JP3155333B2 - Method for producing oxide superconductor having high critical current density - Google Patents

Method for producing oxide superconductor having high critical current density

Info

Publication number
JP3155333B2
JP3155333B2 JP10195392A JP10195392A JP3155333B2 JP 3155333 B2 JP3155333 B2 JP 3155333B2 JP 10195392 A JP10195392 A JP 10195392A JP 10195392 A JP10195392 A JP 10195392A JP 3155333 B2 JP3155333 B2 JP 3155333B2
Authority
JP
Japan
Prior art keywords
superconductor
oxide
current density
critical current
rebacuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10195392A
Other languages
Japanese (ja)
Other versions
JPH05279033A (en
Inventor
藤 章 弘 近
本 浩 之 藤
上 雅 人 村
塚 直 己 腰
中 昭 二 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
International Superconductivity Technology Center
Kawasaki Motors Ltd
Original Assignee
Railway Technical Research Institute
International Superconductivity Technology Center
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, International Superconductivity Technology Center, Kawasaki Jukogyo KK filed Critical Railway Technical Research Institute
Priority to JP10195392A priority Critical patent/JP3155333B2/en
Priority to DE69330762T priority patent/DE69330762T2/en
Priority to EP93105034A priority patent/EP0562618B1/en
Priority to EP97118391A priority patent/EP0834931B1/en
Priority to DE69318875T priority patent/DE69318875T2/en
Publication of JPH05279033A publication Critical patent/JPH05279033A/en
Application granted granted Critical
Publication of JP3155333B2 publication Critical patent/JP3155333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規なREBaCuO系
酸化物超電導体の製造方法、特に臨界電流密度の高い酸
化物超電導体の製造方法に関するものである。ここにR
EはY,Sm,Eu,Gd,Dy,Ho,Er,Ybの
グリープより選ばれた希土類元素を表わす。
The present invention relates to a method for producing a novel REBaCuO-based oxide superconductor, and more particularly to a method for producing an oxide superconductor having a high critical current density. Where R
E represents a rare earth element selected from the group consisting of Y, Sm, Eu, Gd, Dy, Ho, Er, and Yb.

【0002】[0002]

【発明が解決しようとする課題】REBaCuO系酸化
物バルク超電導体は、従来、MTG(Melt Textured Gro
wth)法(S.JinらAppl. Phys.Lett. Vol 52 No.207 1988
P2974)等の方法で製造されていた。MTG法で製造する
一例を示す。まず、原料粉をREBaCu組成
になるように調合し、成型する。その成型体を部分溶融
させ、さらに、温度勾配下で徐冷し超電導相を成長させ
る。その後、超電導相に酸素を付加させるために、酸素
富化雰囲気中でアニールを行う。この方法ではRE
aCuO相(以下211相と称す)を意識的に分散さ
せておらず、臨界電流密度は77K,1T(テスラ)で
4,000A/cm程度であり、実用化に向けて十分
に高いとは言えない。
The REBaCuO-based oxide bulk superconductor has been conventionally known as MTG (Melt Textured Groove).
wth) method (S. Jin et al. Appl. Phys. Lett. Vol 52 No.207 1988
P2974). An example of manufacturing by the MTG method will be described. First, the raw material powder is prepared and molded so as to have a REBa 2 Cu 3 O x composition. The molded body is partially melted and gradually cooled under a temperature gradient to grow a superconducting phase. Thereafter, annealing is performed in an oxygen-enriched atmosphere to add oxygen to the superconducting phase. In this method, RE 2 B
The aCuO 5 phase (hereinafter referred to as 211 phase) is not intentionally dispersed, and the critical current density is about 4,000 A / cm 2 at 77K, 1T (tesla), which is sufficiently high for practical use. I can't say.

【0003】一方、最近MPMG(Melt Powder Melt Gr
owth )法(H.FujimotoらProc. of ISS'89 Springer-Verl
ag 1990 P285)等が開発され、臨界電流密度が77K,
1Tで10,000A/cmを越えるようになった。
以下に、MPMGで製造する一例を示す。まず、原料
粉、例えばY,BaCO,CuOを所定の割合
に混合する。これを仮焼・粉砕してもよい。さらに、こ
の粉をRE相と液相が共存する温度、例えば、1
400℃に加熱し混合粉を部分溶融(M)させる。さら
に、冷却することにより凝固させる。その後粉砕(P)
混合し加圧成型する。成型体を211相と液相が共存す
る温度、例えば、1100℃まで加熱し、部分溶融
(M)させる。その後、超電導相である123相が生成
する温度まで冷却し、その温度より例えば1℃/hで徐
冷することにより123相を生成・成長(G)させるこ
とにより超電導体を製造する。
On the other hand, recently, MPMG (Melt Powder Melt Gr
owth) method (H. Fujimoto et al. Proc. of ISS'89 Springer-Verl
ag 1990 P285) was developed, and the critical current density was 77K,
At 1T, it exceeded 10,000 A / cm 2 .
An example of manufacturing with MPMG will be described below. First, raw material powders, for example, Y 2 O 3 , BaCO 3 , and CuO are mixed at a predetermined ratio. This may be calcined and pulverized. Further, this powder is heated to a temperature at which the RE 2 O 3 phase and the liquid phase coexist, for example, 1
The mixture is heated to 400 ° C. to partially melt the mixed powder (M). Furthermore, it is solidified by cooling. Then crush (P)
Mix and press mold. The molded body is heated to a temperature at which the 211 phase and the liquid phase coexist, for example, 1100 ° C., and is partially melted (M). Thereafter, the superconductor is cooled to a temperature at which the 123 phase which is a superconducting phase is generated, and gradually cooled at a temperature of, for example, 1 ° C./h to generate and grow (G) the 123 phase, thereby producing a superconductor.

