24時間で冷却した。得られた円柱
状バルク材について、両方の盤面を切断し、表層を取り
除き、厚さ約15mmのバルクとした。続いて酸素富化処理
を行った。酸素富化処理は酸素気流中において、500℃
まで24時間で昇温し、400℃から250℃まで100時間かけ
て徐冷した。さらに250℃から室温まで10時間かけて降
温した。
This was heated in the air to 1150 ° C. in 8 hours and kept for 1 hour. Thereafter, a seed crystal of La 2 CuO 4 was used at 1080 ° C., and the seed crystal was arranged such that the normal to the board surface substantially coincided with the c-axis. Thereafter, the temperature was lowered to 1060 ° C. in 30 minutes, and then gradually cooled to 1040 ° C. over 120 hours to grow crystals. Subsequently, it was cooled to room temperature in 24 hours. With respect to the obtained cylindrical bulk material, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of about 15 mm. Subsequently, an oxygen enrichment treatment was performed. Oxygen enrichment treatment is 500 ℃ in oxygen stream
, And gradually cooled from 400 ° C. to 250 ° C. over 100 hours. The temperature was further lowered from 250 ° C. to room temperature over 10 hours.

【0026】得られた結晶は、種結晶と同様に、c軸が
盤面の法線と一致していた単結晶状のものが得られた。
77Kにおいて磁場中冷却し、外部磁場を取り除いた後、
捕捉磁束密度を測定したところ、最高0.7Tの良好な値が
得られた。
The obtained crystal was a single crystal in which the c-axis coincided with the normal of the board surface, similarly to the seed crystal.
After cooling in a magnetic field at 77K and removing the external magnetic field,
When the trapped magnetic flux density was measured, a good value of 0.7 T at the maximum was obtained.

【0027】(実施例2)Gd2O3、Sm2O3、BaO2とCuOの
各原料粉末を各金属元素のモル比(Gd:Sm:Ba:Cu)が(7:7:
17:24)になるように混合し、さらにこの混合粉に0.5質
量%のPtおよび10質量%のAgを添加し、混合した原料粉末
を作製した。この原料粉末を880℃、酸素気流中で仮焼
した。この仮焼粉をラバープレス機を用いて、2ton/cm2
の圧力で直径40mm、厚さ20mmの円盤状成形体に成形し
た。
(Example 2) Gd 2 O 3 , Sm 2 O 3 , BaO 2 and CuO were mixed in a raw material powder having a molar ratio of each metal element (Gd: Sm: Ba: Cu) of (7: 7:
17:24), and 0.5% by mass of Pt and 10% by mass of Ag were added to the mixed powder to prepare a mixed raw material powder. This raw material powder was calcined at 880 ° C. in an oxygen stream. The calcined powder was converted to 2 ton / cm 2 using a rubber press.
At a pressure of 40 mm to form a disc-shaped molded body having a diameter of 40 mm and a thickness of 20 mm.

【0028】これを酸素1mol%の窒素中で1150℃まで8時
間で昇温し、1時間保持した。その後、1060℃で、数mm
角の(Sm0.95Ba0.05)2CuO3.95の種結晶を用い、盤面の法
線がc軸にほぼ一致するように種結晶を配置した。しか
る後、1010℃に30分で降温し、さらに970℃まで110時間
かけて徐冷し、結晶成長を行った。続いて、室温まで24
時間で冷却した。得られた円柱状バルク材について、両
方の盤面を切断し、表層を取り除き、厚さ約15mmのバル
クとした。続いて、酸素富化処理を行った。酸素富化処
理は、酸素気流中において、500℃まで24時間で昇温
し、400℃から300℃まで100時間かけて徐冷した。さら
に、300℃から室温まで10時間かけて降温した。
This was heated to 1150 ° C. in nitrogen of 1 mol% of oxygen for 8 hours and kept for 1 hour. Then, at 1060 ° C, several mm
A seed crystal of (Sm 0.95 Ba 0.05 ) 2 CuO 3.95 at the corner was used, and the seed crystal was arranged such that the normal of the board surface almost coincided with the c-axis. Thereafter, the temperature was lowered to 1010 ° C. in 30 minutes, and then gradually cooled to 970 ° C. over 110 hours to grow crystals. Then 24 hours to room temperature
Cooled in time. With respect to the obtained cylindrical bulk material, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of about 15 mm. Subsequently, an oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature was raised to 500 ° C. in 24 hours in an oxygen stream, and gradually cooled from 400 ° C. to 300 ° C. over 100 hours. Further, the temperature was lowered from 300 ° C. to room temperature over 10 hours.

