JPH04292812A - Manufacture of bismuth-based oxide superconductive wire - Google Patents

Manufacture of bismuth-based oxide superconductive wire

Info

Publication number
JPH04292812A
JPH04292812A JP3056687A JP5668791A JPH04292812A JP H04292812 A JPH04292812 A JP H04292812A JP 3056687 A JP3056687 A JP 3056687A JP 5668791 A JP5668791 A JP 5668791A JP H04292812 A JPH04292812 A JP H04292812A
Authority
JP
Japan
Prior art keywords
wire
bismuth
powder
based oxide
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3056687A
Other languages
Japanese (ja)
Other versions
JP2855869B2 (en
Inventor
Takeshi Kato
武志 加藤
Kenichi Sato
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13034357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04292812(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3056687A priority Critical patent/JP2855869B2/en
Publication of JPH04292812A publication Critical patent/JPH04292812A/en
Application granted granted Critical
Publication of JP2855869B2 publication Critical patent/JP2855869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a bismuth-based oxide superconductive wire having high critical current density and critical current while lessening the production of non-superconductive phase. CONSTITUTION:A superconductive wire manufacturing method involves the steps of filling a metal sheath with bismuth-based oxide superconductor or its raw material powder, plastic-processing the metal sheath filled with the powder to make it a wire, carrying out primary heating the resulting wire, carrying out plastic process or pressing process of the wire after the heating process, carrying out secondary heating the processed wire, and powder having composition ratio of (Bi+Pb):Sr:Ca:Cu:2.2:2:2:3 with + or -5% allowances respectively and 0.3<=Pb<=0.4 is used as the powder with which the sheath is filled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ビスマス系酸化物超
電導線材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing bismuth-based oxide superconducting wire.

【0002】0002

【従来の技術】ビスマス系酸化物超電導材料は、110
K程度の高い臨界温度を有することが知られている。こ
のようなビスマス系酸化物超電導材料を金属被覆して、
塑性加工してテープ状に加工し、次いで熱処理すること
によって、高い臨界電流密度を有する線材が得られるこ
とが知られている。
[Prior Art] Bismuth-based oxide superconducting materials are 110
It is known to have a high critical temperature of about K. By coating such bismuth-based oxide superconducting material with metal,
It is known that a wire rod having a high critical current density can be obtained by plastic working it into a tape shape and then heat treating it.

【0003】特に、塑性加工と熱処理とを複数回繰返す
ことにより、臨界電流密度がさらに高められることが知
られている。
In particular, it is known that the critical current density can be further increased by repeating plastic working and heat treatment multiple times.

【0004】また、ビスマス系酸化物超電導体には、臨
界温度が110Kのものと、臨界温度が80Kおよび1
0Kのものとがあることが知られている。さらに、11
0K相の超電導体を製造しようとするとき、非超電導相
が一部において現れることも知られている。
[0004] In addition, some bismuth-based oxide superconductors have a critical temperature of 110K, and others have critical temperatures of 80K and 1
It is known that there are 0K ones. Furthermore, 11
It is also known that when attempting to manufacture a 0K phase superconductor, a non-superconducting phase appears in some parts.

【0005】ビスマス系酸化物超電導体において、上述
した110K相は、Biまたは(Bi,Pb):Sr:
Ca:Cuの組成比が2:2:2:3といわれている2
223相を有しており、80K相は、この組成比がほぼ
2:2:1:2である2212相を有していることが知
られている。
In the bismuth-based oxide superconductor, the above-mentioned 110K phase is Bi or (Bi, Pb):Sr:
The composition ratio of Ca:Cu is said to be 2:2:2:32
It is known that the 80K phase has a 2212 phase with a composition ratio of approximately 2:2:1:2.

【0006】[0006]

【発明が解決しようとする課題】ビスマス系酸化物超電
導体を、安価な液体窒素(77.3K)を冷却媒体とし
て、安定して使用するためには、臨界温度の高い110
K相である2223相をできるだけ多く生成させること
が望ましい。
[Problems to be Solved by the Invention] In order to stably use bismuth-based oxide superconductors using inexpensive liquid nitrogen (77.3K) as a cooling medium, it is necessary to
It is desirable to generate as much 2223 phase as K phase as possible.

【0007】また、超電導体を線材として使用する場合
には、高い臨界電流密度だけではなく、高い臨界電流を
得る必要がある。
Furthermore, when a superconductor is used as a wire, it is necessary to obtain not only a high critical current density but also a high critical current.

【0008】この発明の目的は、110K相である22
23相にできるだけ近い組成を用い、110K相を得る
ときにできる非超電導相を少なくし、高い臨界電流密度
と臨界電流を得ることのできる、ビスマス系酸化物超電
導線材の製造方法を提供することにある。
[0008] The object of the present invention is to
To provide a method for producing a bismuth-based oxide superconducting wire, which uses a composition as close as possible to the 23 phase, reduces the number of non-superconducting phases produced when obtaining the 110K phase, and can obtain high critical current density and critical current. be.

【0009】[0009]

【課題を解決するための手段】この発明の製造方法は、
ビスマス系酸化物超電導体またはその原料の粉末を金属
シースに充填するステップと、粉末を充填した金属シー
スを塑性加工して線材化するステップと、この線材を1
次熱処理するステップと、熱処理後の線材を塑性加工ま
たは押圧加工するステップと、加工後の線材を2次熱処
理するステップとを備えており、金属シースに充填する
粉末として、組成比がBi+Pb:Sr:Ca:Cu=
2.2:2:2:3を中心とし、それぞれ±5%の範囲
内で、かつ0.3≦Pb≦0.4となる組成の粉末を用
いることを特徴としている。
[Means for Solving the Problems] The manufacturing method of the present invention includes:
A step of filling a metal sheath with powder of a bismuth-based oxide superconductor or its raw material, a step of plastic working the metal sheath filled with the powder to form a wire rod, and a step of converting this wire rod into a wire rod.
The process includes a step of performing a secondary heat treatment, a step of plastic working or pressing the wire rod after the heat treatment, and a step of performing a secondary heat treatment of the wire rod after the work. :Ca:Cu=
It is characterized by using powder with a composition centered around 2.2:2:2:3, each within a range of ±5%, and 0.3≦Pb≦0.4.

【0010】この発明において、1次熱処理の時間は、
100〜250時間であることが好ましい。また金属シ
ースに充填される粉末は、最大粒径が2.0μm以下で
あり、平均粒径が1.0μm以下であることが好ましい
[0010] In this invention, the time of the primary heat treatment is
It is preferable that it is 100-250 hours. Further, it is preferable that the powder filled in the metal sheath has a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less.

【0011】また、この発明において金属シースに充填
される粉末としてのビスマス系超電導体またはその原料
は、一般的には、多結晶体または超電導相と非超電導相
との集合物からなる。
Furthermore, in the present invention, the bismuth-based superconductor as a powder filled into the metal sheath or its raw material generally consists of a polycrystal or an aggregate of a superconducting phase and a non-superconducting phase.

【0012】この発明において用いられる金属シースの
材質としては、ビスマス系酸化物超電導体と反応せず、
かつ低抵抗の金属または合金が用いられることが好まし
い。このようなものとして、銀もしくは銀合金が挙げら
れる。
[0012] The material of the metal sheath used in this invention is a material that does not react with the bismuth-based oxide superconductor;
It is also preferable to use a metal or alloy with low resistance. Examples of such materials include silver or silver alloys.

【0013】[0013]

【発明の作用効果】本発明者らは、上記組成比の粉末を
用いることにより、110K相生成のための熱処理後に
おいて、非超電導相、主にCa−Cu−O系の生成を少
なくすることのできることを見出だした。この発明は、
この事実に基づくものである。
Effects of the Invention: By using powder having the above composition ratio, the present inventors have succeeded in reducing the formation of non-superconducting phases, mainly Ca-Cu-O, after heat treatment to generate 110K phase. I discovered what I can do. This invention is
It is based on this fact.

【0014】高い臨界電流密度を得るためには、高温相
を粒成長させることが必要であり、金属シースには、主
にBi系の低温相と非超電導相の集合体を充填する。こ
のような集合体を用いることによって、熱処理後に高温
相を生成させることができる。
[0014] In order to obtain a high critical current density, it is necessary to cause grain growth of the high temperature phase, and the metal sheath is filled with an aggregate of mainly Bi-based low temperature phases and non-superconducting phases. By using such an aggregate, a high temperature phase can be generated after heat treatment.

【0015】一般的にBi系高温相は、CaやCuを多
めに配合するとできやすいことが知られている。そこで
、従来はCaを少し多めに配合して、高温相の生成をさ
せていた。しかしながら、高温相の成分比を分析により
求めた結果、Bi+Pb:Sr:Ca:Cu=2.18
:1.97:1.95:3:3.00であることが分か
り、この発明の組成比である、Bi+Pb:Sr:Ca
:Cu=2.2:2:2:3が高温相の生成には妥当で
あることが分かった。
[0015] Generally, it is known that a Bi-based high-temperature phase is easily formed when a large amount of Ca or Cu is blended. Therefore, in the past, a slightly larger amount of Ca was added to generate a high-temperature phase. However, as a result of analysis of the component ratio of the high temperature phase, Bi+Pb:Sr:Ca:Cu=2.18
:1.97:1.95:3:3.00, which is the composition ratio of this invention, Bi+Pb:Sr:Ca
:Cu=2.2:2:2:3 was found to be appropriate for the generation of high temperature phase.

【0016】金属シースに充填する粉末は、最大粒径が
2.0μm以下であり、平均粒径が1.0μm以下であ
る微粉末が好ましいことが分かった。このような微粉末
を用いることにより、反応を非常に活性化することがで
き、高温相を生成しやすくなるものと思われる。
It has been found that the powder to be filled into the metal sheath is preferably a fine powder having a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less. It is thought that by using such a fine powder, the reaction can be greatly activated, making it easier to generate a high-temperature phase.

【0017】この発明に従えば、110K相の生成のた
めの熱処理後において、非超電導相の生成を体積比で1
0%以下、大きさで2μm以下の厚み(マトリックスの
a−b面方向)にすることができる。この結果、超電導
相の割合が増えるとともに、熱処理の間の加工による欠
陥発生を防止することができ、結晶成長を促進させるこ
とができる。したがって、この発明に従えば、高い臨界
電流密度および臨界電流を有する超電導線材を製造する
ことができる。
According to the present invention, after the heat treatment for producing the 110K phase, the production of the non-superconducting phase is reduced to 1 in volume ratio.
0% or less, and the thickness (in the a-b plane direction of the matrix) can be made to be 2 μm or less in size. As a result, the proportion of the superconducting phase increases, the generation of defects due to processing during heat treatment can be prevented, and crystal growth can be promoted. Therefore, according to the present invention, a superconducting wire having high critical current density and critical current can be manufactured.

【0018】この発明において、1次熱処理の時間は、
100時間以上が好ましい。これは、熱処理の時間が1
00時間未満であると、高温相の生成またはその粒成長
が未完成の状態にあるからである。また熱処理時間は2
50時間以下であることが好ましい。これは250時間
を越えると、異相の凝集が特性に影響を及ぼしてくるよ
うになり、逆に臨界電流密度の低下を招くからである。
[0018] In this invention, the time of the primary heat treatment is as follows:
100 hours or more is preferable. This means that the heat treatment time is 1
This is because if the heating time is less than 0.00 hours, the formation of the high-temperature phase or its grain growth will be incomplete. Also, the heat treatment time is 2
Preferably it is 50 hours or less. This is because when the time exceeds 250 hours, the agglomeration of different phases begins to affect the characteristics, which conversely causes a decrease in the critical current density.

【0019】[0019]

【実施例】Bi2 O3 、PbO、SrCO3 、C
aCO3 、およびCuOの各粉末を、Bi:Pb:S
r:Ca:Cu=1.8:0.4:2.0:X:3.0
(X=1.8、2.0、または2.2)となる、3種類
の組成比を持つものと、Bi:Pb:Sr:Ca:Cu
=1.6:0.4:2.0:2.0:3.0の組成比を
持つものとを秤量し、混合した。これらの試料を順に■
〜■とした。次に、800℃で20時間熱処理を施した
後、粉砕し、次いで860℃で2時間の熱処理を行ない
、充填用粉末にした。
[Example] Bi2 O3, PbO, SrCO3, C
aCO3 and CuO powder, Bi:Pb:S
r:Ca:Cu=1.8:0.4:2.0:X:3.0
(X = 1.8, 2.0, or 2.2), with three types of composition ratios, and Bi:Pb:Sr:Ca:Cu.
=1.6:0.4:2.0:2.0:3.0 were weighed and mixed. These samples in order
~■. Next, the mixture was heat-treated at 800°C for 20 hours, crushed, and then heat-treated at 860°C for 2 hours to obtain a powder for filling.

【0020】これらの得られた粉末を、それぞれ、最大
粒径が2.0μm、平均粒径が1.0μmとなるように
粉砕した。
[0020] Each of the obtained powders was pulverized to a maximum particle size of 2.0 μm and an average particle size of 1.0 μm.

【0021】その後、得られた粉末を、それぞれ、外径
6.0mm、内径4.0mmの銀パイプに充填し、次い
で、直径1.0mmになるまで伸線加工した。次にこの
線材を、厚さ0.17mmになるまで圧延加工し、プレ
スを行なった。
Thereafter, each of the obtained powders was filled into a silver pipe having an outer diameter of 6.0 mm and an inner diameter of 4.0 mm, and then wire-drawn to a diameter of 1.0 mm. Next, this wire rod was rolled to a thickness of 0.17 mm and pressed.

【0022】その後、1次熱処理として、それぞれ84
5℃で50時間、100時間、150時間、200時間
、250時間、および300時間の熱処理を行ない、そ
の後再びプレスを行ない、2次熱処理として、840℃
、50時間の熱処理を行なった。
[0022] Thereafter, as a primary heat treatment, 84
Heat treatment was performed at 5°C for 50 hours, 100 hours, 150 hours, 200 hours, 250 hours, and 300 hours, and then pressing was performed again and a secondary heat treatment was performed at 840°C.
, heat treatment was performed for 50 hours.

【0023】このようにして得られた各線材について、
それぞれ、77.3Kの温度下で、零磁場における臨界
電流の測定を行なった。表1に、得られたJcおよびI
cの値を示す。表1において、上段の値はJcを示し、
その単位は104 A/cm3 であり、下段はIcを
示し、その単位はAである。
Regarding each wire rod obtained in this way,
The critical current in each case was measured at a temperature of 77.3 K and in a zero magnetic field. Table 1 shows the obtained Jc and I
Indicates the value of c. In Table 1, the values in the upper row indicate Jc,
Its unit is 104 A/cm3, the lower row shows Ic, and its unit is A.

【0024】[0024]

【表1】[Table 1]

【0025】表1の結果から明らかなように、この発明
に従う酸化物超電導線材は、JcおよびIcにおいて優
れていることが分かる。
As is clear from the results in Table 1, the oxide superconducting wire according to the present invention is excellent in Jc and Ic.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成比がBi+Pb:Sr:Ca:C
u=2.2:2:2:3を中心とし、それぞれ±5%の
範囲内で、かつ0.3≦Pb≦0.4となる組成の粉末
を金属シースに充填するステップと、前記粉末を充填し
た前記金属シースを塑性加工して線材化するステップと
、この線材を1次熱処理するステップと、熱処理後の線
材を塑性加工または押圧加工するステップと、加工後の
線材を2次熱処理するステップとを備える、ビスマス系
酸化物超電導線材の製造方法。
[Claim 1] Composition ratio is Bi+Pb:Sr:Ca:C
filling a metal sheath with powder having a composition centered around u=2.2:2:2:3, each within a range of ±5%, and satisfying 0.3≦Pb≦0.4, and the powder A step of plastic working the metal sheath filled with the metal to form a wire rod, a step of primary heat treatment of this wire rod, a step of plastic working or pressing of the wire rod after heat treatment, and a step of secondary heat treatment of the wire rod after processing. A method for manufacturing a bismuth-based oxide superconducting wire, comprising steps.
JP3056687A 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire Expired - Lifetime JP2855869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056687A JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056687A JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH04292812A true JPH04292812A (en) 1992-10-16
JP2855869B2 JP2855869B2 (en) 1999-02-10

Family

ID=13034357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056687A Expired - Lifetime JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2855869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
US7749557B2 (en) 2004-06-22 2010-07-06 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229722A (en) * 1989-03-02 1990-09-12 Agency Of Ind Science & Technol Method for synthesizing oxide fine particle by spray drying
JPH0353415A (en) * 1989-07-19 1991-03-07 Sumitomo Electric Ind Ltd Superconductor wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229722A (en) * 1989-03-02 1990-09-12 Agency Of Ind Science & Technol Method for synthesizing oxide fine particle by spray drying
JPH0353415A (en) * 1989-07-19 1991-03-07 Sumitomo Electric Ind Ltd Superconductor wire rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749557B2 (en) 2004-06-22 2010-07-06 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor

Also Published As

Publication number Publication date
JP2855869B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP3074753B2 (en) Method for producing bismuth-based oxide superconductor
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
JPH04292819A (en) Manufacture of oxide superconductive wire
JP2590275B2 (en) Manufacturing method of oxide superconducting material
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
JPH0536317A (en) Manufacture of bismuth-based oxide superconductive wire material
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
JP2563564B2 (en) Superconducting oxide wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JP3062557B2 (en) Method for producing bismuth-based oxide superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JPH061616A (en) Production of bi based oxide superconductor
JPH0412023A (en) Oxide superconductor
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JPH0448518A (en) Manufacture of bismuth-based superconductor
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH04214034A (en) Thallium-based oxide superconductor and its production
JPH0554735A (en) Manufacture of ceramic superconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13