【0004】前記の高い臨界電流密度は、YBaCu
相(以下123相と称す)中に211相を微細分
散させることにより達成された。さらに、211相のサ
イズが小さくなるほど臨界電流密度が向上することも報
告されている(M.MurakamiらProc.of M2S HTSC III Conf
erence 1991)。従って、高い臨界電流密度を得るための
一手段として、211相を123相中に分散させ、さら
に211相のサイズを小さくすることは重要である。
[0004] The high critical current density is defined by YBa 2 Cu
This was achieved by finely dispersing 211 phases in a 3 O x phase (hereinafter referred to as 123 phases). Furthermore, it has been reported that the smaller the size of the 211 phase, the higher the critical current density (M. Murakami et al., Proc. Of M 2 S HTSC III Conf.
erence 1991). Therefore, as one means for obtaining a high critical current density, it is important to disperse 211 phases into 123 phases and further reduce the size of 211 phases.

【0005】一方、前記超電導体の示す磁気浮上力は、
臨界電流密度が高くなり、超電導結晶が大きくなる程高
くなるので(M.MurakamiらJapanese Journal of Applied
Physics Vol.29 No.11 1990 L1991)、高い磁気浮上力
を得るには、高い臨界電流密度を有することが重要であ
る。しかし、上述のように、MTG法では、比較的簡単
で少ない工程で超電導体を製造できるが、臨界電流密度
が比較的低い。また、MPMG法では臨界電流密度は高
いが、製造工程が複雑になる難点があった。かくして、
本発明はMTG法で得られる超電導体の臨界電流密度よ
りも高い臨界電流密度を有するREBaCuO系酸化物
超電導体を、MPMG法よりも簡単で少ない製造工程で
製造することができる方法を提供するものである。
On the other hand, the magnetic levitation force of the superconductor is:
As the critical current density increases and the superconducting crystal becomes larger, it becomes higher (M. Murakami et al., Japanese Journal of Applied
Physics Vol.29 No.11 1990 L1991), it is important to have a high critical current density in order to obtain a high magnetic levitation force. However, as described above, in the MTG method, a superconductor can be manufactured in a relatively simple and small number of steps, but the critical current density is relatively low. Further, although the critical current density is high in the MPMG method, there is a problem that the manufacturing process becomes complicated. Thus,
The present invention provides a method for producing a REBaCuO-based oxide superconductor having a critical current density higher than the critical current density of the superconductor obtained by the MTG method with a simpler and less manufacturing process than the MPMG method. It is.

【0006】[0006]

【課題を解決するための手段】本発明者等は、RE
(REはY,Sm,Eu,Gd,Dy,Ho,
Er,Ybのグループより選ばれる希土類元素を示
す)、BaO、及びCuOを原料として、混合・成型
し、その成型体を211相と液相が共存する950〜1
250℃の温度で加熱して、さらに超電導相である12
3相が生成する温度付近で徐冷することにより123相
を生成・成長させることにより製造した超電導体は、従
来の他の原料の組み合わせ、すなわちRE,Ba
,CuO,或いは、REBaCuO,REBa
Cu、或いは、RE,BaCuO,C
uO等を原料として用いて前記と同様に製造した超電導
体よりも、前記123相に分散している前記211相の
サイズが小さく、臨界電流密度及び磁気浮上力を更に向
上させ得ることを見いだし、本発明をなすに至ったもの
である。さらに、上記原料の調合の際に、ロジウムを
0.01〜2重量%添加、或いは、セリウム酸化物をC
eOとして0.1〜2重量%添加し、前記方法で超電
導体を製造すれば、前記添加剤を添加しないで製造した
超電導体よりも、123相に分散している211相のサ
イズが更に小さく、臨界電流密度が更に高くなることも
見いだした。
Means for Solving the Problems The present inventors have made RE 2 C
u 2 O 5 (RE is Y, Sm, Eu, Gd, Dy, Ho,
A rare earth element selected from the group consisting of Er and Yb), BaO 2 , and CuO as raw materials, and mixing and molding, and the molded body is 950 to 1 in which a 211 phase and a liquid phase coexist.
It is heated at a temperature of 250 ° C., and the superconducting phase 12
A superconductor manufactured by gradually cooling and generating a 123 phase by cooling slowly around a temperature at which three phases are formed is a conventional combination of other raw materials, that is, RE 2 O 3 , Ba.
O 2 , CuO, or RE 2 BaCuO 5 , REBa
2 Cu 3 O x , or RE 2 O 3 , BaCuO 2 , C
It has been found that the size of the 211 phase dispersed in the 123 phase is smaller than that of a superconductor manufactured in the same manner as described above using uO or the like as a raw material, and that the critical current density and the magnetic levitation force can be further improved. The present invention has been accomplished. Further, when the above raw materials are mixed, rhodium is added in an amount of 0.01 to 2% by weight, or cerium oxide is added to C.
When 0.1 to 2 % by weight of eO2 is added and the superconductor is manufactured by the above method, the size of the 211 phase dispersed in 123 phases is further larger than that of the superconductor manufactured without adding the additive. It has also been found that the critical current density is smaller and higher.

