JPH01305880A - Formation of protective film on superconducting thin film - Google Patents

Formation of protective film on superconducting thin film

Info

Publication number
JPH01305880A
JPH01305880A JP88136537A JP13653788A JPH01305880A JP H01305880 A JPH01305880 A JP H01305880A JP 88136537 A JP88136537 A JP 88136537A JP 13653788 A JP13653788 A JP 13653788A JP H01305880 A JPH01305880 A JP H01305880A
Authority
JP
Japan
Prior art keywords
film
thin film
superconducting
superconducting thin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP88136537A
Other languages
Japanese (ja)
Other versions
JPH0822792B2 (en
Inventor
Yuichi Ishikawa
雄一 石川
Hiroko Fujisawa
藤沢 浩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP63136537A priority Critical patent/JPH0822792B2/en
Publication of JPH01305880A publication Critical patent/JPH01305880A/en
Publication of JPH0822792B2 publication Critical patent/JPH0822792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a protective film on the surface of a superconducting thin film and to protect and statilize the thin film by coating the surface of the thin film formed on a substrate with a curing resin and curing this resin. CONSTITUTION:A film of a superconducting compsn. is formed on a substrate by sputtering with a Y-Ba-Cu-O target or the like and annealed to form a superconducting thin film. The surface of the thin film is coated with an ultraviolet-curing or thermosetting resin and this resin is cured to form a protective film. The superconducting thin film can be protected from water and CO2. This effect is also produced on a thin film of other oxide superconductor such as Bi2Sr2Ca2Cu3O10-x.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、超伝導R膜を保護するための保II膜の成膜
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for forming a protective II film for protecting a superconducting R film.

(ロ)従来技術 超伝導薄膜を形成するためには、超伝導になる組成膜を
基板上に形成しなければならない。
(b) Prior Art In order to form a superconducting thin film, a superconducting composition film must be formed on a substrate.

従来、臨界温度の最も高い超伝導材料としては、A−1
5型結晶構造のNb3Ceであったが、ソノ後に? N
i F4型の(LaBa)2 CuO4が臨界温度30
Kを達成することにより、更に高い臨界温度を得るため
のターゲットは全居間化合物からペロブスカイト系結晶
構造の酸化物に移行し、さらに近年になって、斜方結晶
のY。
Conventionally, the superconducting material with the highest critical temperature is A-1.
It was Nb3Ce with type 5 crystal structure, but after sono? N
i F4 type (LaBa)2 CuO4 has a critical temperature of 30
By achieving K, the target for obtaining even higher critical temperatures has shifted from all-living room compounds to oxides with perovskite crystal structure, and more recently, to orthorhombic Y.

Ba2Cua 07− XやB i2S r2Ca。Ba2Cua 07-X and Bi2S r2Ca.

Cu S 0.6− X 、 T I ?! B & 
p C& 2 Cu 30、。−χが液体窒素の温度を
超える臨界温度90Kを得られるようになった。
Cu S0.6-X, T I? ! B &
p C & 2 Cu 30,. It became possible to obtain a critical temperature of 90K where -χ exceeds the temperature of liquid nitrogen.

しかしながら、YlBa、、Cu30t−X等の高臨界
温度の超伝導材料に超伝導特性(臨界磁界や臨界電流密
度)を充分に発揮させるためには、未だ多くの解決しな
ければならない問題点がある。
However, there are still many problems that must be solved in order to fully demonstrate the superconducting properties (critical magnetic field and critical current density) of high critical temperature superconducting materials such as YlBa, Cu30t-X, etc. .

その対漿の一つとして、付加価値の高い薄膜材料が重要
性を増して来ており、その理由として次の3点が考えら
れる。
As one of the countermeasures, high value-added thin film materials are becoming increasingly important, and the following three reasons can be considered for this reason.

第1社、超伝導体の利用形態と加工技術に基づくもので
、超伝導薄膜が微細加工が必要なジョセフソン素子など
のエレクトロニクス材料として用いられるようなって来
たことであり、そのため超伝導体間の弱結合を作り易く
、微細加工が容易で、高集積化、省資源、低コスト化に
つながる薄膜としての利用が重要となってきたのである
The first company is based on the usage patterns and processing technology of superconductors, and superconducting thin films have come to be used as electronic materials such as Josephson devices that require microfabrication, and therefore superconductors It has become important to use thin films that can easily create weak bonds between them, are easy to microfabricate, and lead to higher integration, resource savings, and lower costs.