【0029】得られた結晶は、種結晶と同様に、c軸が
盤面の法線と一致していた単結晶状のものが得られた。
77Kにおいて磁場中冷却し、外部磁場を取り除いた後、
捕捉磁束密度を測定したところ、最高1.2Tの良好な値が
得られた。
The obtained crystal was a single crystal in which the c-axis coincided with the normal of the board surface, similarly to the seed crystal.
After cooling in a magnetic field at 77K and removing the external magnetic field,
When the trapped magnetic flux density was measured, a good value of up to 1.2 T was obtained.

【0030】(実施例3)Y2O3、BaO2とCuOの各原料粉
末を各金属元素のモル比(Y:Ba:Cu)が(13:17:24)になる
ように混合し、さらにこの混合粉に0.2質量%のRhを添加
し、混合した原料粉末を作製した。この原料粉末を870
℃、酸素気流中で仮焼した。この仮焼粉をラバープレス
機を用いて、2ton/cm2の圧力で直径50mm、厚さ20mmの円
盤状成形体に50個成形した。
(Example 3) Each raw material powder of Y 2 O 3 , BaO 2 and CuO was mixed so that the molar ratio of each metal element (Y: Ba: Cu) became (13:17:24). Further, 0.2% by mass of Rh was added to the mixed powder to prepare a mixed raw material powder. 870
Calcination was performed in an oxygen stream at ℃. Using a rubber press machine, 50 pieces of the calcined powder were formed into a disk-shaped formed body having a diameter of 50 mm and a thickness of 20 mm at a pressure of 2 ton / cm 2 .

【0031】これらを室温で炉内に配置し、円盤状成形
体の上にNd0.67Sr1.33CuO3.33系の種結晶を用い、盤面
の法線がc軸にほぼ一致するように種結晶を配置した。
しかる後、大気中で1120℃まで8時間で昇温し、1時間保
持した。しかる後、1010℃に30分で降温し、さらに960
℃まで110時間かけて徐冷し、結晶成長を行った。この
徐冷の間、炉内の最高温度と最低温度の差は40℃程度で
あった。続いて、室温まで24時間で冷却した。得られた
50個の円柱状バルク材について、両方の盤面を切断し、
表層を取り除き、厚さ約15mmのバルクとした。続いて、
酸素富化処理を行った。酸素富化処理は酸素気流中にお
いて、500℃まで24時間で昇温し、450℃から400℃まで1
00時間かけて徐冷した。さらに400℃から室温まで10時
間かけて降温した。
These were placed in a furnace at room temperature, and a seed crystal was placed on a disk-shaped compact using a Nd 0.67 Sr 1.33 CuO 3.33 seed crystal so that the normal of the board face almost coincided with the c-axis. did.
Thereafter, the temperature was raised to 1120 ° C. in the air in 8 hours and maintained for 1 hour. Thereafter, the temperature was lowered to 1010 ° C in 30 minutes, and further 960 ° C.
The solution was gradually cooled to 110 ° C. over 110 hours to grow a crystal. During the slow cooling, the difference between the maximum temperature and the minimum temperature in the furnace was about 40 ° C. Subsequently, it was cooled to room temperature in 24 hours. Got
For 50 cylindrical bulk materials, cut both panels
The surface layer was removed to obtain a bulk having a thickness of about 15 mm. continue,
An oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature is raised to 500 ° C in 24 hours in an oxygen stream, and from 450 ° C to 400 ° C in 1 hour.
The solution was slowly cooled over 00 hours. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.

【0032】得られた50個の結晶は、すべて、種結晶と
同様に、c軸が盤面の法線と一致していた単結晶状のも
のが得られた。77Kにおいて磁場中冷却し、外部磁場を
取り除いた後、捕捉磁束密度を測定したところ、最大値
の平均が1.2Tの良好な材料が得られた。
As with the seed crystal, all of the obtained 50 crystals were single crystals in which the c-axis coincided with the normal of the board surface. After cooling in a magnetic field at 77K and removing the external magnetic field, the trapped magnetic flux density was measured. As a result, a good material having an average maximum value of 1.2T was obtained.