【0007】すなわち、本発明のREBaCuO系酸化
物超電導体の製造方法は、RECu(REは
Y,Sm,Eu,Gd,Dy,Ho,Er,Ybのグル
ープより選ばれる希土類元素を示す)、BaO、及び
CuOを原料として、混合・成型し、さらに熱処理を施
すことにより部分溶融させた後、0.2〜20℃/hの
速度で徐冷して超電導相を成長させること、を特徴とす
るものである。本発明のもう一つの発明であるREBa
CuO系酸化物超電導体の製造方法は、RECu
(REはY,Sm,Eu,Gd,Dy,Ho,Er,
Ybのグループより選ばれる希土類元素を示す),Ba
酸化物,およびCu酸化物を原料として、混合・成型
し、さらに熱処理を施すことにより超電導相を成長させ
るREBaCuO系酸化物超電導体の製造方法におい
て、原料にロジウムを0.01〜2重量%添加するこ
と、を特徴とするものである。更に、本発明のもう一つ
の発明であるREBaCuO系酸化物超電導体の製造方
法は、RECu(REはY,Sm,Eu,G
d,Dy,Ho,Er,Ybのグループより選ばれる希
土類元素を示す),Ba酸化物,およびCu酸化物を原
料として、混合・成型し、さらに熱処理を施すことによ
り超電導相を成長させるREBaCuO系酸化物超電導
体の製造方法において、原料にセリウム酸化物を酸化セ
リウム(CeO)として0.1〜2重量%添加するこ
と、を特徴とするものである。
That is, the method for producing a REBaCuO-based oxide superconductor according to the present invention is a method for producing RE 2 Cu 2 O 5 (RE is a rare earth element selected from the group consisting of Y, Sm, Eu, Gd, Dy, Ho, Er and Yb). ), Using BaO 2 and CuO as raw materials, mixing and molding, and further performing a heat treatment to partially melt them, and then gradually cooling them at a rate of 0.2 to 20 ° C./h to grow a superconducting phase. That is, it is characterized. REBa which is another invention of the present invention
The method for producing a CuO-based oxide superconductor is described in RE 2 Cu 2 O
5 (RE is Y, Sm, Eu, Gd, Dy, Ho, Er,
Yb represents a rare earth element selected from the group of Yb), Ba
In a method of producing a REBaCuO-based oxide superconductor in which a superconducting phase is grown by mixing and molding an oxide and a Cu oxide as raw materials, and further performing a heat treatment, rhodium is added to the raw materials in an amount of 0.01 to 2% by weight. To do so. Further, the method for producing a REBaCuO-based oxide superconductor according to another invention of the present invention is characterized in that RE 2 Cu 2 O 5 (RE is Y, Sm, Eu, G
a rare earth element selected from the group consisting of d, Dy, Ho, Er, and Yb), Ba oxide, and Cu oxide as raw materials, mixed and molded, and further subjected to heat treatment to form a REBaCuO-based REBaCuO-based material. In the method for manufacturing an oxide superconductor, cerium oxide is added as a raw material in an amount of 0.1 to 2 % by weight as cerium oxide (CeO2).

【0008】本発明に係る超電導体の製造方法の手順の
一例について以下に示す。これに、沿って本発明を詳し
く説明する。
An example of the procedure of the method for manufacturing a superconductor according to the present invention will be described below. Accordingly, the present invention will be described in detail.

【0009】(工程 ) まずREBaCuO系超電導体製造する最初の段階とし
て、部分溶融前の成型体を製造する。REとしては、
Y,Sm,Eu,Gd,Dy,Ho,Er,Ybから少
なくとも1種類が選択される。原料粉として、RE
,BaO,及びCuOの組み合わせを用い
る。これらの原料粉を所定の割合に混合し、REBaC
uOからなる混合粉を作製する。このときに、さらに臨
界電流密度を向上させる方法として、白金又は白金化合
物を0.1〜2重量%添加、或いは、ロジウムを0.0
1〜2重量%添加、或いは、セリウム酸化物を0.1〜
2重量%添加することも可能である。白金化合物として
は、例えば、PtBaCuOが用いられる。ま
た、セリウム酸化物としては、例えばCeO,CeB
aOが用いられる。
(Process) First, as a first step of manufacturing a REBaCuO-based superconductor, a molded body before partial melting is manufactured. As RE,
At least one type is selected from Y, Sm, Eu, Gd, Dy, Ho, Er, and Yb. RE 2 C as raw material powder
A combination of u 2 O 5 , BaO 2 , and CuO is used. These raw material powders are mixed in a predetermined ratio,
A mixed powder made of uO is prepared. At this time, as a method of further improving the critical current density, 0.1 to 2% by weight of platinum or a platinum compound is added, or rhodium is added to 0.02% by weight.
1 to 2% by weight, or 0.1 to cerium oxide
It is also possible to add 2% by weight. As the platinum compound, for example, Pt 2 Ba 4 CuO 9 is used. Further, as the cerium oxide, for example, CeO 2 , CeB
aO 3 is used.