第2は、9膜形成技術そのものと、高臨界温度(Tc)
の超伝導体特有の性質によるものであり、また第3は超
伝導体本来の性質に基づくもので、その本来の特性を発
揮できる空間的な最小単位であるコヒーレンスの長さが
5〜1000mmであること、また超伝導体が完全反磁
性であるため、超伝導?l!流が10〜200mm程度
の磁場侵入深さに相当する厚さの表面層のみに流れるこ
とである。
The second is the 9 film formation technology itself and the high critical temperature (Tc).
The third is based on the inherent properties of superconductors, and the coherence length, which is the smallest spatial unit that can exhibit its original properties, is 5 to 1000 mm. Is it superconducting because superconductors are completely diamagnetic? l! The current flows only through the surface layer with a thickness corresponding to the magnetic field penetration depth of about 10 to 200 mm.

超伝導体薄膜形成法としては、スパッタリング法、蒸着
法及びCVD (化学蒸着)法等があって、超伝導薄膜
の特性や利用形態により使い分けられている。
Methods for forming superconducting thin films include sputtering, vapor deposition, and CVD (chemical vapor deposition), which are used depending on the characteristics of the superconducting thin film and how it is used.

Y−Ba−Cu−0系超伝導体の場合、Y。In the case of Y-Ba-Cu-0 based superconductor, Y.

Ba 、Cuの金属を基板上に各々蒸着させることによ
り、基板上にY 、Ba 、Cuが各々1:2:3の組
成の金属を成膜させる。これを空気又は酸素中で加熱処
理してYIBa、、Cu3o、−χの超伝導薄膜を形成
する方法がある。
By vapor-depositing Ba and Cu metals on the substrate, a metal film having a composition of 1:2:3 of Y, Ba, and Cu, respectively, is formed on the substrate. There is a method of heat-treating this in air or oxygen to form a superconducting thin film of YIBa, Cu3o, -χ.

また、それ以外の方法として、直接蒸着過程で酸素を導
入して酸化膜を形成することもできるが、核法は通常ス
パッタリング法で成膜する場合に適用される。
Alternatively, an oxide film can be formed by directly introducing oxygen during the vapor deposition process, but the nuclear method is usually applied when forming a film by sputtering.

更に他法として、Y、Ba、Cuの酸化物を各々スパッ
タリングして、基板ヒにこれらの金属がそれぞれ1:2
:3の組成膜を形成させる方法と、Y、Ba、Cuの酸
化物の合成したターゲットを用いて同様に1:2:3の
組成膜を形成させる方法等がある。
Still another method is to sputter oxides of Y, Ba, and Cu, so that the ratio of these metals to the substrate is 1:2.
There is a method of forming a film with a composition of 1:3:3, and a method of forming a film with a composition of 1:2:3 using a target synthesized with oxides of Y, Ba, and Cu.

上記のような方法で形成した薄膜は、−船釣にアモルフ
ァスであるので、上記金属が1:2:3のY IB a
7Cu307−χの結晶ができていない、従って、成膜
後に結晶化させる必要がある。
The thin film formed by the above method is amorphous for boat fishing, so the above metal is YIB a of 1:2:3.
7Cu307-χ crystals have not been formed. Therefore, it is necessary to crystallize the film after film formation.

なお、成膜法としては、上記スパッタリング法や蒸着法
以外に、イオンビーム法やイオンクラスタービーム法も
あるが、基本的には同様である。
In addition to the sputtering method and vapor deposition method described above, there are also ion beam methods and ion cluster beam methods as film forming methods, but they are basically the same.

従って、通常は基板を約700℃程度に保持し、そこに
スパッタリング法でY 、Ba 、Cuを各々1:2:
3の組成で膜を成膜し、該基板上に順次にYl Ba2
 Cua o7−χの結晶を形成させる方法、あるいは
Y、Ba、Cuが各々1:2:3の組成膜を形成させた
基板を約600〜900℃の温度で空気或あるいは酸素
雰囲気中で7ニールし、そのアモルファスの組成膜を結
晶化させて超伝導薄膜を形成する方法が採られている。
Therefore, normally the substrate is held at about 700°C, and Y, Ba, and Cu are added to it in a ratio of 1:2 by sputtering.
A film was formed with the composition of No. 3, and Yl Ba2 was sequentially deposited on the substrate.
A method for forming Cua o7-χ crystals, or a substrate on which a film with a composition of 1:2:3 of Y, Ba, and Cu is formed is subjected to 7 anneals in an air or oxygen atmosphere at a temperature of approximately 600 to 900°C. However, a method has been adopted in which the amorphous composition film is crystallized to form a superconducting thin film.

上記のように、超伝導薄膜を形成するにはY−Ba−C
u−0系の超伝導材料であれば、その組成比になるよう
な組成膜の成膜と該組成膜の結晶化という2種のプロセ
スが必要となる。
As mentioned above, to form a superconducting thin film, Y-Ba-C
In the case of a u-0-based superconducting material, two processes are required: forming a film with a composition that has that composition ratio, and crystallizing the film with the composition.

