JP2596964B2 - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JP2596964B2
JP2596964B2 JP63082601A JP8260188A JP2596964B2 JP 2596964 B2 JP2596964 B2 JP 2596964B2 JP 63082601 A JP63082601 A JP 63082601A JP 8260188 A JP8260188 A JP 8260188A JP 2596964 B2 JP2596964 B2 JP 2596964B2
Authority
JP
Japan
Prior art keywords
superconducting material
oxide superconducting
present
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63082601A
Other languages
Japanese (ja)
Other versions
JPH01257159A (en
Inventor
淳 土屋
敏彦 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP63082601A priority Critical patent/JP2596964B2/en
Publication of JPH01257159A publication Critical patent/JPH01257159A/en
Application granted granted Critical
Publication of JP2596964B2 publication Critical patent/JP2596964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種の超伝導応用装置や超伝導素子等に使用
される酸化物超伝導材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to an oxide superconducting material used for various superconducting applied devices and superconducting elements.

〔従来の技術〕[Conventional technology]

超伝導材料として、最近着目浴びている物質としてYB
a2Cu3O7- δ(0<δ<1)がある。この物質は高い臨界
温度(Tc)をもつものの、300℃以上の温度において酸
素の吸蔵、放出が著しく、組成式Y1Ba2Cu3O7- δの場合
δ>0.5では正方晶系となり、超伝導特性を示さない事
がわかっている。このため、該物質を焼結する際には90
0℃〜940℃で焼成した後、一般に50℃/h程度の降温速度
で徐冷して十分酸素を吸収させる必要がある。
YB is a substance that has recently attracted attention as a superconducting material.
a 2 Cu 3 O 7- δ (0 <δ <1). Although this substance has a high critical temperature (Tc), it absorbs and releases oxygen significantly at a temperature of 300 ° C or higher, and becomes tetragonal when the composition formula Y 1 Ba 2 Cu 3 O 7- δ is δ> 0.5, It is known that it does not show superconducting properties. Therefore, when sintering the material, 90
After firing at 0 ° C. to 940 ° C., it is generally necessary to gradually cool at a rate of about 50 ° C./h to absorb oxygen sufficiently.

一方超伝導材料は、磁石やコイルに使用する場合、使
用条件から高い電流密度をもつ事が要請されており、そ
のためには粒と粒が十分よく接触した緻密な充填状態と
する必要がある。ところが緻密化すると徐冷過程におい
て焼結体内部まで酸素を十分吸収させる事が難しい。
On the other hand, when a superconducting material is used for a magnet or a coil, it is required to have a high current density due to use conditions, and for that purpose, it is necessary to form a densely packed state in which grains are in good contact with each other. However, when densified, it is difficult to sufficiently absorb oxygen to the inside of the sintered body during the slow cooling process.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

そこで、本発明者らは焼結過程において酸素を十分吸
収させなくても超伝導特性を示す酸化物超伝導材料につ
いて鋭意検討した結果、本発明に到達した。
The inventors of the present invention have conducted intensive studies on oxide superconducting materials that exhibit superconducting properties without sufficiently absorbing oxygen during the sintering process, and as a result, have reached the present invention.

〔課題を解決するための手段〕 即ち、本発明の要旨は組成式 CaxR1-xBa2Cu3O7- δ (式中、Rはイットリウムおよびランタノイドから選ば
れた少なくとも1種の金属を表わす。xは0.4<x<0.
6、好ましくは0.45≦x≦0.55の数を表わし、δは0<
δ<1の数を表わす。)で示される酸化物超伝導材料に
存する。
[Means for Solving the Problems] That is, the gist of the present invention is a composition formula of Ca x R 1 -x Ba 2 Cu 3 O 7- δ (where R is at least one metal selected from yttrium and lanthanoids) X is 0.4 <x <0.
6, preferably a number satisfying 0.45 ≦ x ≦ 0.55, and δ is 0 <
represents a number of δ <1. ) In the oxide superconducting material.