【0033】比較例として、次のような実験を行った。
前述の方法により、50個の円盤状成形体を成形し、同様
に炉内に配置した。しかる後、大気中で1120℃まで8時
間で昇温し、1時間保持した。さらに1040℃まで30分で
降温し30分間保持し、その間にNdBa2Cu3O7-x系種結晶を
盤面の法線がc軸にほぼ一致するように配置した。さら
に1010℃に30分で降温し、続いて960℃まで110時間かけ
て徐冷し結晶成長を行った。さらに室温まで24時間で冷
却した。
As a comparative example, the following experiment was conducted.
According to the method described above, 50 disk-shaped molded bodies were formed and similarly placed in a furnace. Thereafter, the temperature was raised to 1120 ° C. in the air in 8 hours and maintained for 1 hour. The temperature was further lowered to 1040 ° C. in 30 minutes, and the temperature was maintained for 30 minutes. During that time, a NdBa 2 Cu 3 O 7-x type seed crystal was arranged such that the normal line of the board surface almost coincided with the c-axis. The temperature was further lowered to 1010 ° C. in 30 minutes, and then gradually cooled to 960 ° C. over 110 hours to grow crystals. It was further cooled to room temperature in 24 hours.

【0034】得られた50個の材料のうち13個は、種結晶
が熔けた形跡があり、多結晶化していた。残り37個は、
種結晶と同様にc軸が盤面の法線と一致していた単結晶
状のものが得られた。これらについて、同様に捕捉磁束
密度を測定したところ、最大値の平均が1.0Tであった。
Thirteen of the 50 obtained materials had evidence of melting of seed crystals and were polycrystalline. The remaining 37
As in the case of the seed crystal, a single crystal in which the c-axis coincided with the normal of the board surface was obtained. When the trapped magnetic flux density was similarly measured for these, the average of the maximum values was 1.0T.

【0035】(実施例4)Sm2O3、BaO2とCuOの各原料粉
末を各金属元素のモル比(Sm:Ba:Cu)が(12:18:26)になる
ように混合し、さらにこの混合粉に0.5質量%のPtを添加
し、混合した原料粉末を作製した。この原料粉末を900
℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton
/cm2の圧力で直径30mm、厚さ20mmの円盤状成形体に成形
した。
(Example 4) Each raw material powder of Sm 2 O 3 , BaO 2 and CuO was mixed so that the molar ratio of each metal element (Sm: Ba: Cu) became (12:18:26), Further, 0.5 mass% of Pt was added to the mixed powder to prepare a mixed raw material powder. 900 of this raw material powder
Calcination was performed in an oxygen stream at ℃. This calcined powder is hydrostatic pressure 2ton
It was molded at a pressure of / cm 2 into a disc-shaped compact having a diameter of 30 mm and a thickness of 20 mm.

【0036】これを大気中で1150℃まで8時間で昇温
し、1時間保持した。その後、1080℃でNd1.92Sr1.08Cu2
O5.96の種結晶を用い、盤面の法線がc軸にほぼ一致する
ように種結晶を配置した。しかる後1070℃に60分で降温
し、さらに1045℃まで120時間かけて徐冷し、結晶成長
を行った。続いて室温まで24時間で冷却した。得られた
円柱状バルク材について、両方の盤面を切断し、表層を
取り除き、厚さ約10mmのバルクとした。続いて酸素富化
処理を行った。酸素富化処理は、酸素気流中において、
400℃まで24時間で昇温し、400℃から280℃まで100時間
かけて徐冷した。さらに280℃から室温まで10時間かけ
て降温した。
The temperature was raised to 1150 ° C. in the air in 8 hours and maintained for 1 hour. Then, at 1080 ° C, Nd 1.92 Sr 1.08 Cu 2
A seed crystal of O 5.96 was used, and the seed crystal was arranged such that the normal of the board surface substantially coincided with the c-axis. Thereafter, the temperature was lowered to 1070 ° C. in 60 minutes, and then gradually cooled to 1045 ° C. over 120 hours to grow crystals. Then, it cooled to room temperature in 24 hours. With respect to the obtained cylindrical bulk material, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of about 10 mm. Subsequently, an oxygen enrichment treatment was performed. Oxygen enrichment treatment is performed in an oxygen stream.
The temperature was raised to 400 ° C. in 24 hours, and gradually cooled from 400 ° C. to 280 ° C. over 100 hours. Further, the temperature was lowered from 280 ° C. to room temperature over 10 hours.

【0037】得られた結晶は、種結晶と同様に、c軸が
盤面の法線と一致していた単結晶状のものが得られた。
77Kにおいて磁場中冷却し、外部磁場を取り除いた後、
捕捉磁束密度を測定したところ、最高0.75Tの良好な値
が得られた。
The obtained crystal was a single crystal in which the c-axis coincided with the normal of the board, similarly to the seed crystal.
After cooling in a magnetic field at 77K and removing the external magnetic field,
When the trapped magnetic flux density was measured, a good value of up to 0.75T was obtained.