【0010】(工程 ) さらに、この混合粉を所望の形状に成型し、成型体を作
製する。
(Step) Further, the mixed powder is molded into a desired shape to produce a molded body.

【0011】(工程 ) この成型体を前記211相が生成する950〜1250
℃の範囲に加熱し、その温度に15〜90分間保持し、
その温度から前記211相と前記液相から前記123相
が生成し始める温度、例えば、REがYで空気中の場合
1000℃まで10〜1000℃/hの冷却速度で冷却
し、さらに、850〜950℃まで0.2〜20℃/h
の冷却速度で徐冷する。この徐冷時に、例えば、成型体
の一端の温度を最高にするように1℃/cm以上の温度
勾配下で徐冷することが可能である。
(Process) The molded body is formed in the range of 950 to 1250 generated by the 211 phase.
Heating to the range of ° C. and holding at that temperature for 15 to 90 minutes,
From that temperature, the temperature at which the 123 phase starts to be formed from the 211 phase and the liquid phase, for example, when RE is Y and in air, it is cooled to 1000 ° C. at a cooling rate of 10 to 1000 ° C./h. 0.2 to 20 ° C / h up to 950 ° C
Slowly cool at a cooling rate of. During the slow cooling, for example, the shaped body can be slowly cooled under a temperature gradient of 1 ° C./cm or more so as to maximize the temperature at one end.

【0012】(工程 ) その後、850〜950℃から室温までは任意の冷却速
度で冷却することが可能である。必要に応じて、製造し
た超電導体への酸素を十分に付加させるために酸素富化
雰囲気において650〜300℃の温度範囲で2〜50
0時間保持するか、もしくは最高650℃、最低300
℃の温度範囲を2〜500時間かけて冷却する。その後
は任意の冷却速度で冷却することが可能である。このよ
うに原料としてRECu、Ba酸化物、及び、
Cu酸化物を用いて、臨界電流密度の高いREBaCu
O系酸化物超電導体を製造することができた。
(Step) Thereafter, it is possible to cool at an arbitrary cooling rate from 850 to 950 ° C. to room temperature. If necessary, in order to sufficiently add oxygen to the manufactured superconductor, 2 to 50 ° C. in a temperature range of 650 to 300 ° C. in an oxygen-enriched atmosphere.
Hold for 0 hours, or maximum 650 ° C, minimum 300
Cool in a temperature range of 2C for 2 to 500 hours. Thereafter, cooling can be performed at any cooling rate. Thus, as raw materials, RE 2 Cu 2 O 5 , Ba oxide, and
REBaCu with high critical current density using Cu oxide
An O-based oxide superconductor could be manufactured.

【0013】図1はRECu(ただし、RE=
Y)、BaO、CuOを原料として、本発明に従って
製造された、超電導体組織の偏光顕微鏡写真であり、図
2〜4はいずれも比較のために実施例に挙げられた前記
以外の従来の原料を用い、本発明によらずに製造された
超電導体組織の偏光顕微鏡写真である。図1に見られる
前記123相に分散している前記211相の大きさは、
図2〜4に見られる従来の原料より製造した超電導体1
23相に分散しているそれよりも小さいことは明らかで
ある。
FIG. 1 shows RE 2 Cu 2 O 5 (where RE =
Y), polarizing micrographs of a superconductor structure manufactured according to the present invention using BaO 2 and CuO as raw materials, and FIGS. 2 to 4 are conventional microstructures other than those described in Examples for comparison. It is a polarization microscope photograph of the superconductor structure manufactured without using this invention using a raw material. The size of the 211 phase dispersed in the 123 phase shown in FIG.
Superconductor 1 manufactured from the conventional raw material shown in FIGS.
Obviously, it is smaller than that dispersed in the 23 phases.

【0014】図5〜7に前記YCu,Ba
,CuO原料粉に白金、ロジウム、酸化セリウムを
それぞれ0.5重量%添加し、本発明に従って製造され
た超電導体組織の偏光顕微鏡写真である。図5〜7で見
られる前記添加物をそれぞれ添加して製造された超電導
体123相に分散している211相の大きさは、図1で
見られる添加物を添加しないで製造された超電導体12
3相に分散しているそれと同程度に小さいことは明らか
である。従って、本発明により得られた超電導体は、本
発明によらないものより123相中に分散する211相
の大きさは小さい。従って、臨界電流密度おび磁気浮上
力も高くなることは明らかである。しかも前記超電導体
を簡単な製造工程で得ることができ、本発明は有効であ
る。
FIGS. 5 to 7 show the Y 2 Cu 2 O 5 , Ba
It is a polarization microscope photograph of the superconductor structure manufactured according to the present invention by adding 0.5% by weight of platinum, rhodium, and cerium oxide to O 2 and CuO raw material powder, respectively. The size of the 211 phase dispersed in the superconductor 123 phase manufactured by adding each of the additives shown in FIGS. 5 to 7 is different from that of the superconductor manufactured without adding the additive shown in FIG. 12
Clearly, it is as small as that which is dispersed in three phases. Therefore, in the superconductor obtained by the present invention, the size of the 211 phase dispersed in the 123 phases is smaller than that of the superconductor not according to the present invention. Therefore, it is clear that the critical current density and the magnetic levitation force also increase. Moreover, the superconductor can be obtained by a simple manufacturing process, and the present invention is effective.