具体的には、例えばCax(Y1-yEry)1-xBa2Cu3O7- δ、Ca
x(Y1-yYb)1-xBa2Cu3O7- δ(式中、xは0.4<x<0.6の
数、yは0≦y≦1の数、δは0<δ<1の数をそれぞ
れ表わす。)等が挙げられる。
Specifically, for example, Ca x (Y 1-y Er y ) 1-x Ba 2 Cu 3 O 7- δ , Ca
x (Y 1-y Y b ) 1-x Ba 2 Cu 3 O 7- δ (where x is a number of 0.4 <x <0.6, y is a number of 0 ≦ y ≦ 1, and δ is 0 <δ < 1 represents a number).

原料であるランタノイド化合物、カルシウム化合物、
バリウム化合物および銅化合物としてはそれぞれの元素
の炭酸塩、水酸化物、硝酸塩、硫酸塩、蓚酸塩、塩化物
及びアルコキサイド等を使用することができる。秤量さ
れた各元素の化合物は、例えば粉末混合法、湿式共沈
法、湿式蒸発乾固法、アルコキシド法等、従来から知ら
れている均一混合を目的とする方法により混合される。
得られた混合物は乾燥されたのち焼成される。
Lanthanoid compounds, calcium compounds,
As the barium compound and the copper compound, carbonates, hydroxides, nitrates, sulfates, oxalates, chlorides, alkoxides and the like of the respective elements can be used. The weighed compound of each element is mixed by a conventionally known method for uniform mixing, such as a powder mixing method, a wet coprecipitation method, a wet evaporation to dryness method, and an alkoxide method.
The resulting mixture is dried and then fired.

この際、固相反応をより十分ならしめる為には粉末を
加圧成形しペレット状にして焼成することが好ましい。
At this time, in order to make the solid-phase reaction more sufficient, it is preferable that the powder is molded under pressure, pelletized, and fired.

加圧成形における成形圧力は粉体をハンドリングでき
る程度の圧粉状態が得られる程度であればよい。
The molding pressure in the pressure molding may be any pressure as long as a powder state that can handle the powder can be obtained.

焼結は、原料圧粉体を用いてもよいが試料の均一性を
高めるため、800〜900℃、10時間程度の仮焼工程を経
て、その後、粉砕、成型、本焼成してもかまわない。焼
結温度は900℃から960℃の間、望ましくは920℃から940
℃の範囲である。焼結時間は1時間以上であれば充分で
あるが、望ましくは5時間以上を必要とする。
For sintering, a green compact may be used, but in order to improve the uniformity of the sample, a calcination step of about 800 to 900 ° C. for about 10 hours may be performed, followed by pulverization, molding, and final firing. . The sintering temperature is between 900 ° C and 960 ° C, preferably between 920 ° C and 940 ° C
It is in the range of ° C. A sintering time of 1 hour or more is sufficient, but preferably 5 hours or more.

焼成した材料は、特に徐冷する必要はなく、例えば焼
成後液体窒素中に入れて急冷してもよい。
The calcined material does not need to be gradually cooled, and may be quenched, for example, by placing it in liquid nitrogen after calcining.

即ち、本発明においては、焼成後徐冷して酸素を十分
吸収させなくても超伝導特性を示す酸化物超伝導材料が
得られる。また、焼成後の冷却時間を大幅に短縮するこ
とができる。さらに高度に緻密化し、高い電流密度を得
ることができる。
That is, in the present invention, an oxide superconducting material which exhibits superconductivity even if the oxygen is not sufficiently absorbed by slow cooling after firing is obtained. Further, the cooling time after firing can be greatly reduced. Further, it is highly densified, and a high current density can be obtained.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明するが、本発
明はその要旨を超えない限り以下の実施例に限定される
ものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist is not exceeded.

実施例1 各々純度99.9%以上の試薬を用いた。Example 1 Reagents each having a purity of 99.9% or more were used.

酸化イットリウム (Y2O3) 炭酸カルシウム (CaCO3) 炭酸バリウム (BaCO3) 酸化銅 (CuO) の各粉末をY:Ca:Ba:Cuの原子比で0.5:0.5:2:3となるよ
うに秤量後、メノウ乳鉢を用いて湿式混合法により均一
に混合した。これを乾燥後1t/cm2の圧力で直径20mmφ、
厚み1.5mmに加圧成型し、次いで空気中940℃で20時間に
わたって焼成した。焼成後試料を液体窒素中に入れ急冷
を行なった。
Yttrium oxide (Y 2 O 3 ) Calcium carbonate (CaCO 3 ) Barium carbonate (BaCO 3 ) Copper oxide (CuO) powder should be 0.5: 0.5: 2: 3 in atomic ratio of Y: Ca: Ba: Cu And then uniformly mixed by a wet mixing method using an agate mortar. This pressure after drying 1t / cm 2 diameter 20 mm.phi,
It was pressed to a thickness of 1.5 mm and then fired in air at 940 ° C. for 20 hours. After firing, the sample was placed in liquid nitrogen and quenched.

得られた酸化物超伝導材料の組成はCa0.5Y0.5Ba2Cu3O
7- δであった。Tc onser(゜K)およびTc end(゜K)の値
を第1表に示した。
The composition of the obtained oxide superconducting material is Ca 0.5 Y 0.5 Ba 2 Cu 3 O
7- δ . The values of Tconser (ΔK) and Tcend (ΔK) are shown in Table 1.

第1図に得られた酸化物超伝導材料の電気抵抗の温度
変化を示した。
FIG. 1 shows the temperature change of the electric resistance of the obtained oxide superconducting material.

比較例1 組成がYBa2Cu3O7- δとなるように各試薬を秤量したこ
と以外は実施例1と全く同様の方法で酸化物材料を製造
した。Tc onset(゜K)およびTc end(゜K)の値を第1表
に示した。
Comparative Example 1 An oxide material was produced in exactly the same manner as in Example 1, except that each reagent was weighed so that the composition became YBa 2 Cu 3 O 7- δ . Table 1 shows the values of Tc onset (゜ K) and Tc end (゜ K).

第2図に得られたYBa2Cu3O7- δの電気抵抗の温度変化
を示した。
FIG. 2 shows the temperature change of the electric resistance of the obtained YBa 2 Cu 3 O 7- δ .

第1図および第2図より明らかなように、従来Tc=90
K級といわれているYBa2Cu3O7- δは、焼成後急冷すると
高温時の酸素不足のまま凍結してしまうため超伝導を示
さない。ところが、本発明のCa0.5Y0.5Ba2Cu3O7- δでは
TcのonsetおよびTcのendは低下するものの、急冷により
酸素の供給量が少なくても超伝導を示す。
As is clear from FIGS. 1 and 2, the conventional Tc = 90
YBa 2 Cu 3 O 7- δ , which is said to be K-class, does not exhibit superconductivity because it freezes with insufficient oxygen at high temperatures when quenched after firing. However, in the present invention Ca 0.5 Y 0.5 Ba 2 Cu 3 O 7- δ
Although the onset of Tc and the end of Tc decrease, superconductivity is exhibited even with a small supply of oxygen due to rapid cooling.

実施例2〜3および比較例2〜7 第1表に示す組成となるように各試料を秤量したこと
以外は実施例1と全く同様の方法で酸化物材料を製造し
た。Tc onset(゜K)およびTc end(゜K)の値を第1表に
示した。
Examples 2 to 3 and Comparative Examples 2 to 7 An oxide material was produced in exactly the same manner as in Example 1 except that each sample was weighed so as to have the composition shown in Table 1. Table 1 shows the values of Tc onset (゜ K) and Tc end (゜ K).

〔発明の効果〕 本発明によれば、高温から急冷した材料においても超
伝導を示す材料を得ることができるため、製造工程にお
いて冷却による酸素吸収時間を短縮することができる。
また、本発明の超伝導材料は線材化して磁石用のコイル
や、薄膜化してSQUIDなどの超伝導デバイスとして用い
ることができる。
[Effects of the Invention] According to the present invention, a material exhibiting superconductivity can be obtained even from a material quenched from a high temperature, so that the oxygen absorption time by cooling in the manufacturing process can be reduced.
Further, the superconducting material of the present invention can be used as a coil for a magnet by being made into a wire or a superconducting device such as a SQUID by being made thin.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1で得られたCa0.5Y0.5Ba2Cu3O7- δ
抵抗率温度特性を示した図である。 第2図は、比較例1で得られたYBa2Cu3O7- δの抵抗率温
度特性を示した図である。
FIG. 1 is a diagram showing the resistivity-temperature characteristics of Ca 0.5 Y 0.5 Ba 2 Cu 3 O 7- δ obtained in Example 1. FIG. 2 is a diagram showing the resistivity-temperature characteristics of YBa 2 Cu 3 O 7- δ obtained in Comparative Example 1.

フロントページの続き (56)参考文献 Japanese Journal of Applied Physics Part2 Letters,Vo l.26 No.5 1987年5月 P.L 665〜L667Continuation of the front page (56) References Japanese Journal of Applied Physics Part2 Letters, Vol. 26 No. 5 May 1987 L 665-L667

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式 CaxR1-xBa2Cu3O7- δ (式中、Rはイットリウムおよびランタノイドから選ば
れた少なくとも1種の金属を表わす。xは0.4<x<0.6
の数を表わし、δは0<δ<1の数を表わす。) で示される酸化物超伝導材料。
A composition formula Ca x R 1-x Ba 2 Cu 3 O 7- δ (wherein R represents at least one metal selected from yttrium and lanthanoids; x is 0.4 <x <0.6
And δ represents a number of 0 <δ <1. ) An oxide superconducting material represented by
JP63082601A 1988-04-04 1988-04-04 Oxide superconducting material Expired - Lifetime JP2596964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082601A JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082601A JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01257159A JPH01257159A (en) 1989-10-13
JP2596964B2 true JP2596964B2 (en) 1997-04-02

Family

ID=13779003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082601A Expired - Lifetime JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2596964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230618A (en) * 1988-07-20 1990-02-01 Natl Inst For Res In Inorg Mater Oxide high-temperature superconductor
DE69020327T2 (en) * 1989-07-07 1995-11-16 Mitsubishi Materials Corp OXYDE SUPER-CONDUCTIVE AGENT AND METHOD FOR PRODUCING THE SAME.
JP4794095B2 (en) * 2001-09-20 2011-10-12 財団法人国際超電導産業技術研究センター Ca-substituted rare earth-based 123 superconducting single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics Part2 Letters,Vol.26 No.5 1987年5月 P.L665〜L667

Also Published As

Publication number Publication date
JPH01257159A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
US4804649A (en) Alkaline oxalate precipitation process for forming metal oxide ceramic superconductors
CN1028390C (en) Improved process for making 90K superconductors
CN111763084A (en) Manganese-doped barium strontium titanate ceramic with high electrocaloric effect and preparation method and application thereof
US5496799A (en) Method for making rare earth superconductive composite
JP2596964B2 (en) Oxide superconducting material
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
EP0463506B1 (en) Oxide superconductor and its manufacturing method
Koshy et al. YBa2HfO5. 5: a new perovskite potentially suitable as a substrate for YBCO films
US4923849A (en) Process for forming metal oxide superconductors from a precursor material of the general formula YBa2 Cu3 (OH)3 (Ox)2 O3 H2 O (where Ox is an oxalate)
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JPH0196055A (en) Superconductive ceramic composition
JP2637617B2 (en) Manufacturing method of superconducting material
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
EP0406006A2 (en) Oxide superconductor
JP2618047B2 (en) Oxide superconducting material and its manufacturing method
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2748942B2 (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2556096B2 (en) Superconductor manufacturing method
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JP2597579B2 (en) Superconductor manufacturing method