JP2855869B2 - Method for producing bismuth-based oxide superconducting wire - Google Patents

Method for producing bismuth-based oxide superconducting wire

Info

Publication number
JP2855869B2
JP2855869B2 JP3056687A JP5668791A JP2855869B2 JP 2855869 B2 JP2855869 B2 JP 2855869B2 JP 3056687 A JP3056687 A JP 3056687A JP 5668791 A JP5668791 A JP 5668791A JP 2855869 B2 JP2855869 B2 JP 2855869B2
Authority
JP
Japan
Prior art keywords
phase
heat treatment
wire
powder
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3056687A
Other languages
Japanese (ja)
Other versions
JPH04292812A (en
Inventor
武志 加藤
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13034357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2855869(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3056687A priority Critical patent/JP2855869B2/en
Publication of JPH04292812A publication Critical patent/JPH04292812A/en
Application granted granted Critical
Publication of JP2855869B2 publication Critical patent/JP2855869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ビスマス系酸化物超
電導線材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth-based oxide superconducting wire.

【0002】[0002]

【従来の技術】ビスマス系酸化物超電導材料は、110
K程度の高い臨界温度を有することが知られている。こ
のようなビスマス系酸化物超電導材料を金属被覆して、
塑性加工してテープ状に加工し、次いで熱処理すること
によって、高い臨界電流密度を有する線材が得られるこ
とが知られている。
2. Description of the Related Art Bismuth-based oxide superconducting materials are 110
It is known to have a critical temperature as high as K. Metal coating such a bismuth-based oxide superconducting material,
It is known that a wire having a high critical current density can be obtained by plastic processing, processing into a tape shape, and then heat treatment.

【0003】特に、塑性加工と熱処理とを複数回繰返す
ことにより、臨界電流密度がさらに高められることが知
られている。
In particular, it is known that the critical current density can be further increased by repeating plastic working and heat treatment a plurality of times.

【0004】また、ビスマス系酸化物超電導体には、臨
界温度が110Kのものと、臨界温度が80Kおよび1
0Kのものとがあることが知られている。さらに、11
0K相の超電導体を製造しようとするとき、非超電導相
が一部において現れることも知られている。
The bismuth-based oxide superconductor has a critical temperature of 110K and a critical temperature of 80K and 1K.
It is known that there is one of 0K. In addition, 11
It is also known that non-superconducting phases may appear in some parts when attempting to produce 0K superconductors.

【0005】ビスマス系酸化物超電導体において、上述
した110K相は、Biまたは(Bi,Pb):Sr:
Ca:Cuの組成比が2:2:2:3といわれている2
223相を有しており、80K相は、この組成比がほぼ
2:2:1:2である2212相を有していることが知
られている。
[0005] In the bismuth-based oxide superconductor, the above 110K phase is Bi or (Bi, Pb): Sr:
It is said that the composition ratio of Ca: Cu is 2: 2: 2: 3.
It is known that the 80K phase has a 2212 phase in which this composition ratio is approximately 2: 2: 1: 2.

【0006】[0006]

【発明が解決しようとする課題】ビスマス系酸化物超電
導体を、安価な液体窒素(77.3K)を冷却媒体とし
て、安定して使用するためには、臨界温度の高い110
K相である2223相をできるだけ多く生成させること
が望ましい。
In order to use a bismuth-based oxide superconductor stably using inexpensive liquid nitrogen (77.3K) as a cooling medium, a high critical temperature of 110% is required.
It is desirable to generate as much as possible the 2223 phase, which is the K phase.

【0007】また、超電導体を線材として使用する場合
には、高い臨界電流密度だけではなく、高い臨界電流を
得る必要がある。
When a superconductor is used as a wire, it is necessary to obtain not only a high critical current density but also a high critical current.

【0008】この発明の目的は、110K相である22
23相にできるだけ近い組成を用い、110K相を得る
ときにできる非超電導相を少なくし、高い臨界電流密度
と臨界電流を得ることのできる、ビスマス系酸化物超電
導線材の製造方法を提供することにある。
[0008] The object of the present invention is to provide a 110K phase 22
To provide a method for producing a bismuth-based oxide superconducting wire that uses a composition as close as possible to 23 phases, reduces the non-superconducting phase that can be obtained when obtaining a 110K phase, and can obtain a high critical current density and a critical current. is there.

【0009】[0009]

【課題を解決するための手段】この発明の製造方法は、
ビスマス系酸化物超電導体またはその原料の粉末を金属
シースに充填するステップと、粉末を充填した金属シー
スを塑性加工して線材化するステップと、この線材を1
次熱処理するステップと、熱処理後の線材を塑性加工ま
たは押圧加工するステップと、加工後の線材を2次熱処
理するステップとを備えており、金属シースに充填する
粉末として、組成比がBi+Pb:Sr:Ca:Cu=
2.2:2:2:3を中心とし、それぞれ±5%の範囲
内で、かつ0.3≦Pb≦0.4となる組成の粉末であ
って、Bi系の低温相と非超電導相の集合体からなる粉
末を用いることを特徴としている。
The manufacturing method of the present invention comprises:
A step of filling a metal sheath with a powder of a bismuth-based oxide superconductor or a raw material thereof; a step of plastically processing the metal sheath filled with the powder to form a wire;
A step of subjecting the wire after the heat treatment to plastic working or pressing, and a step of performing a second heat treatment on the wire after the work. The powder to be filled in the metal sheath has a composition ratio of Bi + Pb: Sr. : Ca: Cu =
2.2: 2: 2: 3, a powder having a composition satisfying 0.3 ≦ Pb ≦ 0.4 within a range of ± 5% and a Bi-based low-temperature phase and a non-superconducting phase. Characterized by using a powder composed of an aggregate of

【0010】この発明において、1次熱処理の時間は、
100〜250時間であることが好ましい。また金属シ
ースに充填される粉末は、最大粒径が2.0μm以下で
あり、平均粒径が1.0μm以下であることが好まし
い。
In the present invention, the time of the first heat treatment is
It is preferably 100 to 250 hours. The powder filled in the metal sheath preferably has a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less.

【0011】また、この発明において金属シースに充填
される粉末としてのビスマス系超電導体またはその原料
は、一般的には、多結晶体または超電導相と非超電導相
との集合物からなる。
In the present invention, the bismuth-based superconductor as a powder to be filled in the metal sheath or a raw material thereof generally comprises a polycrystal or an aggregate of a superconducting phase and a non-superconducting phase.

【0012】この発明において用いられる金属シースの
材質としては、ビスマス系酸化物超電導体と反応せず、
かつ低抵抗の金属または合金が用いられることが好まし
い。このようなものとして、銀もしくは銀合金が挙げら
れる。
The material of the metal sheath used in the present invention does not react with the bismuth-based oxide superconductor,
Preferably, a low-resistance metal or alloy is used. Such materials include silver or silver alloys.

【0013】[0013]

【発明の作用効果】本発明者らは、上記組成比の粉末を
用いることにより、110K相生成のための熱処理後に
おいて、非超電導相、主にCa−Cu−O系の生成を少
なくすることのできることを見出だした。この発明は、
この事実に基づくものである。
The present inventors have found that by using a powder having the above composition ratio, it is possible to reduce the formation of a non-superconducting phase, mainly a Ca—Cu—O system, after a heat treatment for forming a 110K phase. I found what I could do. The present invention
It is based on this fact.

【0014】高い臨界電流密度を得るためには、高温相
を粒成長させることが必要であり、金属シースには、主
にBi系の低温相と非超電導相の集合体を充填する。こ
のような集合体を用いることによって、熱処理後に高温
相を生成させることができる。
In order to obtain a high critical current density, it is necessary to grow a high-temperature phase, and the metal sheath is mainly filled with an aggregate of a Bi-based low-temperature phase and a non-superconducting phase. By using such an aggregate, a high-temperature phase can be generated after the heat treatment.

【0015】一般的にBi系高温相は、CaやCuを多
めに配合するとできやすいことが知られている。そこ
で、従来はCaを少し多めに配合して、高温相の生成を
させていた。しかしながら、高温相の成分比を分析によ
り求めた結果、Bi+Pb:Sr:Ca:Cu=2.1
8:1.97:1.95:3:3.00であることが分
かり、この発明の組成比である、Bi+Pb:Sr:C
a:Cu=2.2:2:2:3が高温相の生成には妥当
であることが分かった。
In general, it is known that the Bi-based high-temperature phase is easily formed when Ca and Cu are added in a large amount. In view of this, conventionally, Ca was slightly added to form a high-temperature phase. However, as a result of analyzing the component ratio of the high-temperature phase, Bi + Pb: Sr: Ca: Cu = 2.1.
8: 1.97: 1.95: 3: 3.00, which is the composition ratio of the present invention, Bi + Pb: Sr: C
a: Cu = 2.2: 2: 2: 3 was found to be appropriate for the formation of the high temperature phase.

【0016】金属シースに充填する粉末は、最大粒径が
2.0μm以下であり、平均粒径が1.0μm以下であ
る微粉末が好ましいことが分かった。このような微粉末
を用いることにより、反応を非常に活性化することがで
き、高温相を生成しやすくなるものと思われる。
It has been found that the powder to be filled in the metal sheath is preferably a fine powder having a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less. By using such a fine powder, it is considered that the reaction can be extremely activated and a high-temperature phase is easily generated.

【0017】この発明に従えば、110K相の生成のた
めの熱処理後において、非超電導相の生成を体積比で1
0%以下、大きさで2μm以下の厚み(マトリックスの
a−b面方向)にすることができる。この結果、超電導
相の割合が増えるとともに、熱処理の間の加工による欠
陥発生を防止することができ、結晶成長を促進させるこ
とができる。したがって、この発明に従えば、高い臨界
電流密度および臨界電流を有する超電導線材を製造する
ことができる。
According to the present invention, after the heat treatment for forming the 110K phase, the formation of the non-superconducting phase is reduced by 1 in volume ratio.
The thickness can be 0% or less, and the thickness can be 2 μm or less (in the a-b plane direction of the matrix). As a result, the ratio of the superconducting phase increases, and the occurrence of defects due to processing during the heat treatment can be prevented, and crystal growth can be promoted. Therefore, according to the present invention, a superconducting wire having a high critical current density and a high critical current can be manufactured.

【0018】この発明において、1次熱処理の時間は、
100時間以上が好ましい。これは、熱処理の時間が1
00時間未満であると、高温相の生成またはその粒成長
が未完成の状態にあるからである。また熱処理時間は2
50時間以下であることが好ましい。これは250時間
を越えると、異相の凝集が特性に影響を及ぼしてくるよ
うになり、逆に臨界電流密度の低下を招くからである。
In the present invention, the time of the first heat treatment is
100 hours or more are preferable. This is because the heat treatment time is 1
If the time is less than 00 hours, the generation of the high-temperature phase or the grain growth thereof is in an incomplete state. The heat treatment time is 2
Preferably, the time is 50 hours or less. This is because if the time exceeds 250 hours, the aggregation of the different phases will affect the properties, and on the contrary, the critical current density will decrease.

【0019】[0019]

【実施例】Bi2 3 、PbO、SrCO3 、CaCO
3 、およびCuOの各粉末を、Bi:Pb:Sr:C
a:Cu=1.8:0.4:2.0:X:3.0(X=
1.8、2.0、または2.2)となる、3種類の組成
比を持つものと、Bi:Pb:Sr:Ca:Cu=1.
6:0.4:2.0:2.0:3.0の組成比を持つも
のとを秤量し、混合した。これらの試料を順に〜と
した。次に、800℃で20時間熱処理を施した後、粉
砕し、次いで860℃で2時間の熱処理を行ない、充填
用粉末にした。
EXAMPLES Bi 2 O 3 , PbO, SrCO 3 , CaCO
3 and CuO powder were converted to Bi: Pb: Sr: C
a: Cu = 1.8: 0.4: 2.0: X: 3.0 (X =
1.8, 2.0, or 2.2), and one having three composition ratios, and Bi: Pb: Sr: Ca: Cu = 1.
Those having a composition ratio of 6: 0.4: 2.0: 2.0: 3.0 were weighed and mixed. These samples were designated as in order. Next, after heat treatment was performed at 800 ° C. for 20 hours, pulverization was performed, and then heat treatment was performed at 860 ° C. for 2 hours to obtain a filling powder.

【0020】これらの得られた粉末を、それぞれ、最大
粒径が2.0μm、平均粒径が1.0μmとなるように
粉砕した。
Each of these powders was pulverized so that the maximum particle size was 2.0 μm and the average particle size was 1.0 μm.

【0021】その後、得られた粉末を、それぞれ、外径
6.0mm、内径4.0mmの銀パイプに充填し、次い
で、直径1.0mmになるまで伸線加工した。次にこの
線材を、厚さ0.17mmになるまで圧延加工し、プレ
スを行なった。
Thereafter, the obtained powders were filled into silver pipes having an outer diameter of 6.0 mm and an inner diameter of 4.0 mm, respectively, and were then drawn to a diameter of 1.0 mm. Next, this wire was rolled to a thickness of 0.17 mm and pressed.

【0022】その後、1次熱処理として、それぞれ84
5℃で50時間、100時間、150時間、200時
間、250時間、および300時間の熱処理を行ない、
その後再びプレスを行ない、2次熱処理として、840
℃、50時間の熱処理を行なった。
Thereafter, as a first heat treatment,
Heat treatment at 5 ° C. for 50 hours, 100 hours, 150 hours, 200 hours, 250 hours, and 300 hours;
After that, pressing is performed again to perform 840 as a second heat treatment.
Heat treatment was performed at 50 ° C. for 50 hours.

【0023】このようにして得られた各線材について、
それぞれ、77.3Kの温度下で、零磁場における臨界
電流の測定を行なった。表1に、得られたJcおよびI
cの値を示す。表1において、上段の値はJcを示し、
その単位は104 A/cm3 であり、下段はIcを示
し、その単位はAである。
For each wire thus obtained,
The critical current in a zero magnetic field was measured at a temperature of 77.3K. Table 1 shows the obtained Jc and I
Indicates the value of c. In Table 1, the upper value indicates Jc,
Its unit is 10 4 A / cm 3 , the lower part shows Ic, and its unit is A.

【0024】[0024]

【表1】 [Table 1]

【0025】表1の結果から明らかなように、この発明
に従う酸化物超電導線材は、JcおよびIcにおいて優
れていることが分かる。
As is clear from the results shown in Table 1, the oxide superconducting wire according to the present invention is excellent in Jc and Ic.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01B 13/00 565 H01B 12/04Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01B 13/00 565 H01B 12/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成比がBi+Pb:Sr:Ca:Cu
=2.2:2:2:3を中心とし、それぞれ±5%の範
囲内で、かつ0.3≦Pb≦0.4となる組成の粉末で
あって、Bi系の低温相と非超電導相の集合体からなる
粉末を金属シースに充填するステップと、 前記粉末を充填した前記金属シースを塑性加工して線材
化するステップと、 この線材を1次熱処理するステップと、 熱処理後の線材を塑性加工または押圧加工するステップ
と、 加工後の線材を2次熱処理するステップとを備える、ビ
スマス系酸化物超電導線材の製造方法。
1. A composition ratio of Bi + Pb: Sr: Ca: Cu
= 2.2: 2: 2: 3, a powder having a composition satisfying 0.3 ≦ Pb ≦ 0.4 with a range of ± 5% and a Bi-based low-temperature phase and non-superconductivity Filling a metal sheath with a powder made of a phase aggregate; plastically processing the metal sheath filled with the powder to form a wire; performing a first heat treatment on the wire; A method for producing a bismuth-based oxide superconducting wire, comprising: a step of performing plastic working or pressing; and a step of performing a second heat treatment on the processed wire.
JP3056687A 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire Expired - Lifetime JP2855869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056687A JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056687A JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH04292812A JPH04292812A (en) 1992-10-16
JP2855869B2 true JP2855869B2 (en) 1999-02-10

Family

ID=13034357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056687A Expired - Lifetime JP2855869B2 (en) 1991-03-20 1991-03-20 Method for producing bismuth-based oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2855869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2326459C2 (en) 2004-06-22 2008-06-10 Сумитомо Электрик Индастриз, Лтд. Method of manufacturing superconducting wire
JP2006012537A (en) 2004-06-24 2006-01-12 Sumitomo Electric Ind Ltd Method of producing superconducting wire
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08699B2 (en) * 1989-03-02 1996-01-10 工業技術院長 Synthesis of oxide fine particles by spray drying
JPH0353415A (en) * 1989-07-19 1991-03-07 Sumitomo Electric Ind Ltd Superconductor wire rod

Also Published As

Publication number Publication date
JPH04292812A (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JP3074753B2 (en) Method for producing bismuth-based oxide superconductor
JPH09505265A (en) Improved processing of oxide superconductors
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP3149441B2 (en) Method for producing bismuth-based oxide superconducting wire
JP3008453B2 (en) Method for manufacturing bismuth-based superconductor
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH06196031A (en) Manufacture of oxide superconductive wire
JP2590275B2 (en) Manufacturing method of oxide superconducting material
JP2855869B2 (en) Method for producing bismuth-based oxide superconducting wire
JPH0536317A (en) Manufacture of bismuth-based oxide superconductive wire material
JP2995796B2 (en) Manufacturing method of oxide superconductor
JPWO2005001852A1 (en) Bismuth oxide superconducting wire and method for producing the same
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP4211454B2 (en) Method for producing bismuth oxide superconducting wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP3102010B2 (en) Thallium oxide superconducting wire
JP2563564B2 (en) Superconducting oxide wire
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP3089641B2 (en) Bismuth-based oxide superconductor and method for producing the same
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH07282659A (en) Manufacture of high temperature superconducting wire rod

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13