【0015】[0015]

【実施例】実施例1 YCu,BaO,CuOを出発原料とし、
Y:Ba:Cuの比が1.8:2.4:3.4になるよ
うに混合する。さらに成型し、その後1030℃で20
分加熱し、1000℃まで2分で冷却した後、890℃
まで1℃/hの割合で徐冷し、その後炉冷する。さら
に、1気圧の酸素気流中で600℃で1h加熱後炉冷す
ることにより超電導体を製造した。図1は、このように
して得られた超電導体の結晶の偏光顕微鏡写真である。
EXAMPLES Example 1 Y 2 Cu 2 O 5 , BaO 2 and CuO were used as starting materials,
Mixing is performed so that the ratio of Y: Ba: Cu is 1.8: 2.4: 3.4. It is further molded and then at 1030 ° C for 20
After heating for 2 minutes and cooling to 1000 ° C in 2 minutes, 890 ° C
The mixture is gradually cooled at a rate of 1 ° C./h until the furnace is cooled. Further, a superconductor was manufactured by heating at 600 ° C. for 1 hour in an oxygen gas stream of 1 atm and then cooling the furnace. FIG. 1 is a polarization microscope photograph of the superconductor crystal thus obtained.

【0016】比較例1〜3 別に、従来の出発原料として、YBaCuOとYB
Cu(比較例1),YBaCuOとBa
CuOとCuO(比較例2),YとBaCuO
とCuO(比較例3)を用いて、実施例1と同様にし
て超電導体を製造した。図2(比較例1)、図3(比較
例2)、図4(比較例3)は、従来の出発原料を用いて
得られた3つの超電導体の組織の偏光顕微鏡写真であ
る。これらを比較すれば明らかなように、図1に示す本
発明による超電導体の結晶中に分散しているYBaC
uOのサイズは、図2〜4に示す比較例1〜3の従来
の出発原料を用いて製造した超電導体のサイズよりも小
さかった。
Comparative Examples 1 to 3 Separately, Y 2 BaCuO 5 and YB
a 2 Cu 3 O x (Comparative Example 1), Y 2 BaCuO 5 and Ba
CuO 2 and CuO (Comparative Example 2), Y 2 O 3 and BaCuO
2 and CuO (Comparative Example 3), a superconductor was manufactured in the same manner as in Example 1. FIG. 2 (Comparative Example 1), FIG. 3 (Comparative Example 2), and FIG. 4 (Comparative Example 3) are polarization microscope photographs of the structures of three superconductors obtained by using conventional starting materials. As is apparent from a comparison of these, Y 2 BaC dispersed in the crystal of the superconductor according to the present invention shown in FIG.
The size of uO 5 was smaller than the size of the superconductor manufactured using the conventional starting materials of Comparative Examples 1 to 3 shown in FIGS.

【0017】実施例2 実施例1と同様に超電導体を製造した。出発原料も実施
例1と同様である。YCu、BaO、CuO
を出発原料とした超電導体の77K,1T(テスラ)に
おける磁化測定での臨界電流密度を表1に示す。
Example 2 A superconductor was manufactured in the same manner as in Example 1. The starting materials are the same as in Example 1. Y 2 Cu 2 O 5 , BaO 2 , CuO
Table 1 shows the critical current densities of the superconductors obtained by using the starting material in the magnetization measurement at 77 K and 1 T (tesla).

【0018】比較例4〜6 比較例1〜3と同様に超電導体を製造した。出発原料も
比較例1〜3と同様の、YBaCuOとYBa
(比較例4),YBaCuOとBaCuO
とCuO(比較例5),YとBaCuOとC
uO(比較例6)を用いた。得られた超電導体の77
K,1T(テスラ)における磁化測定での臨界電流密度
を表1に示す。
Comparative Examples 4 to 6 Superconductors were produced in the same manner as in Comparative Examples 1 to 3. As starting materials, Y 2 BaCuO 5 and YBa 2 C similar to Comparative Examples 1 to 3 were used.
u 3 O x (Comparative Example 4), Y 2 BaCuO 5 and BaCuO
2 and CuO (Comparative Example 5), Y 2 O 3 , BaCuO 2 and C
uO (Comparative Example 6) was used. 77 of the obtained superconductor
Table 1 shows the critical current density in the magnetization measurement at K, 1T (tesla).

【0019】実施例3 実施例1と同様に超電導体ペレットを製造した。ペレッ
トサイズは直径約16mm、高さ約7mmである。これ
らのペレットを直径12mm、表面磁束密度0.4Tの
永久磁石を用いて磁気浮上力を測定したところ、表2に
示すようにYCu,BaO,CuOを出発原
料にしたペレットの磁気浮上力は、他の従来の出発原料
(比較例7〜9)より製造したペレットのそれよりも高
かった。
Example 3 A superconductor pellet was produced in the same manner as in Example 1. The pellet size is about 16 mm in diameter and about 7 mm in height. The magnetic levitation force of these pellets was measured using a permanent magnet having a diameter of 12 mm and a surface magnetic flux density of 0.4 T. As shown in Table 2, pellets using Y 2 Cu 2 O 5 , BaO 2 , and CuO as starting materials were obtained. Was higher than that of pellets produced from other conventional starting materials (Comparative Examples 7 to 9).