【0038】(実施例5)Gd2O3、Sm2O3、BaO2とCuOの
各原料粉末を各金属元素のモル比(Gd:Sm:Ba:Cu)が(7:7:
17:24)になるように混合し、さらにこの混合粉に0.5質
量%のPtおよび10質量%のAgを添加し、混合した原料粉末
を作製した。この原料粉末を880℃、酸素気流中で仮焼
した。この仮焼粉を静水圧力2ton/cm2の圧力で直径45m
m、厚さ30mmの円盤状成形体に成形した。
Example 5 Each raw material powder of Gd 2 O 3 , Sm 2 O 3 , BaO 2 and CuO was mixed with a metal element at a molar ratio (Gd: Sm: Ba: Cu) of (7: 7:
17:24), and 0.5% by mass of Pt and 10% by mass of Ag were added to the mixed powder to prepare a mixed raw material powder. This raw material powder was calcined at 880 ° C. in an oxygen stream. Diameter 45m The calcined powder at a pressure of hydrostatic pressure 2 ton / cm 2
m, and formed into a disk-shaped molded body having a thickness of 30 mm.

【0039】これを酸素1mol%の窒素中で1150℃まで8時
間で昇温し、1時間保持した。その後、1080℃で数mm角
のNd1.3Sr1.7Cu2O5.65の種結晶を用い、盤面の法線がc
軸にほぼ一致するように種結晶を配置した。しかる後10
10℃に120分で降温し、さらに970℃まで110時間かけて
徐冷し結晶成長を行った。続いて、室温まで24時間で冷
却した。得られた円柱状バルク材について、両方の盤面
を切断し、表層を取り除き、厚さ12mmのバルクとした。
続いて酸素富化処理を行った。酸素富化処理は酸素気流
中において、500℃まで24時間で昇温し、500℃から300
℃まで200時間かけて徐冷した。さらに300℃から室温ま
で10時間かけて降温した。
This was heated in nitrogen of 1 mol% of oxygen to 1150 ° C. for 8 hours and kept for 1 hour. Then, using a seed crystal of Nd 1.3 Sr 1.7 Cu 2 O 5.65 of several mm square at 1080 ° C., the normal of the board surface is c
The seed crystal was arranged so as to substantially coincide with the axis. After 10
The temperature was lowered to 10 ° C. in 120 minutes, and then gradually cooled to 970 ° C. over 110 hours to grow crystals. Subsequently, it was cooled to room temperature in 24 hours. With respect to the obtained cylindrical bulk material, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of 12 mm.
Subsequently, an oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature is raised to 500 ° C in 24 hours in an oxygen stream,
The mixture was gradually cooled to 200 ° C over 200 hours. The temperature was further lowered from 300 ° C. to room temperature over 10 hours.

【0040】得られた結晶は、種結晶と同様に、c軸が
盤面の法線と一致していた単結晶状のものが得られた。
77Kにおいて磁場中冷却し、外部磁場を取り除いた後、
捕捉磁束密度を測定したところ、最高1.1Tの良好な値が
得られた。
The obtained crystal was a single crystal in which the c-axis coincided with the normal of the board surface, similarly to the seed crystal.
After cooling in a magnetic field at 77K and removing the external magnetic field,
When the trapped magnetic flux density was measured, a good value of up to 1.1 T was obtained.

【0041】(実施例6)Y2O3、BaO2とCuOの各原料粉
末を各金属元素のモル比(Y:Ba:Cu)が(13:17:24)になる
ように混合し、さらにこの混合粉に0.2質量%のRhを添加
し、混合した原料粉末を作製した。この原料粉末を870
℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton
/cm2の圧力で直径50mm、厚さ30mmの円盤状成形体に12個
成形した。
(Example 6) Each raw material powder of Y 2 O 3 , BaO 2 and CuO was mixed so that the molar ratio of each metal element (Y: Ba: Cu) became (13:17:24). Further, 0.2% by mass of Rh was added to the mixed powder to prepare a mixed raw material powder. 870
Calcination was performed in an oxygen stream at ℃. This calcined powder is hydrostatic pressure 2ton
At a pressure of / cm 2 , 12 disc-shaped compacts having a diameter of 50 mm and a thickness of 30 mm were formed.

【0042】これらを室温で炉内に配置し、円盤状成形
体の上にNd1.9Sr1.05Ba0.05Cu2O5 .9 5系の種結晶を用
い、盤面の法線がc軸にほぼ一致するように種結晶を配
置した。しかる後、大気中で1120℃まで8時間で昇温
し、1時間保持した。しかる後1010℃に30分で降温し、
さらに960℃まで110時間かけて徐冷し、結晶成長を行っ
た。この徐冷の間、炉内の最高温度と最低温度の差は40
℃程度であった。続いて、室温まで24時間で冷却した。
得られた12個の円柱状バルク材について、両方の盤面を
切断し、表層を取り除き、厚さ約15mmのバルクとした。
続いて、酸素富化処理を行った。酸素富化処理は、酸素
気流中において、500℃まで24時間で昇温し、450℃から
400℃まで100時間かけて徐冷した。さらに400℃から室
温まで10時間かけて降温した。
[0042] These were placed in a furnace at room temperature, using a Nd 1.9 Sr 1.05 Ba 0.05 Cu 2 O 5 .9 5 based seed crystal on the shaped product, the normal of the disk surface substantially coincides with the c-axis The seed crystals were arranged as follows. Thereafter, the temperature was raised to 1120 ° C. in the air in 8 hours and maintained for 1 hour. After that, the temperature dropped to 1010 ° C in 30 minutes,
Further, the crystal was gradually cooled to 960 ° C. over 110 hours to grow a crystal. During this slow cooling, the difference between the maximum and minimum temperature in the furnace is 40
° C. Subsequently, it was cooled to room temperature in 24 hours.
With respect to the obtained 12 columnar bulk materials, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of about 15 mm.
Subsequently, an oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature is raised to 500 ° C in 24 hours in an oxygen stream, and from 450 ° C.
The mixture was gradually cooled to 400 ° C. over 100 hours. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.

【0043】得られた12個の結晶はすべて、種結晶と同
様に、c軸が盤面の法線と一致していた単結晶状のもの
が得られた。77Kにおいて磁場中冷却し、外部磁場を取
り除いた後、捕捉磁束密度を測定したところ、最大値の
平均が1.28Tの良好な材料が得られた。
As with the seed crystal, all of the obtained twelve crystals were obtained as single crystals in which the c-axis coincided with the normal of the board surface. After cooling in a magnetic field at 77K and removing the external magnetic field, the trapped magnetic flux density was measured. As a result, a good material having an average maximum value of 1.28T was obtained.

【0044】(実施例7)Dy2O3、Er2O3、BaO2とCuOの
各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(7:7:17:2
4)になるように混合し、さらにこの混合粉に1.0質量%の
Ceを添加し、混合した原料粉末を作製した。この原料粉
末を870℃、酸素気流中で仮焼した。この仮焼粉を静水
圧力2ton/cm2の圧力で直径50mm、厚さ20mmの円盤状成形
体に15個成形した。
Example 7 Dy 2 O 3 , Er 2 O 3 , BaO 2 and CuO were mixed with each other at a molar ratio of each metal element (Y: Ba: Cu) of (7: 7: 17: 2
4) and further added to this mixed powder at 1.0% by mass.
Ce was added and a mixed raw material powder was produced. This raw material powder was calcined at 870 ° C. in an oxygen stream. Fifteen pieces of this calcined powder were formed into a disk-shaped formed body having a diameter of 50 mm and a thickness of 20 mm at a hydrostatic pressure of 2 ton / cm 2 .

【0045】これらを室温で炉内に配置し、円盤状成形
体の上にLa1.79Sr1.19Ba0.02Cu2O5. 9系の種結晶を用
い、盤面の法線がc軸にほぼ一致するように種結晶を配
置した。しかる後、大気中で1120℃まで8時間で昇温
し、1時間保持した。しかる後1005℃に30分で降温し、
さらに970℃まで110時間かけて徐冷し、結晶成長を行っ
た。続いて、室温まで24時間で冷却した。得られた15個
の円柱状バルク材について、両方の盤面を切断し、表層
を取り除き、厚さ約15mmのバルクとした。続いて、酸素
富化処理を行った。酸素富化処理は、酸素気流中におい
て、500℃まで24時間で昇温し、450℃から400℃まで100
時間かけて徐冷した。さらに400℃から室温まで10時間
かけて降温した。
[0045] These were placed in a furnace at room temperature, using La 1.79 Sr 1.19 Ba 0.02 Cu 2 O 5. 9 based seed crystal on the shaped product, the normal of the disk surface substantially coincides with the c-axis The seed crystals were arranged as follows. Thereafter, the temperature was raised to 1120 ° C. in the air in 8 hours and maintained for 1 hour. After that, the temperature dropped to 1005 ° C in 30 minutes,
Further, it was gradually cooled to 970 ° C. over 110 hours to grow a crystal. Subsequently, it was cooled to room temperature in 24 hours. With respect to the obtained fifteen cylindrical bulk materials, both board surfaces were cut, and the surface layer was removed to obtain a bulk having a thickness of about 15 mm. Subsequently, an oxygen enrichment treatment was performed. In the oxygen enrichment treatment, in an oxygen stream, the temperature is raised to 500 ° C. in 24 hours, and from 450 ° C. to 400 ° C.
Slowly cooled over time. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.

【0046】得られた15個の結晶は、すべて、種結晶と
同様に、c軸が盤面の法線と一致していた単結晶状のも
のが得られた。77Kにおいて磁場中冷却し、外部磁場を
取り除いた後、捕捉磁束密度を測定したところ、最大値
の平均が1.2Tの良好な材料が得られた。
As with the seed crystal, all of the obtained fifteen crystals were single crystals in which the c-axis coincided with the normal of the board surface. After cooling in a magnetic field at 77K and removing the external magnetic field, the trapped magnetic flux density was measured. As a result, a good material having an average maximum value of 1.2T was obtained.

【0047】(実施例8)Dy2O3、Er2O3、BaO2とCuOの
各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(7:7:17:2
4)になるように混合し、さらにこの混合粉に1.0質量%の
Ceを添加し、混合した原料粉末を作製した。この原料粉
末を870℃、酸素気流中で仮焼した 。この仮焼粉をラバ
ープレス機を用いて、2ton/cm2の圧力で直径50mm、厚さ
20mmの円盤状成形体に50個成形した。
Example 8 Each of the raw material powders of Dy 2 O 3 , Er 2 O 3 , BaO 2 and CuO was mixed with each other at a molar ratio of each metal element (Y: Ba: Cu) of (7: 7: 17: 2).
4) and further added to this mixed powder at 1.0% by mass.
Ce was added and a mixed raw material powder was produced. This raw material powder was calcined at 870 ° C. in an oxygen stream. This calcined powder was dried at a pressure of 2 ton / cm2 using a rubber press machine to a diameter of 50 mm and a thickness of 50 mm.
50 pieces were molded into a 20 mm disc-shaped molded body.

【0048】これらを室温で炉内に配置し、円盤状成形
体の上にNd0.05La0.95SrCuO3.5系種結晶を用い、盤面の
法線がc軸にほぼ一致するように種結晶を配置した。し
かる後、大気中で1120℃まで8時間で昇温し、1時間保持
した。しかる後1005℃に30分で降温し、さらに970℃ま
で110時間かけて徐冷し、結晶成長を行った。続いて、
室温まで24時間で冷却した。得られた50個の円柱状バル
ク材について、両方の盤面を切断し、表層を取り除き、
厚さ約15mmのバルクとした。続いて、酸素富化処理を行
った。酸素富化処理は酸素気流中において、500℃まで2
4時間で昇温し、450℃から400℃まで100時間かけて徐冷
した。さらに400℃から室温まで10時間かけて降温し
た。
These were placed in a furnace at room temperature, and Nd 0.05 La 0.95 SrCuO 3.5 series seed crystal was used on the disc-shaped molded body, and the seed crystal was placed so that the normal line of the board surface almost coincided with the c-axis. . Thereafter, the temperature was raised to 1120 ° C. in the air in 8 hours and maintained for 1 hour. Thereafter, the temperature was lowered to 1005 ° C. in 30 minutes, and then gradually cooled to 970 ° C. over 110 hours to grow crystals. continue,
Cooled to room temperature in 24 hours. For the obtained 50 cylindrical bulk materials, both board surfaces were cut and the surface layer was removed.
The bulk was about 15 mm thick. Subsequently, an oxygen enrichment treatment was performed. Oxygen enrichment treatment is up to 500 ° C in oxygen stream.
The temperature was raised in 4 hours and gradually cooled from 450 ° C to 400 ° C over 100 hours. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.

【0049】得られた50個の結晶は、すべて、種結晶と
同様に、c軸が盤面の法線と一致していた単結晶状のも
のが得られた。77Kにおいて磁場中冷却し、外部磁場を
取り除いた後、捕捉磁束密度を測定したところ、最大値
の平均が1.2Tの良好な材料が得られた。
All of the 50 obtained crystals were single crystals in which the c-axis coincided with the normal of the board surface, like the seed crystal. After cooling in a magnetic field at 77K and removing the external magnetic field, the trapped magnetic flux density was measured. As a result, a good material having an average maximum value of 1.2T was obtained.

【0050】[0050]

【発明の効果】本願発明は、高温の融点を有する種結晶
および高温の融点を有する種結晶を用いた製造方法を提
供するものであり、比較的高い結晶成長温度を有する系
(Nd,Sm,Eu系、等)のバルク材製造歩留まりが大きく向上
するとともに、さらにそれ以外の系の製造に関しても、
温度分布の均一化が比較的難しい大型炉での高品質超電
導バルク材の量産化を容易にするものであり、その工業
的効果は甚大である。
The present invention provides a seed crystal having a high melting point and a production method using the seed crystal having a high melting point, and a system having a relatively high crystal growth temperature.
(Nd, Sm, Eu system, etc.) bulk material production yield is greatly improved, and also for the production of other systems,
This facilitates mass production of high-quality superconducting bulk material in a large furnace where it is relatively difficult to make the temperature distribution uniform, and its industrial effect is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】La2CuO4の結晶構造Fig. 1 Crystal structure of La 2 CuO 4

【図2】(Nd1-ySry)3Cu2O6-zの結晶構造[2] (Nd 1-y Sr y) 3 Cu 2 O 6-z crystal structure

【符号の説明】[Explanation of symbols]

1 LaまたはBa 2 Cuの周りに6個の酸素が配位した正八面体のブロ
ック 3 Ndに一部置換したSr 4 Srに一部置換したNd 5 Cuの周りに5個の酸素が配位したピラミッド状の
ブロック
1 An octahedral block with six oxygens coordinated around La or Ba 2 Cu 3 Five oxygens coordinated around Nd 5 Cu partially substituted with Sr 4 Sr partially substituted with Nd Pyramid block

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 REBa2Cu3O7-x系超電導体(ここでREはYを
含む希土類元素の1種類又はその組み合わせ)を製造す
るための種結晶が、K2NiF4型の結晶構造 を有する結晶
であることを特徴とする酸化物超電導材料の種結晶。
1. A seed crystal for producing a REBa 2 Cu 3 O 7-x- based superconductor (here, RE is one of rare earth elements including Y or a combination thereof) has a K 2 NiF 4 type crystal structure. A seed crystal of an oxide superconducting material, which is a crystal having the following.
【請求項2】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ)を製造
するための種結晶が、RE2 2CuO4(ここでRE2はYを含む希
土類元素の1種類又はその組み合わせ)であることを特
徴とする 酸化物超電導材料の種結晶。
2. RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is Y
The seed crystal for producing the rare earth element containing one or a combination thereof is RE 2 2 CuO 4 (where RE 2 is one or a combination of rare earth elements including Y). Seed crystal of oxide superconducting material.
【請求項3】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ) を製造
するための種結晶が、(RE2 1-yMy)2CuO4-z(ここでRE2はY
を含む希土類元素の1種類又はその組み合わせ、またM
はアル カリ土類金属から選ばれた1種類又はその組み
合わせ)(但し0<y<1.0、0.9y<z<1.1y)であることを特徴
とする酸化物超電導材料の種結晶。
3. An RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is Y
One or seed crystal for producing the combination) is, (RE 2 1-y M y) 2 CuO 4-z ( wherein RE 2 of the rare earth elements including Y-
One or a combination of rare earth elements containing
Is a kind selected from an alkaline earth metal or a combination thereof (provided that 0 <y <1.0, 0.9y <z <1.1y), wherein the seed crystal is a seed crystal of an oxide superconducting material.
【請求項4】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ) を製造
するための種結晶が、(Nd1-ySry)2CuO4-z(ここで0<y<0.
75、0.9y<z<1.1y)であることを特徴とする酸化物超電導
材料の種結晶。
4. RE 1 Ba 2 Cu 3 O 7-x- based superconductor (where RE 1 is Y
Seed crystals for the manufacture of one or a combination thereof) of rare earth elements including the, (Nd 1-y Sr y ) 2 CuO 4-z ( where 0 <y <0.
75, a seed crystal of an oxide superconducting material, wherein 0.9y <z <1.1y).
【請求項5】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ) を製造
するための種結晶が、Sr3Ti2O7型の結晶構造を有するこ
とを特徴とする酸化物超電導材料の種結晶。
5. An RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is Y
). A seed crystal of an oxide superconducting material, characterized in that the seed crystal for producing (a) a rare earth element or a combination thereof contains a Sr 3 Ti 2 O 7 type crystal structure.
【請求項6】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ) を製造
するための種結晶が、(RE2 1-yMy)3Cu2O6-z (RE2はYを含
む希土類元素の1種類またはその組み合わせ、またMは
アルカリ土類金属から選ばれた1種類又はその組み合わ
せ)(但し0<y<1.0、1.35y-0.45<z<1.65y-0.55)であるこ
とを特徴とする酸化物超電導材料の種結晶。
6. An RE 1 Ba 2 Cu 3 O 7-x- based superconductor (where RE 1 is Y
(RE 2 1- y My ) 3 Cu 2 O 6-z (RE 2 is a rare earth element containing Y or one of the rare earth elements containing Y). A combination, or M is one or a combination of alkaline earth metals or a combination thereof (where 0 <y <1.0, 1.35y-0.45 <z <1.65y-0.55), and the oxide superconducting material is characterized in that: Seed crystal.
【請求項7】 RE1Ba2Cu3O7-x系超電導体(ここでRE1はY
を含む希土類元素の1種類又はその組み合わせ)を製造
するための種結晶が、(Nd1-ySry)3Cu2O6-z (但しyの範
囲が0.3≦y≦0.4または0.5≦y≦0.7、1.35y-0.45<z<1.6
5y-0.55)であることを特徴とする酸化物超電導材料の種
結晶。
7. An RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is Y
Seed crystals for the manufacture of one or a combination thereof) of rare earth elements including the, (Nd 1-y Sr y ) 3 Cu 2 O 6-z ( where the range of y is 0.3 ≦ y ≦ 0.4 or 0.5 ≦ y ≤0.7, 1.35y-0.45 <z <1.6
5y-0.55) A seed crystal of an oxide superconducting material, characterized in that:
【請求項8】 REBa2Cu3O7-x系超電導体(ここでREはYを
含む希土類元素の1種類又はその組み合わせ)の原料成
形体を溶融加熱処理し、これを冷却する ことによってR
EBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相が分
散した 酸化物超電導体を製造する方法において、請求
項1〜7の何れかに記載の種結晶を用いることを特徴と
する酸化物超電導材料の製造方法。
8. A raw material molded body of a REBa 2 Cu 3 O 7-x- based superconductor (here, RE is one or a combination of rare earth elements including Y) is subjected to a melting and heat treatment and cooled to obtain a R
The method for producing an oxide superconductor in which a RE 2 BaCuO 5 phase or a RE 4 Ba 2 Cu 2 O 10 phase is dispersed in an EBa 2 Cu 3 O 7-x phase, according to any one of claims 1 to 7, A method for producing an oxide superconducting material, comprising using a seed crystal.
【請求項9】 前記原料成形体上に種結晶を載置してか
ら溶融加熱処理を行う請求項8に記載の酸化物超電導材
料の製造方法。
9. The method for producing an oxide superconducting material according to claim 8, wherein a melt heat treatment is performed after placing a seed crystal on the raw material compact.
JP2000213263A 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same Expired - Fee Related JP4153651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213263A JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35721599 1999-12-16
JP11-357215 1999-12-16
JP2000213263A JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Publications (2)

Publication Number Publication Date
JP2001233696A true JP2001233696A (en) 2001-08-28
JP4153651B2 JP4153651B2 (en) 2008-09-24

Family

ID=26580572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213263A Expired - Fee Related JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Country Status (1)

Country Link
JP (1) JP4153651B2 (en)

Also Published As

Publication number Publication date
JP4153651B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
CN110373717B (en) Method for growing REBCO high-temperature superconducting block by using component layering control method
US7718573B2 (en) Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US4929598A (en) Oxygen plasma treatment of yttrium barium copper oxide
US7655601B2 (en) Enhanced melt-textured growth
EP1770190B1 (en) METHOD OF FABRICATING RE-Ba-Cu-O SUPERCONDUCTOR
US5049542A (en) La123 superconductor materials
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP3237952B2 (en) Manufacturing method of oxide superconducting material
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JPH059059A (en) Production of oxide superconductor
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JPH061616A (en) Production of bi based oxide superconductor
JPH03112810A (en) Production of oxide superconducting film
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH0585723A (en) Production of rare earth element-containing oxide superconductor
JPH08725B2 (en) Manufacturing method of bismuth superconductor
JPH087680A (en) Manufacture of oxide superconductive wire rod
JPH03112899A (en) Production of oriented oxide superconductor
JPH11322331A (en) Superconductive bulk material and its production
JPH06211519A (en) Superconductor and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees