JPH04292812A - Manufacture of bismuth-based oxide superconductive wire - Google Patents
Manufacture of bismuth-based oxide superconductive wireInfo
- Publication number
- JPH04292812A JPH04292812A JP3056687A JP5668791A JPH04292812A JP H04292812 A JPH04292812 A JP H04292812A JP 3056687 A JP3056687 A JP 3056687A JP 5668791 A JP5668791 A JP 5668791A JP H04292812 A JPH04292812 A JP H04292812A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- bismuth
- powder
- based oxide
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 15
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000003825 pressing Methods 0.000 claims abstract description 4
- 239000002887 superconductor Substances 0.000 abstract description 9
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910016264 Bi2 O3 Inorganic materials 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、ビスマス系酸化物超
電導線材の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing bismuth-based oxide superconducting wire.
【0002】0002
【従来の技術】ビスマス系酸化物超電導材料は、110
K程度の高い臨界温度を有することが知られている。こ
のようなビスマス系酸化物超電導材料を金属被覆して、
塑性加工してテープ状に加工し、次いで熱処理すること
によって、高い臨界電流密度を有する線材が得られるこ
とが知られている。[Prior Art] Bismuth-based oxide superconducting materials are 110
It is known to have a high critical temperature of about K. By coating such bismuth-based oxide superconducting material with metal,
It is known that a wire rod having a high critical current density can be obtained by plastic working it into a tape shape and then heat treating it.
【0003】特に、塑性加工と熱処理とを複数回繰返す
ことにより、臨界電流密度がさらに高められることが知
られている。In particular, it is known that the critical current density can be further increased by repeating plastic working and heat treatment multiple times.
【0004】また、ビスマス系酸化物超電導体には、臨
界温度が110Kのものと、臨界温度が80Kおよび1
0Kのものとがあることが知られている。さらに、11
0K相の超電導体を製造しようとするとき、非超電導相
が一部において現れることも知られている。[0004] In addition, some bismuth-based oxide superconductors have a critical temperature of 110K, and others have critical temperatures of 80K and 1
It is known that there are 0K ones. Furthermore, 11
It is also known that when attempting to manufacture a 0K phase superconductor, a non-superconducting phase appears in some parts.
【0005】ビスマス系酸化物超電導体において、上述
した110K相は、Biまたは(Bi,Pb):Sr:
Ca:Cuの組成比が2:2:2:3といわれている2
223相を有しており、80K相は、この組成比がほぼ
2:2:1:2である2212相を有していることが知
られている。In the bismuth-based oxide superconductor, the above-mentioned 110K phase is Bi or (Bi, Pb):Sr:
The composition ratio of Ca:Cu is said to be 2:2:2:32
It is known that the 80K phase has a 2212 phase with a composition ratio of approximately 2:2:1:2.
【0006】[0006]
【発明が解決しようとする課題】ビスマス系酸化物超電
導体を、安価な液体窒素(77.3K)を冷却媒体とし
て、安定して使用するためには、臨界温度の高い110
K相である2223相をできるだけ多く生成させること
が望ましい。[Problems to be Solved by the Invention] In order to stably use bismuth-based oxide superconductors using inexpensive liquid nitrogen (77.3K) as a cooling medium, it is necessary to
It is desirable to generate as much 2223 phase as K phase as possible.
【0007】また、超電導体を線材として使用する場合
には、高い臨界電流密度だけではなく、高い臨界電流を
得る必要がある。Furthermore, when a superconductor is used as a wire, it is necessary to obtain not only a high critical current density but also a high critical current.
【0008】この発明の目的は、110K相である22
23相にできるだけ近い組成を用い、110K相を得る
ときにできる非超電導相を少なくし、高い臨界電流密度
と臨界電流を得ることのできる、ビスマス系酸化物超電
導線材の製造方法を提供することにある。[0008] The object of the present invention is to
To provide a method for producing a bismuth-based oxide superconducting wire, which uses a composition as close as possible to the 23 phase, reduces the number of non-superconducting phases produced when obtaining the 110K phase, and can obtain high critical current density and critical current. be.
【0009】[0009]
【課題を解決するための手段】この発明の製造方法は、
ビスマス系酸化物超電導体またはその原料の粉末を金属
シースに充填するステップと、粉末を充填した金属シー
スを塑性加工して線材化するステップと、この線材を1
次熱処理するステップと、熱処理後の線材を塑性加工ま
たは押圧加工するステップと、加工後の線材を2次熱処
理するステップとを備えており、金属シースに充填する
粉末として、組成比がBi+Pb:Sr:Ca:Cu=
2.2:2:2:3を中心とし、それぞれ±5%の範囲
内で、かつ0.3≦Pb≦0.4となる組成の粉末を用
いることを特徴としている。[Means for Solving the Problems] The manufacturing method of the present invention includes:
A step of filling a metal sheath with powder of a bismuth-based oxide superconductor or its raw material, a step of plastic working the metal sheath filled with the powder to form a wire rod, and a step of converting this wire rod into a wire rod.
The process includes a step of performing a secondary heat treatment, a step of plastic working or pressing the wire rod after the heat treatment, and a step of performing a secondary heat treatment of the wire rod after the work. :Ca:Cu=
It is characterized by using powder with a composition centered around 2.2:2:2:3, each within a range of ±5%, and 0.3≦Pb≦0.4.
【0010】この発明において、1次熱処理の時間は、
100〜250時間であることが好ましい。また金属シ
ースに充填される粉末は、最大粒径が2.0μm以下で
あり、平均粒径が1.0μm以下であることが好ましい
。[0010] In this invention, the time of the primary heat treatment is
It is preferable that it is 100-250 hours. Further, it is preferable that the powder filled in the metal sheath has a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less.
【0011】また、この発明において金属シースに充填
される粉末としてのビスマス系超電導体またはその原料
は、一般的には、多結晶体または超電導相と非超電導相
との集合物からなる。Furthermore, in the present invention, the bismuth-based superconductor as a powder filled into the metal sheath or its raw material generally consists of a polycrystal or an aggregate of a superconducting phase and a non-superconducting phase.
【0012】この発明において用いられる金属シースの
材質としては、ビスマス系酸化物超電導体と反応せず、
かつ低抵抗の金属または合金が用いられることが好まし
い。このようなものとして、銀もしくは銀合金が挙げら
れる。[0012] The material of the metal sheath used in this invention is a material that does not react with the bismuth-based oxide superconductor;
It is also preferable to use a metal or alloy with low resistance. Examples of such materials include silver or silver alloys.
【0013】[0013]
【発明の作用効果】本発明者らは、上記組成比の粉末を
用いることにより、110K相生成のための熱処理後に
おいて、非超電導相、主にCa−Cu−O系の生成を少
なくすることのできることを見出だした。この発明は、
この事実に基づくものである。Effects of the Invention: By using powder having the above composition ratio, the present inventors have succeeded in reducing the formation of non-superconducting phases, mainly Ca-Cu-O, after heat treatment to generate 110K phase. I discovered what I can do. This invention is
It is based on this fact.
【0014】高い臨界電流密度を得るためには、高温相
を粒成長させることが必要であり、金属シースには、主
にBi系の低温相と非超電導相の集合体を充填する。こ
のような集合体を用いることによって、熱処理後に高温
相を生成させることができる。[0014] In order to obtain a high critical current density, it is necessary to cause grain growth of the high temperature phase, and the metal sheath is filled with an aggregate of mainly Bi-based low temperature phases and non-superconducting phases. By using such an aggregate, a high temperature phase can be generated after heat treatment.
【0015】一般的にBi系高温相は、CaやCuを多
めに配合するとできやすいことが知られている。そこで
、従来はCaを少し多めに配合して、高温相の生成をさ
せていた。しかしながら、高温相の成分比を分析により
求めた結果、Bi+Pb:Sr:Ca:Cu=2.18
:1.97:1.95:3:3.00であることが分か
り、この発明の組成比である、Bi+Pb:Sr:Ca
:Cu=2.2:2:2:3が高温相の生成には妥当で
あることが分かった。[0015] Generally, it is known that a Bi-based high-temperature phase is easily formed when a large amount of Ca or Cu is blended. Therefore, in the past, a slightly larger amount of Ca was added to generate a high-temperature phase. However, as a result of analysis of the component ratio of the high temperature phase, Bi+Pb:Sr:Ca:Cu=2.18
:1.97:1.95:3:3.00, which is the composition ratio of this invention, Bi+Pb:Sr:Ca
:Cu=2.2:2:2:3 was found to be appropriate for the generation of high temperature phase.
【0016】金属シースに充填する粉末は、最大粒径が
2.0μm以下であり、平均粒径が1.0μm以下であ
る微粉末が好ましいことが分かった。このような微粉末
を用いることにより、反応を非常に活性化することがで
き、高温相を生成しやすくなるものと思われる。It has been found that the powder to be filled into the metal sheath is preferably a fine powder having a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less. It is thought that by using such a fine powder, the reaction can be greatly activated, making it easier to generate a high-temperature phase.
【0017】この発明に従えば、110K相の生成のた
めの熱処理後において、非超電導相の生成を体積比で1
0%以下、大きさで2μm以下の厚み(マトリックスの
a−b面方向)にすることができる。この結果、超電導
相の割合が増えるとともに、熱処理の間の加工による欠
陥発生を防止することができ、結晶成長を促進させるこ
とができる。したがって、この発明に従えば、高い臨界
電流密度および臨界電流を有する超電導線材を製造する
ことができる。According to the present invention, after the heat treatment for producing the 110K phase, the production of the non-superconducting phase is reduced to 1 in volume ratio.
0% or less, and the thickness (in the a-b plane direction of the matrix) can be made to be 2 μm or less in size. As a result, the proportion of the superconducting phase increases, the generation of defects due to processing during heat treatment can be prevented, and crystal growth can be promoted. Therefore, according to the present invention, a superconducting wire having high critical current density and critical current can be manufactured.
【0018】この発明において、1次熱処理の時間は、
100時間以上が好ましい。これは、熱処理の時間が1
00時間未満であると、高温相の生成またはその粒成長
が未完成の状態にあるからである。また熱処理時間は2
50時間以下であることが好ましい。これは250時間
を越えると、異相の凝集が特性に影響を及ぼしてくるよ
うになり、逆に臨界電流密度の低下を招くからである。[0018] In this invention, the time of the primary heat treatment is as follows:
100 hours or more is preferable. This means that the heat treatment time is 1
This is because if the heating time is less than 0.00 hours, the formation of the high-temperature phase or its grain growth will be incomplete. Also, the heat treatment time is 2
Preferably it is 50 hours or less. This is because when the time exceeds 250 hours, the agglomeration of different phases begins to affect the characteristics, which conversely causes a decrease in the critical current density.
【0019】[0019]
【実施例】Bi2 O3 、PbO、SrCO3 、C
aCO3 、およびCuOの各粉末を、Bi:Pb:S
r:Ca:Cu=1.8:0.4:2.0:X:3.0
(X=1.8、2.0、または2.2)となる、3種類
の組成比を持つものと、Bi:Pb:Sr:Ca:Cu
=1.6:0.4:2.0:2.0:3.0の組成比を
持つものとを秤量し、混合した。これらの試料を順に■
〜■とした。次に、800℃で20時間熱処理を施した
後、粉砕し、次いで860℃で2時間の熱処理を行ない
、充填用粉末にした。[Example] Bi2 O3, PbO, SrCO3, C
aCO3 and CuO powder, Bi:Pb:S
r:Ca:Cu=1.8:0.4:2.0:X:3.0
(X = 1.8, 2.0, or 2.2), with three types of composition ratios, and Bi:Pb:Sr:Ca:Cu.