【0020】比較例7〜9 比較例1〜3と同様に超電導体ペレットを製造した。出
発原料も比較例1〜3と同様の、YBaCuOとY
BaCu(比較例7),YBaCuOとB
aCuOとCuO(比較例8),YとBaCu
とCuO(比較例9)を用いた。ペレットサイズは
直径約16mm、高さ約7mmである。これらのペレッ
トを直径12mm、表面磁束密度0.4Tの永久磁石を
用いて磁気浮上力を測定した。その結果を表2に示す。
Comparative Examples 7 to 9 Superconductor pellets were produced in the same manner as in Comparative Examples 1 to 3. As starting materials, Y 2 BaCuO 5 and Y as in Comparative Examples 1 to 3 were used.
Ba 2 Cu 3 O x (Comparative Example 7), Y 2 BaCuO 5 and B
aCuO 2 and CuO (Comparative Example 8), Y 2 O 3 and BaCu
O 2 and using CuO (Comparative Example 9). The pellet size is about 16 mm in diameter and about 7 mm in height. The magnetic levitation force of these pellets was measured using a permanent magnet having a diameter of 12 mm and a surface magnetic flux density of 0.4 T. Table 2 shows the results.

【0021】実施例4〜10 YCuの代わりにY以外のREを含むSm
(実施例4),EuCu(実施例
5),GdCu(実施例6),DyCu
(実施例7),HoCu(実施例8),Er
Cu(実施例9),YbCu(実施例
10)を用いて実施例1と同様にして超電導体を製造し
た。得られた超電導体の77K,1Tで磁化測定により
得られた臨界電流密度を表3に示す。すべてのRE系で
効果が認められた。
Examples 4 to 10 Sm 2 C containing RE other than Y instead of Y 2 Cu 2 O 5
u 2 O 5 (Example 4), Eu 2 Cu 2 O 5 (Example 5), Gd 2 Cu 2 O 5 (Example 6), Dy 2 Cu 2 O
5 (Example 7), Ho 2 Cu 2 O 5 (Example 8), Er
A superconductor was manufactured in the same manner as in Example 1 using 2 Cu 2 O 5 (Example 9) and Yb 2 Cu 2 O 5 (Example 10). Table 3 shows the critical current density of the obtained superconductor obtained by magnetization measurement at 77 K and 1 T. The effects were observed in all RE systems.

【0022】実施例11〜13 白金(実施例11)、ロジウム(実施例12)、酸化セ
リウム(実施例13)を夫々0.5重量%原料に添加以
外実施例1と同様にして超電導体を製造した。得られた
超電導体の臨界電流密度を実施例4〜10と同様な方法
で測定した結果を表4に示す。これらを添加した場合
は、添加しない場合に比べて臨界電流密度がかなり向上
したことが明らかである。
Examples 11 to 13 A superconductor was prepared in the same manner as in Example 1 except that platinum (Example 11), rhodium (Example 12) and cerium oxide (Example 13) were each added to the raw material at 0.5% by weight. Manufactured. Table 4 shows the results of measuring the critical current density of the obtained superconductor by the same method as in Examples 4 to 10. It is clear that when these were added, the critical current density was considerably improved as compared with the case where they were not added.

【0023】 表1 出発原料と臨界電流密度 出発原料 臨界電流密度(77K,1T) (A/cm2 ) 実施例2 YCu+BaO+CuO 11 ,500 比較例4 YBaCuO+YBaCu 8,000 比較例5 YBaCuO+BaCuO+CuO 7,800 比較例6 Y+BaCuO+CuO 6 ,000Table 1 Starting material and critical current density Starting material Critical current density (77 K, 1 T) (A / cm 2) Example 2 Y 2 Cu 2 O 5 + BaO 2 + CuO 11, 500 Comparative Example 4 Y 2 BaCuO 5 + YBa 2 Cu 3 O x 8,000 Comparative Example 5 Y 2 BaCuO 5 + BaCuO 2 + CuO 7,800 Comparative Example 6 Y 2 O 3 + BaCuO 2 + CuO 6,000

【0024】 表2 出発原料と磁気浮上力 出発原料 磁気浮上力(Kgf) 実施例3 YCu+BaO+CuO 0 .72 比較例7 YBaCuO+YBaCu 0.28 比較例8 YBaCuO+BaCuO+CuO 0.26 比較例9 Y+BaCuO+CuO 0 .27Table 2 Starting materials and magnetic levitation force Starting materials Magnetic levitation force (Kgf) Example 3 Y 2 Cu 2 O 5 + BaO 2 + CuO 0. 72 Comparative Example 7 Y 2 BaCuO 5 + YBa 2 Cu 3 O x 0.28 Comparative Example 8 Y 2 BaCuO 5 + BaCuO 2 + CuO 0.26 Comparative Example 9 Y 2 O 3 + BaCuO 2 + CuO 0. 27

【0025】 表3 置換物質と臨界電流密度 Yと置換する物質 磁界電流密度(77K,1T) (A/cm2 ) 実施例4 Sm 11,000 実施例5 Eu 10,500 実施例6 Gd 10,000 実施例7 Dy 10,500 実施例8 Ho 11,000 実施例9 Er 10,000 実施例10 Yb 9,500Table 3 Substitution Substance and Critical Current Density Y Substitution Material Magnetic Field Current Density (77 K, 1 T) (A / cm 2) Example 4 Sm 11,000 Example 5 Eu 10,500 Example 6 Gd 10,000 Example 7 Dy 10,500 Example 8 Ho 11,000 Example 9 Er 10,000 Example 10 Yb 9,500

【0026】 表4 添加物と臨界電流密度 添加物(添加量0.5重量%) 臨界電流密度(77K,1T) (A/cm2 ) 実施例11 白金 17,500 実施例12 ロジウム 18,000 実施例13 酸化セリウム 16,500Table 4 Additives and Critical Current Density Additive (addition amount 0.5% by weight) Critical current density (77 K, 1 T) (A / cm 2) Example 11 Platinum 17,500 Example 12 Rhodium 18,000 Execution Example 13 Cerium oxide 16,500

【0027】[0027]

【発明の効果】以上から明らかなように、本発明にれ
ば、結晶のサイズが小さく臨界電流密度と磁気浮上力が
高い酸化物系超電導体を、簡単な製造工程で製造するこ
とができる。
As apparent from the above, according to the present invention, an oxide superconductor having a small crystal size and a high critical current density and a high magnetic levitation force can be manufactured by a simple manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従ってYCu,BaとCuの
酸化物からつくられた超電導体の結晶の顕微鏡写真。
FIG. 1 is a photomicrograph of a crystal of a superconductor made from an oxide of Y 2 Cu 2 O 5 , Ba and Cu according to the present invention.

【図2】YBaCuOとYBaCuからつ
くられた超電導体の結晶の顕微鏡写真。
FIG. 2 is a micrograph of a crystal of a superconductor made of Y 2 BaCuO 5 and YBa 2 Cu 3 O x .

【図3】YBaCuOとBaCuOとCuOから
つくられた超電導体の結晶の顕微鏡写真。
FIG. 3 is a micrograph of a superconductor crystal made of Y 2 BaCuO 5 , BaCuO 2 and CuO.

【図4】YとBaCuOとCuOからつくられ
た超電導体の結晶の顕微鏡写真。
FIG. 4 is a micrograph of a superconductor crystal made of Y 2 O 3 , BaCuO 2, and CuO.

【図5】本発明による原料に白金を添加して得られた超
電導体の結晶の顕微鏡写真。
FIG. 5 is a micrograph of a superconductor crystal obtained by adding platinum to a raw material according to the present invention.

【図6】本発明による原料にロジウムを添加して得られ
た超電導体の結晶の顕微鏡写真。
FIG. 6 is a micrograph of a superconductor crystal obtained by adding rhodium to a raw material according to the present invention.

【図7】本発明による原料に酸化セリウムを添加して得
られた超電導体の結晶の顕微鏡写真。
FIG. 7 is a micrograph of a superconductor crystal obtained by adding cerium oxide to a raw material according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近 藤 章 弘 東京都江東区東雲1−14−3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 藤 本 浩 之 東京都江東区東雲1−14−3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 村 上 雅 人 東京都江東区東雲1−14−3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 腰 塚 直 己 東京都江東区東雲1−14−3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 田 中 昭 二 東京都江東区東雲1−14−3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (56)参考文献 特開 平1−160825(JP,A) 特開 平1−93461(JP,A) 特開 平2−204322(JP,A) 特開 平3−141512(JP,A) 特開 昭63−291857(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 3/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Kondo 1-14-3 Shinonome, Shinonome, Koto-ku, Tokyo Within the Superconductivity Engineering Laboratory, International Superconducting Technology Research Center (72) Inventor Hiroyuki Fujimoto Tokyo 1-14-3 Shinonome, Koto-ku, Tokyo International Research Institute for Superconducting Technology, Superconductivity Engineering Research Laboratory (72) Masato Murakami 1-14-3, Shinonome, Shinonome, Koto-ku, Tokyo International Research Center for Superconducting Technology Inside the Superconducting Engineering Laboratory (72) Naomi Koshizuka, Inventor 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Technology Research Center Inside the Superconducting Engineering Laboratory (72) Inventor Shoji Tanaka Tokyo 1-14-3 Shinonome, Koto-ku International Research Institute for Superconducting Technology, Superconductivity Engineering Laboratory (56) References JP JP-A-1-160825 (JP, A) JP-A-1-93461 (JP, A) JP-A-2-204322 (JP, A) JP-A-3-141512 (JP, A) JP-A-63-291857 (JP) , A) (58) Fields surveyed (Int. Cl. 7 , DB name) C01G 1/00-3/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RECu(REはY,Sm,E
u,Gd,Dy,Ho,Er,Ybのグループより選ば
れる希土類元素を示す)、BaO 、及びCuOを原料
として、混合・成型し、さらに熱処理を施すことにより
部分溶融させた後、0.2〜20℃/hの速度で徐冷し
超電導相を成長させることを特徴とするREBaC
uO系酸化物超電導体の製造方法。
1. RE 2 Cu 2 O 5 (RE is Y, Sm, E
a rare earth element selected from the group consisting of u, Gd, Dy, Ho, Er, and Yb) , BaO 2 , and CuO as raw materials, followed by mixing and molding, followed by heat treatment.
After partial melting, slowly cool at a rate of 0.2-20 ° C / h
Wherein the growing superconducting phase Te, REBaC
A method for producing a uO-based oxide superconductor.
【請求項2】前記部分溶融温度が950〜1250℃で
ある、請求項1に記載のREBaCuO系酸化物超電導
体の製造方法。
2. The REBaCuO-based oxide superconductor according to claim 1, wherein said partial melting temperature is 950 to 1250 ° C.
How to make the body.
【請求項3】原料に白金あるいは白金化合物を白金とし
て0.1〜2重量%添加する、請求項1又は2のいずれ
かに記載のREBaCuO系酸化物超電導体の製造方
法。
3. adding from 0.1 to 2% by weight of platinum or platinum compounds as a platinum material, any of claim 1 or 2
For producing REBaCuO-based oxide superconductors
Law.
【請求項4】RE Cu (REはY,Sm,E
u,Gd,Dy,Ho,Er,Ybのグループより選ば
れる希土類元素を示す),Ba酸化物,およびCu酸化
物を原料として、混合・成型し、さらに熱処理を施すこ
とにより超電導相を成長させるREBaCuO系酸化物
超電導体の製造方法において、原料にロジウムを0.0
1〜2重量%添加することを特徴とする、REBaCu
O系酸化物超電導体の製造方法。
4. RE 2 Cu 2 O 5 (RE is Y, Sm, E
u, Gd, Dy, Ho, Er, Yb
Rare earth element), Ba oxide, and Cu oxide
Using the product as a raw material,
REBaCuO-based oxide to grow superconducting phase
In a method for manufacturing a superconductor , rhodium is used as a raw material in an amount of 0.0
REBaCu, characterized by being added in an amount of 1 to 2% by weight.
A method for producing an O-based oxide superconductor.
【請求項5】RE Cu (REはY,Sm,E
u,Gd,Dy,Ho,Er,Ybのグループより選ば
れる希土類元素を示す),Ba酸化物,およびCu酸化
物を原料として、混合・成型し、さらに熱処理を施すこ
とにより超電導相を成長させるREBaCuO系酸化物
超電導体の製造方法において、原料にセリウム酸化物を
酸化セリウム(CeO)として0.1〜2重量%添加
することを特徴とする、REBaCuO系酸化物超電導
体の製造方法。
5. RE 2 Cu 2 O 5 (RE is Y, Sm, E
u, Gd, Dy, Ho, Er, Yb
Rare earth element), Ba oxide, and Cu oxide
Using the product as a raw material,
REBaCuO-based oxide to grow superconducting phase
The method of manufacturing a superconductor, characterized by adding 0.1 to 2% by weight of the raw material cerium oxide as cerium oxide (CeO 2), REBaCuO-based oxide superconductor
How to make the body.
JP10195392A 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density Expired - Fee Related JP3155333B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10195392A JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density
DE69330762T DE69330762T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture
EP93105034A EP0562618B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method
EP97118391A EP0834931B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method
DE69318875T DE69318875T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195392A JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density

Publications (2)

Publication Number Publication Date
JPH05279033A JPH05279033A (en) 1993-10-26
JP3155333B2 true JP3155333B2 (en) 2001-04-09

Family

ID=14314254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195392A Expired - Fee Related JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density

Country Status (1)

Country Link
JP (1) JP3155333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245223A (en) * 1997-02-28 1998-09-14 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and its production
JPH10265221A (en) * 1997-03-24 1998-10-06 Tokyo Univ Production of oxide superconductor
JP4109363B2 (en) 1998-11-30 2008-07-02 新日本製鐵株式会社 Oxide superconducting material and manufacturing method thereof
KR101456152B1 (en) * 2012-08-06 2014-11-03 서울대학교산학협력단 Superconductor and method of forming the same

Also Published As

Publication number Publication date
JPH05279033A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
JP2839415B2 (en) Method for producing rare earth superconducting composition
JPH02164760A (en) Production of thread or band like ceramics high
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
JPH08697B2 (en) Oxide superconductor and method for manufacturing the same
JP3327548B2 (en) Manufacturing method of high temperature superconductor compact with high critical current
EP0426164B1 (en) Process for preparing oxide superconductor
JPH04224111A (en) Rare earth type oxide superconductor and its production
JP2000016811A (en) Oxide superconductor having high critical current density
EP0834931B1 (en) Oxide superconductor having large magnetic levitation force and its production method
US5270292A (en) Method for the formation of high temperature semiconductors
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP2801811B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3260410B2 (en) Oxide superconductor containing rare earth element and manufacturing method thereof
JPH0751463B2 (en) Method for manufacturing oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
US5378682A (en) Dense superconducting bodies with preferred orientation
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP3155334B2 (en) Oxide superconductor having high magnetic levitation force and method of manufacturing the same
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2004203727A (en) Oxide superconductor having high critical current density
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees