JPH02196061A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH02196061A
JPH02196061A JP1016609A JP1660989A JPH02196061A JP H02196061 A JPH02196061 A JP H02196061A JP 1016609 A JP1016609 A JP 1016609A JP 1660989 A JP1660989 A JP 1660989A JP H02196061 A JPH02196061 A JP H02196061A
Authority
JP
Japan
Prior art keywords
powder
vessel
lead
container
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1016609A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1016609A priority Critical patent/JPH02196061A/en
Publication of JPH02196061A publication Critical patent/JPH02196061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To stabilize the high quality of the superconductor at a low cost by calcining the mixed powder of a Bi oxide, etc., in a specified vessel at a temp. lower than the sintering temp. in an oxidizing atmosphere, press-forming the obtained crushed and granulated powder, and sintering the formed product in a sintering vessel. CONSTITUTION:The Bi-Pb paste obtained by kneading the mixed powder of Bi2O3 and PbO with water is applied on the inner walls to obtain the calcination vessel 1A and sintering vessel 1B provided with coated layers 2. The powder of Bi2O3 having <=10mum particle diameter, the powder of PbO, the powder of SrCO3, the powder of CaCO3, and the powder of CuO are then mixed to obtain mixed powder 3. The powder 3 is charged into a vessel 4, and placed the vessel 4 in the vessel 1A through a spacer 5. A lid 6 is set, and then the powder is calcined at about 830 deg.C in an oxidizing atmosphere in a calcination furnace. The calcined material is crushed, granulated, and press-formed to obtain a formed product 7. The product 7 is arranged in the vessel 1B contg. the bottom powder 8 having the same composition as the product 7 through a spacer 5, and the lid 6 is fixed. The vessel 1B is then sintered at 830-880 deg.C in an oxidizing atmosphere in the sintering furnace to produce the superconductor.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以上で超電導特性を
示すB 1−Pb−3r−Ca −Cu−0系の超電導
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and in particular B1-Pb-3r which exhibits superconducting properties above the temperature of liquid nitrogen. The present invention relates to a method for producing a -Ca-Cu-0-based superconductor.

B9発明の概要 本発明は、各々酸素と化合した、ビスマス(B+)+鉛
(pb)、ストロンチウム(Sr)、カルシウム(Ca
)、銅(Cu)の粉末の混合粉末の仮焼成時と、この仮
焼成物を粉砕した加工粉末を成形した成形体の本焼成時
とにおいて、内壁にビスマスと鉛を含む塗布層を設けた
焼成容器を使用することにより、ビスマスの飛散減少を
防止した、B i −Pb−3r−Ca−Cu −0系
の超電導体の製造方法であり、焼結体が液体窒素温度以
上(絶対温度77℃)以上で超電導を示す超電導体の製
造方法にある。
B9 Summary of the Invention The present invention provides bismuth (B+) + lead (pb), strontium (Sr), and calcium (Ca), each combined with oxygen.
), a coating layer containing bismuth and lead was provided on the inner wall during pre-firing of a mixed powder of copper (Cu) powder and during main firing of a molded body formed from processed powder obtained by pulverizing this pre-calcined product. This is a method for producing a B i -Pb-3r-Ca-Cu -0-based superconductor that prevents bismuth from scattering by using a sintering container, and the sintered body is heated to a liquid nitrogen temperature or higher (absolute temperature 77°C). The present invention provides a method for producing a superconductor that exhibits superconductivity at temperatures above

C0従来の技術 最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、イ・1トリウム系銅酸化物が発見
され、更には安価な材料でしかもTCがIIOK程度を
示すB i −3r−Ca−CuO系の超電導体が発見
されている。
C0 Conventional technology Recently, I-1-thorium copper oxide has been discovered as a material that exhibits superconductivity at temperatures higher than the liquid nitrogen temperature of 77, and is also an inexpensive material with a TC of approximately IIOK. i-3r-Ca-CuO-based superconductors have been discovered.

しかし、この程Bi(ビスマス)系は、Tcが70にの
相と、110にの相が混在する欠点があった。しかして
、これにpb(鉛)を少量添加することにより高温相(
IIOK)の単相化が実現できるB 1−Pb−3r−
Ca−Cu−0系の超電導体が発見されるに至っている
However, the Bi (bismuth) system has recently had a drawback in that a phase with a Tc of 70 and a phase with a Tc of 110 coexist. However, by adding a small amount of PB (lead) to this, the high temperature phase (
B 1-Pb-3r- which can realize single phase of IIOK)
Ca-Cu-0 based superconductors have been discovered.

D1発明が解決しようとする課題 前述のような材料は、液体窒素の温度以上の温度で超電
導現象を生じることから、この超電導を利用した具体的
な適用範囲が拡大してきた。
D1 Problems to be Solved by the Invention Since the above-mentioned materials exhibit superconductivity at temperatures higher than the temperature of liquid nitrogen, the specific scope of application utilizing this superconductivity has expanded.

しかし、上述のようなり i −Pb−3r−CaCu
−0系の超電導体は、出発物質にビスマス(Bi)及び
鉛(P b)を含むために、混合成形体等を焼成炉で直
接に焼成すると、熱負荷によってBi及びpbが飛散し
、出発混合時の組成と最終生成物の組成との間で「ずれ
」が生じる問題がある。
However, as mentioned above, i -Pb-3r-CaCu
-0 series superconductors contain bismuth (Bi) and lead (Pb) as starting materials, so if a mixed compact is fired directly in a firing furnace, Bi and Pb will scatter due to the heat load, causing There is a problem in that a "mismatch" occurs between the composition at the time of mixing and the composition of the final product.

発明者らの実験によれば、温度830〜880℃で数時
間焼成した場合に、ビスマス及び鉛の含有量は混合時の
量に対して、7〜8%減少していることが判った。
According to experiments conducted by the inventors, it was found that when firing at a temperature of 830 to 880° C. for several hours, the content of bismuth and lead was reduced by 7 to 8% compared to the amount at the time of mixing.

これを解決するには、ビスマス及び鉛の飛散減少を見込
んだ量のビスマス及び鉛を用いればよいが、そうすると
ビスマス及び鉛が過剰となって所定の超電導現象を生じ
ない場合が発生することが判った。
To solve this problem, it is possible to use bismuth and lead in an amount that takes into account the reduction in scattering of bismuth and lead, but it has been found that if this is done, there will be cases where bismuth and lead become excessive and the desired superconducting phenomenon does not occur. Ta.

また、所定の粉末を混合して直ちに焼成すると焼結体に
割れが生じたりして品質が不安定な場合があった。
Furthermore, if a predetermined powder is mixed and fired immediately, cracks may occur in the sintered body, resulting in unstable quality.

従って、焼成時の熱負荷によって飛散しやすいビスマス
及び鉛を含イイ1.た超電導体の場合にあっては、超電
導性能の低下、不安定を招来しやすく、量産化した場合
には品質にバラツキを生じるおそれがある。
Therefore, it contains bismuth and lead, which are easily scattered by the heat load during firing.1. In the case of superconductors, superconducting performance tends to deteriorate and become unstable, and when mass-produced, there is a risk of variations in quality.

これらの点に鑑み、本発明は、品質の安定したB 1−
Pb−3r−Ca−Cu−0系の超電導体の製造方法を
提供しようとするものである。
In view of these points, the present invention provides B1- with stable quality.
The present invention aims to provide a method for manufacturing a Pb-3r-Ca-Cu-0 based superconductor.

80課題を解決するための手段 本発明は、各々酸素と化合したビスマス、鉛。Means to solve 80 issues The present invention uses bismuth and lead, each of which is combined with oxygen.

ストロンチウム、カルシウム、銅の粉末を混合してまず
仮焼成し、この仮焼成物を粉砕し、この加工粉末を成形
して成形体を作り、これを本焼成して焼結体を作る。
Strontium, calcium, and copper powders are mixed and first calcined, the calcined product is pulverized, the processed powder is molded to make a molded body, and this is fired to make a sintered body.

更にこれら仮焼成時及び本焼成時において、内壁にビス
マスと鉛を含む塗布層を設けた容器を使用して超電導体
を製造する方法である。
Furthermore, during these preliminary firings and main firings, this is a method for manufacturing a superconductor using a container whose inner wall is provided with a coating layer containing bismuth and lead.

なお、 ■焼成容器は、略閉鎖容器でよく、例えば自然に置いた
蓋を有する容器で差し支えない。
Note that (1) the firing container may be a substantially closed container, for example, a container with a lid placed naturally.

また、塗布物質と著しく反応しない材料(例えばアルミ
ナセラミックス)で形成する。
Further, it is formed of a material (for example, alumina ceramics) that does not significantly react with the coating substance.

また、容器は緻密質より多孔質の材料にて形成するのが
表面積が大きく取れ、塗布物質を充分施せる点から好ま
しい。
Further, it is preferable that the container be made of a porous material rather than a dense material, since this provides a large surface area and allows sufficient application of the coating material.

■ビスマスと鉛を含む塗布層を設ける手段としては、 (イ)ペーストにして塗布する、 (ロ)スラリーにして塗布する、 (ハ)液体にしてスプレー塗布する、 (ニ)スラリーをスプレー塗布する、 のいずれでもよい。■As a means of providing a coating layer containing bismuth and lead, (b) Apply as a paste, (b) Apply as a slurry, (c) Make it into a liquid and apply it by spraying. (d) Spraying the slurry; Either of these is fine.

■施すビスマス及び鉛の形態は、Bi及びPb単体の混
合物、Bi及びPbを含む溶液、Bi化合物及びPb化
合物、のいずれであってもよい。またBi化合物、Pb
化合物としては、 (イ)B 1los、pbo、pb、o、。
(2) The form of applied bismuth and lead may be any of a mixture of Bi and Pb alone, a solution containing Bi and Pb, a Bi compound and a Pb compound. Also, Bi compounds, Pb
The compounds include (a) B 1los, pbo, pb, o.

pb、o、の他、 (ロ)焼成温度で分解、酸化9反応してビスマス酸化物
、鉛酸化物となるもの、 また、Bi、Pb分子種を放出する もの、 が該当する。
In addition to pb and o, (b) those that undergo decomposition and oxidation9 reaction at the firing temperature to become bismuth oxide and lead oxide, and those that release Bi and Pb molecular species, fall under this category.

■本焼成の温度は、830〜880℃であり、また仮焼
成の温度は本焼成の温度以下で、例えば830℃以下で
ある。
(2) The temperature of the main firing is 830 to 880°C, and the temperature of the preliminary firing is lower than the main firing temperature, for example, 830°C or lower.

■出発物質は、各々酸素と化合したBi、Pb。(2) The starting materials are Bi and Pb, each combined with oxygen.

Sr、Ca、Cuの粉末、 例えば、酸化物、炭酸化物、水酸化物、の様な化合物粉
末を用いる。
Powders of Sr, Ca, and Cu, such as compound powders such as oxides, carbonates, and hydroxides, are used.

例えば、 ビスマス酸化物(Bit03)、 鉛酸化物(pbo)、 銅酸化物(Cu O)、 ストロンチウム炭酸化物(SrCO,)、ストロンチウ
ム酸化物(SrO)、 ストロンチウム水酸化物(S r (OH) =)、カ
ルシウム炭酸化物(Ca COs)、カルシウム酸化物
(Cab)、 カルシウム水酸化物(Ca (OH)=)、が該当する
For example, bismuth oxide (Bit03), lead oxide (pbo), copper oxide (CuO), strontium carbonate (SrCO,), strontium oxide (SrO), strontium hydroxide (S r (OH) = ), calcium carbonate (CaCOs), calcium oxide (Cab), and calcium hydroxide (Ca(OH)=).

■焼結体のBi、Pb、Sr、Ca、Cuの成分原子比
の関係を出発時(混合時)換算で、同じアルカリ土類で
あるSr、Caの関係が、Sr:Ca=l :0.3〜
3゜ 他のBi、Pb、Cuの関係が、 (B i+Pb): Cu=1 + 1.8〜4゜Bi
 :Pb=1 :0.1〜0.4、そしてこれら両者の
関係が、 (S r十〇a):  (B i十Pb十Cu)=11
〜2゜ の範囲であれば、液体窒素で超電導現象(抵抗ゼロ又は
極微小値)が生じる焼結体を得ることができる。
■When converting the relationship of the component atomic ratios of Bi, Pb, Sr, Ca, and Cu in the sintered body at the time of starting (at the time of mixing), the relationship of Sr and Ca, which are the same alkaline earth metals, is Sr:Ca=l:0 .3~
3゜The relationship among other Bi, Pb, and Cu is (B i + Pb): Cu=1 + 1.8~4゜Bi
:Pb=1 :0.1~0.4, and the relationship between these two is (S r〇a): (B i〇Pb〇Cu)=11
If the angle is in the range of ~2°, it is possible to obtain a sintered body in which a superconducting phenomenon (resistance of zero or extremely small value) occurs in liquid nitrogen.

F1作用 ビスマス及び鉛を含む混合物を、内壁にビスマス及び鉛
を含む塗布層を設けた容器内にて仮焼成、及び本焼成す
るので、焼成容器内はビスマス及び鉛に富む雰囲気とな
り、この結果混合物からのビスマス及び鉛の飛散は抑制
できる。
F1 action A mixture containing bismuth and lead is pre-fired and then finally fired in a container with a coating layer containing bismuth and lead on the inner wall, so the inside of the firing container becomes an atmosphere rich in bismuth and lead, resulting in a mixture containing bismuth and lead. The scattering of bismuth and lead from can be suppressed.

また、原料粉末を予め本焼成温度以下の温度で仮焼成し
たものを粉砕した加工粉末にて成形体を作り、これを本
焼成しているので、本焼成時の反応がゆるやかになり、
割れは防止できる。
In addition, since the raw material powder is calcined in advance at a temperature below the main firing temperature and then pulverized to form a compact, which is then subjected to the main firing, the reaction during the main firing is slow.
Cracking can be prevented.

G、実施例 以下、本発明を実施例に基づいて説明する。G. Example Hereinafter, the present invention will be explained based on examples.

先ず、焼成容器は第1図のように上部が開口したアルミ
ナセラミックスからなる仮焼成容器IA。
First, the firing container is a temporary firing container IA made of alumina ceramics with an open top as shown in FIG.

本焼成容器IBと、後述するM6とで形成する。It is formed by the main firing container IB and M6, which will be described later.

そして、Bi、O,及びPbOの混合粉末に水を加え充
分に混練してB1−Pbのペーストを作り、これを両焼
成容器IA、IBの内壁に塗布乾燥してB1−Pbの塗
布層2を設ける。
Then, water is added to the mixed powder of Bi, O, and PbO and thoroughly kneaded to make a paste of B1-Pb, which is coated on the inner walls of both firing vessels IA and IB and dried to form a coating layer 2 of B1-Pb. will be established.

次に、出発原料として粒径lOμ厘以下のビスマス酸化
物(Bt、os)の粉末、鉛酸化物(pbO)の粉末、
ストロンチウム炭酸化物(S r COs )の粉末、
カルシウム炭酸化物(Ca COs)の粉末、銅酸化物
(Cu O)の粉末を各々3.7mo1%、4.3mo
1%、21.7mo1%、21.7mo1%、43.5
mo1%となるように秤量する。
Next, as starting materials, bismuth oxide (Bt, os) powder and lead oxide (pbO) powder with a particle size of 10 μm or less,
Strontium carbonate (S r COs ) powder,
Calcium carbonate (Ca COs) powder and copper oxide (CuO) powder were 3.7 mo1% and 4.3 mo, respectively.
1%, 21.7mo1%, 21.7mo1%, 43.5
Weigh it so that mo 1%.

次に、これらの粉末をボールミルで、アルコール(又は
原料粉末と反応しない溶媒)と玉石を入れ数時間充分に
混合し、得られたスラリーを約100℃の温度で乾燥す
る。
Next, these powders are thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is dried at a temperature of about 100°C.

次に乾燥して得た混合粉末3を容器4に入れ、この容器
4をアルミナ板スペーサ5を介して前記仮焼成容器IA
内に収納し、そして蓋6で仮焼成容器IAの上部開口部
を略覆い、これを焼成炉にて、酸化性雰囲気中で且つ後
工程の本焼成の温度より低い温度(約830℃以下)で
約4時間加熱処理(いわゆる仮焼成)する。
Next, the mixed powder 3 obtained by drying is put into a container 4, and this container 4 is inserted into the temporary firing container IA through an alumina plate spacer 5.
The upper opening of the pre-firing container IA is substantially covered with the lid 6, and the container is heated in a baking furnace in an oxidizing atmosphere at a temperature lower than that of the main baking in the subsequent process (approximately 830° C. or lower). Heat treatment (so-called temporary firing) is performed for about 4 hours.

次に得られた焼成粉を充分に粉砕し微細化した加工粉末
を得る。
Next, the obtained fired powder is sufficiently pulverized to obtain a fine processed powder.

次に、この加工粉末をボールミルで、アルコール(又は
原料粉末と反応しない溶媒)と玉石を入れ数時間充分に
混合し、得られたスラリーを約100℃の温度で乾燥す
る。
Next, this processed powder is thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is dried at a temperature of about 100°C.

そして、バインダーとしてポリビニルアルコールを、原
料粉末に対して1重量%となるようにポリビニルアルコ
ール溶液の形で添加する。
Then, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution to 1% by weight based on the raw material powder.

そしてアルコールを更に加え充分に混練した後、乾燥し
、ふるいにて150メ・yシュ以下の顆粒状の造粒粉を
得る。
After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、1〜2Ton/
cm’程度の圧力で圧縮成形して、外径40肩!、厚み
6MMの成形体7を作る。
Next, after filling this granulated powder into a mold, 1 to 2 tons/
Compression molded with a pressure of about cm', outer diameter 40 shoulders! , a molded body 7 having a thickness of 6 mm is made.

次に、前記成形体7を前記本焼成容器IB内にセットす
る際には、第3図のように、まずアルミナ板から成るス
ペーサ5を容器底部に置き、その上に前記成形体7と同
じ組成の粉末を敷粉8として薄く置(。そして、この敷
粉8の上に前記成形体7を載せる。
Next, when setting the molded body 7 in the main firing container IB, as shown in FIG. Powder of the composition is placed thinly as a bed powder 8 (.Then, the molded body 7 is placed on top of this bed powder 8.

更に本焼成容器IBの開口部を塞ぐために、蓋6を載せ
、この状態の容器を焼成炉内に設置し、酸化性雰囲気で
、且つ前記仮焼成時の温度より高い温度の830〜88
0℃の温度で数時間加熱して焼結体(セラミックス)を
得る。
Furthermore, in order to close the opening of the main firing container IB, a lid 6 was placed on it, and the container in this state was placed in a firing furnace, and heated at 830 to 888° C. in an oxidizing atmosphere and at a temperature higher than the temperature during the preliminary firing.
A sintered body (ceramics) is obtained by heating at a temperature of 0° C. for several hours.

上記の製造方法により得られた焼結体を、幅4翼!、厚
さ4 m4長さ40xmの形状に切り出して第4図に示
すように電極を設けて4端子法により、焼結体の抵抗を
測定した。
The sintered body obtained by the above manufacturing method has a width of 4 wings! The sintered body was cut into a shape with a thickness of 4 m and a length of 40 x m, and electrodes were provided as shown in FIG. 4, and the resistance of the sintered body was measured by a four-terminal method.

即ち第4図は、抵抗値を測定するための説明図で、焼結
体Sの長方向の両端側に電流を流すための端子a、a’
を設け、その内側に抵抗値を測定するための電圧端子す
、b’を設け、これを液体窒素の低温槽に入れ、端子a
、a’に1アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。
That is, FIG. 4 is an explanatory diagram for measuring the resistance value, and terminals a, a' for passing current through both ends of the sintered body S in the longitudinal direction.
, and voltage terminals A and B' for measuring the resistance value are provided inside the terminal.
, a' with a stabilized current of 1 ampere flowing through the terminals, b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

その結果、絶対温度約110にで超電導現象が始まり約
105Kに至って電気抵抗がゼロになることが確認され
た。
As a result, it was confirmed that the superconducting phenomenon begins at an absolute temperature of about 110 K and the electrical resistance becomes zero when the temperature reaches about 105 K.

また、焼成後のビスマス及び鉛の量を測定した結果、混
合時の量に対して2〜3%の減少に留どまっていた。
Furthermore, as a result of measuring the amount of bismuth and lead after firing, it was found that the amount decreased by only 2 to 3% compared to the amount at the time of mixing.

H0発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において超電導状態となる。
Effects of the H0 Invention As described above, the superconductor of the present invention has a liquid nitrogen temperature (
It becomes superconducting at 77K).

しかも、従来のビスマス系のものは、Tcが70にとl
l0Kの2相構造であったが、本発明のものにあっては
、約110にの単相とすることができ、より高温度で超
電導現象を生じることから安定した超電導状態を維持で
きるものである。
Moreover, conventional bismuth-based products have a Tc of 70 l.
The structure of the present invention has a two-phase structure of about 10K, but the structure of the present invention can be made into a single phase of about 110K, and since the superconducting phenomenon occurs at higher temperatures, a stable superconducting state can be maintained. be.

その上、原料粉末を予め本焼成温度以下の温度で加熱処
理したものを粉砕した加工粉末にて成形体を作り、これ
を本焼成しているので本焼成時の反応がゆるやかになり
、品質の安定した超電導体を得ることができる。
In addition, since the raw material powder is heat-treated at a temperature below the main firing temperature and then pulverized to form a compact, which is then subjected to the main firing, the reaction during the main firing is slow, resulting in a quality improvement. A stable superconductor can be obtained.

更に、仮焼成時、及び本焼成時において、混合粉末、及
び成形体を内壁にビスマス及び鉛を含む塗布層を施した
容器に入れて焼成するので、容器内はビスマス及び鉛に
富む雰囲気となることから、混合粉末、及び成形体から
のビスマス及び鉛の飛散は抑制でき、ビスマス及び鉛の
減少は初期混合時の2〜3%の減少に留どまり、組成が
安定化し、結果として品質の安定した超電導体を得るこ
とができる。
Furthermore, during preliminary firing and main firing, the mixed powder and compact are fired in a container whose inner wall is coated with a coating layer containing bismuth and lead, resulting in an atmosphere rich in bismuth and lead inside the container. Therefore, the scattering of bismuth and lead from the mixed powder and compact can be suppressed, and the reduction in bismuth and lead is limited to 2 to 3% during initial mixing, resulting in a stable composition and, as a result, stable quality. A superconductor can be obtained.

しかも安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、層実用化に近付き
、特に電力、運輸等に関連した電気抵抗、及び精密計器
素子、その他エネルギー変換などの分野に利用可能とな
る等極めて優れた効果を発揮する。
Moreover, since superconductors can be formed using inexpensive raw materials and can be cooled at liquid nitrogen temperatures, they can be used for practical applications, especially in electrical resistance related to electric power, transportation, etc., precision instrument elements, and other energy conversion devices. It exhibits extremely excellent effects, such as being able to be used in fields such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるビスマス及び鉛を含む塗布層を
内壁に設けた仮焼成容器9本焼成容器の断面図、第2図
は仮焼成時において容器内に混合粉末をセットした説明
図、第3図は本焼成時において容器内に成形体をセット
した説明図、第4図は本発明の焼結体の抵抗値測定の方
法を説明するための説明図である。 IA、IB・・・(仮、本)焼成容器、2・・・(ビス
マス及び鉛を含む)塗布層、3・・・混合粉末、7・・
・成形体、a、 a  ・・・電流供給用端子、b、b
’・・・電圧測定端子、 S ・・焼結体。 外2名 第1図 焼麻容易の航(2)口 3− 潰合オ分 7−−−八形律 第2図 混8訪床季1トソ日rこ説明口 第3図
FIG. 1 is a cross-sectional view of a nine-piece firing container with a coating layer containing bismuth and lead on the inner wall used in the present invention, and FIG. 2 is an explanatory diagram showing mixed powder set in the containers during temporary firing. FIG. 3 is an explanatory diagram showing the molded body set in the container during main firing, and FIG. 4 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention. IA, IB... (temporary, real) firing container, 2... Coating layer (containing bismuth and lead), 3... Mixed powder, 7...
・Molded body, a, a ... Current supply terminal, b, b
'...Voltage measurement terminal, S...Sintered body. Outside 2 people Figure 1 Easy navigation of roasted hemp (2) Mouth 3 - Utsuai Obu 7 --- Eight form rules Figure 2 Mixed 8 Visit to bed Season 1 Toso Nikko Explanation mouth Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)各々酸素と化合したビスマス,鉛,ストロンチウ
ム,カルシウム、及び銅の粉末を混合した混合粉末を容
器に収納する工程と、 内壁にビスマスと鉛を含む塗布層を設けた仮焼成容器内
に、前記容器を収納し、これら容器と混合粉末とを酸化
性雰囲気中で且つ後工程の本焼成の温度より低い温度に
て仮焼成し、該仮焼成物を粉砕して加工粉末を得ると共
に造粒して造粒粉を得る工程と、 該造粒粉を加圧して成形体を得る工程と、 内壁にビスマスと鉛を含む塗布層を設けた本焼成容器内
に該成形体を収納すると共に、これら容器と成形体を8
30〜880℃の範囲の温度で本焼成して焼結体を得る
工程、 とからなることを特徴とした超電導体の製造方法。
(1) A process of storing a mixed powder of bismuth, lead, strontium, calcium, and copper powders each combined with oxygen in a container, and a pre-firing container with a coating layer containing bismuth and lead on the inner wall. , the container and the mixed powder are pre-sintered in an oxidizing atmosphere at a temperature lower than that of the main sintering in the subsequent step, and the pre-sintered product is pulverized to obtain processed powder and manufactured. A process of granulating to obtain granulated powder, A process of pressurizing the granulated powder to obtain a molded body, Storing the molded body in a main firing container whose inner wall is provided with a coating layer containing bismuth and lead. , these containers and molded bodies are 8
A method for producing a superconductor, comprising the steps of: obtaining a sintered body by main firing at a temperature in the range of 30 to 880°C.
JP1016609A 1989-01-26 1989-01-26 Production of superconductor Pending JPH02196061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016609A JPH02196061A (en) 1989-01-26 1989-01-26 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016609A JPH02196061A (en) 1989-01-26 1989-01-26 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH02196061A true JPH02196061A (en) 1990-08-02

Family

ID=11921057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016609A Pending JPH02196061A (en) 1989-01-26 1989-01-26 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH02196061A (en)

Similar Documents

Publication Publication Date Title
JPH02196061A (en) Production of superconductor
JP2556096B2 (en) Superconductor manufacturing method
JPH02196060A (en) Production of superconductor
JP2556095B2 (en) Superconductor manufacturing method
JPH02199053A (en) Production of superconductor
JPH02199068A (en) Calcination vessel for superconductor
JPH01294566A (en) Production of superconductor
JPH02199054A (en) Production of superconductor
JPH02196057A (en) Production of superconductor
JPH02196059A (en) Production of superconductor
JPH02196032A (en) Production of superconductor
JPH02196058A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JP2699407B2 (en) Superconductor manufacturing method
JPH02199055A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01294565A (en) Calcination vessel for superconductor
JPH01278467A (en) Production of superconductor
JPH01278459A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH01278464A (en) Production of superconductor
JPH01278460A (en) Production of superconductor
JPH01278420A (en) Superconductor and production thereof
JPH01278462A (en) Production of superconductor