=1.6:0.4:2.0:2.0:3.0 were weighed and mixed. These samples in order
~■. Next, the mixture was heat-treated at 800°C for 20 hours, crushed, and then heat-treated at 860°C for 2 hours to obtain a powder for filling.
【0020】これらの得られた粉末を、それぞれ、最大
粒径が2.0μm、平均粒径が1.0μmとなるように
粉砕した。[0020] Each of the obtained powders was pulverized to a maximum particle size of 2.0 μm and an average particle size of 1.0 μm.
【0021】その後、得られた粉末を、それぞれ、外径
6.0mm、内径4.0mmの銀パイプに充填し、次い
で、直径1.0mmになるまで伸線加工した。次にこの
線材を、厚さ0.17mmになるまで圧延加工し、プレ
スを行なった。Thereafter, each of the obtained powders was filled into a silver pipe having an outer diameter of 6.0 mm and an inner diameter of 4.0 mm, and then wire-drawn to a diameter of 1.0 mm. Next, this wire rod was rolled to a thickness of 0.17 mm and pressed.
【0022】その後、1次熱処理として、それぞれ84
5℃で50時間、100時間、150時間、200時間
、250時間、および300時間の熱処理を行ない、そ
の後再びプレスを行ない、2次熱処理として、840℃
、50時間の熱処理を行なった。[0022] Thereafter, as a primary heat treatment, 84
Heat treatment was performed at 5°C for 50 hours, 100 hours, 150 hours, 200 hours, 250 hours, and 300 hours, and then pressing was performed again and a secondary heat treatment was performed at 840°C.
, heat treatment was performed for 50 hours.
【0023】このようにして得られた各線材について、
それぞれ、77.3Kの温度下で、零磁場における臨界
電流の測定を行なった。表1に、得られたJcおよびI
cの値を示す。表1において、上段の値はJcを示し、
その単位は104 A/cm3 であり、下段はIcを
示し、その単位はAである。Regarding each wire rod obtained in this way,
The critical current in each case was measured at a temperature of 77.3 K and in a zero magnetic field. Table 1 shows the obtained Jc and I
Indicates the value of c. In Table 1, the values in the upper row indicate Jc,
Its unit is 104 A/cm3, the lower row shows Ic, and its unit is A.
【0024】[0024]
【表1】[Table 1]
【0025】表1の結果から明らかなように、この発明
に従う酸化物超電導線材は、JcおよびIcにおいて優
れていることが分かる。As is clear from the results in Table 1, the oxide superconducting wire according to the present invention is excellent in Jc and Ic.
Claims (1)
u=2.2:2:2:3を中心とし、それぞれ±5%の
範囲内で、かつ0.3≦Pb≦0.4となる組成の粉末
を金属シースに充填するステップと、前記粉末を充填し
た前記金属シースを塑性加工して線材化するステップと
、この線材を1次熱処理するステップと、熱処理後の線
材を塑性加工または押圧加工するステップと、加工後の
線材を2次熱処理するステップとを備える、ビスマス系
酸化物超電導線材の製造方法。[Claim 1] Composition ratio is Bi+Pb:Sr:Ca:C
filling a metal sheath with powder having a composition centered around u=2.2:2:2:3, each within a range of ±5%, and satisfying 0.3≦Pb≦0.4, and the powder A step of plastic working the metal sheath filled with the metal to form a wire rod, a step of primary heat treatment of this wire rod, a step of plastic working or pressing of the wire rod after heat treatment, and a step of secondary heat treatment of the wire rod after processing. A method for manufacturing a bismuth-based oxide superconducting wire, comprising steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3056687A JP2855869B2 (en) | 1991-03-20 | 1991-03-20 | Method for producing bismuth-based oxide superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3056687A JP2855869B2 (en) | 1991-03-20 | 1991-03-20 | Method for producing bismuth-based oxide superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04292812A true JPH04292812A (en) | 1992-10-16 |
JP2855869B2 JP2855869B2 (en) | 1999-02-10 |
Family
ID=13034357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3056687A Expired - Lifetime JP2855869B2 (en) | 1991-03-20 | 1991-03-20 | Method for producing bismuth-based oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2855869B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007087813A (en) * | 2005-09-22 | 2007-04-05 | Sumitomo Electric Ind Ltd | Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT |
US7749557B2 (en) | 2004-06-22 | 2010-07-06 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
US7784169B2 (en) | 2004-06-24 | 2010-08-31 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02229722A (en) * | 1989-03-02 | 1990-09-12 | Agency Of Ind Science & Technol | Method for synthesizing oxide fine particle by spray drying |
JPH0353415A (en) * | 1989-07-19 | 1991-03-07 | Sumitomo Electric Ind Ltd | Superconductor wire rod |
-
1991
- 1991-03-20 JP JP3056687A patent/JP2855869B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02229722A (en) * | 1989-03-02 | 1990-09-12 | Agency Of Ind Science & Technol | Method for synthesizing oxide fine particle by spray drying |
JPH0353415A (en) * | 1989-07-19 | 1991-03-07 | Sumitomo Electric Ind Ltd | Superconductor wire rod |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7749557B2 (en) | 2004-06-22 | 2010-07-06 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
US7784169B2 (en) | 2004-06-24 | 2010-08-31 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
JP2007087813A (en) * | 2005-09-22 | 2007-04-05 | Sumitomo Electric Ind Ltd | Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT |
JP4696811B2 (en) * | 2005-09-22 | 2011-06-08 | 住友電気工業株式会社 | Manufacturing method of Bi-based superconductor |
Also Published As
Publication number | Publication date |
---|---|
JP2855869B2 (en) | 1999-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3074753B2 (en) | Method for producing bismuth-based oxide superconductor | |
JPH04237910A (en) | Manufacture of bismuth oxide superconducting wire rod | |
JPH04292819A (en) | Manufacture of oxide superconductive wire | |
JP2590275B2 (en) | Manufacturing method of oxide superconducting material | |
JPH04292812A (en) | Manufacture of bismuth-based oxide superconductive wire | |
JPH0536317A (en) | Manufacture of bismuth-based oxide superconductive wire material | |
JP3721392B2 (en) | Manufacturing method of high-temperature superconducting wire | |
JPH06176637A (en) | Manufacture of bi oxide superconductive wire | |
JP2822559B2 (en) | Method for producing thallium-based oxide superconducting wire | |
JP3121001B2 (en) | Method for producing Tl-based oxide superconductor | |
JP2563564B2 (en) | Superconducting oxide wire | |
JPH07282659A (en) | Manufacture of high temperature superconducting wire rod | |
JPH10330117A (en) | Oxide superconductor, its production and current lead using the same | |
JP3149170B2 (en) | Method for producing bismuth-based oxide superconductor | |
JPH04292814A (en) | Manufacture of bismuth-based oxide superconductive wire | |
JP3062557B2 (en) | Method for producing bismuth-based oxide superconductor | |
JP2966134B2 (en) | Method for producing Bi-based oxide superconductor | |
JP3109076B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH061616A (en) | Production of bi based oxide superconductor | |
JPH0412023A (en) | Oxide superconductor | |
JP3044732B2 (en) | Method for producing bismuth-based oxide superconductor | |
JPH0448518A (en) | Manufacture of bismuth-based superconductor | |
JPH03265523A (en) | Bismuth-containing oxide superconductor and production thereof | |
JPH04214034A (en) | Thallium-based oxide superconductor and its production | |
JPH0554735A (en) | Manufacture of ceramic superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981027 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071127 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081127 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091127 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091127 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101127 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111127 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111127 Year of fee payment: 13 |