しかしながら、Yl Ba、、Cua 07− X超伝
導薄膜は、水や二酸化炭素と反応し易く、不安定であり
、室温で空気中に放置しても超伝導特性が劣化してしま
う欠点があり、その対策が種々と研究されているが、未
だその解決方法は見当らないのが実情である。
However, Yl Ba, Cua 07- Various countermeasures have been researched, but the reality is that no solution has yet been found.

また、B1−3r−Ca−Cu−0系、T交−Ba−C
a−Cu−0系の超伝導薄膜も比較的に化学的安定性は
向上しているものの、同様の問題がある。
In addition, B1-3r-Ca-Cu-0 system, T-cross-Ba-C
Although a-Cu-0-based superconducting thin films have relatively improved chemical stability, they have similar problems.

(ハ)発明の開示 本発明は、上記のような欠点を解決するものであり、超
伝導組成膜をアニール処理し、超伝導薄膜を形成したも
の又は単結晶エピタキシャル成長させて形成した超伝導
薄膜の表面に紫外線硬化型や熱硬化型等の硬化型樹脂で
コートし、その後硬化させることにより、該F4膜表面
に保護膜を形成させて超伝導f[を保護し、安定化させ
る方法を提供するものである。
(C) Disclosure of the Invention The present invention is intended to solve the above-mentioned drawbacks, and is directed to a superconducting thin film formed by annealing a superconducting composition film or a superconducting thin film formed by single crystal epitaxial growth. Provided is a method for protecting and stabilizing superconducting f[ by coating the surface with a curable resin such as an ultraviolet curing type or thermosetting type and then curing it to form a protective film on the surface of the F4 film. It is something.

即ち、本発明は基板表面に形成された超伝導薄膜の表面
を硬化型樹脂で被覆した後、該樹脂膜を硬化させること
を特徴とする超伝導薄膜の保護膜形成方法である。
That is, the present invention is a method for forming a protective film for a superconducting thin film, which comprises coating the surface of a superconducting thin film formed on a substrate surface with a curable resin, and then curing the resin film.

本発明法によれば、スパッタリング装置でY−Ba−C
u−0系ターゲツトを用いて基板上に超伝導組成膜を成
膜させた後、アニールして超伝導薄膜を形成させ、該薄
膜表面に紫外線硬化型や熱硬化型等の硬化型樹脂をコー
トした後硬化させて保護膜を形成させることにより、超
伝導薄膜を水や二酸化炭素から遮蔽して保護することが
できるのである。
According to the method of the present invention, Y-Ba-C
After forming a superconducting composition film on a substrate using a u-0 target, annealing is performed to form a superconducting thin film, and the surface of the thin film is coated with a curable resin such as an ultraviolet curable type or a thermosetting type. By curing the superconducting film and forming a protective film, the superconducting thin film can be protected from water and carbon dioxide.

また、 Y−Ba−Cu−0系ターゲツトを用いてMg
O単結晶基板を600〜700℃に加熱保持し、該基板
上にY 1 B a2 Cu* 07− Xをエピタキ
シャル成長させて成膜した後に、熱硬化型や紫外線硬化
型等の硬化型樹脂をコートした後硬化させて保護膜を形
成させることにより、超伝導FJ H’;Jを木や二酸
化炭素から遮蔽して保護することもできるのである。
In addition, Mg
After heating and holding an O single crystal substrate at 600 to 700°C and epitaxially growing Y 1 B a2 Cu* 07- By curing it and forming a protective film, it is possible to protect the superconducting FJ H';J by shielding it from wood and carbon dioxide.

このような効果は、他の酸化物系超伝導体例え1fBi
、5r2Ca2Cu30.o−X、T12Ba2 Ca
2 Cu、、ol O−χの薄膜も同じである。
Such an effect can be observed in other oxide-based superconductors, such as 1fBi.
, 5r2Ca2Cu30. o-X, T12Ba2Ca
The same applies to the thin film of 2 Cu, ol O-χ.

上記熱硬化型樹脂としては、フェノールホルムアルデヒ
ド樹脂、尿素樹脂、グリセリンフタール酸樹脂、フラン
樹脂、エポキシ樹脂のように熱によって重合物の重合度
が高まり硬化する熱硬化性重合物が使用され、また紫外
線硬化型樹脂としては、アクリル化ポリウレタン、ポリ
エステル樹脂、ポリエステルアクリレート、アクリル化
シリコン樹脂のように紫外線照射によって重合物の重合
度が高まり硬化する樹脂が用いられる。
As the above-mentioned thermosetting resin, thermosetting polymers that increase the degree of polymerization and harden by heat, such as phenol formaldehyde resin, urea resin, glycerin phthalate resin, furan resin, and epoxy resin, are used; As the ultraviolet curable resin, resins that are cured by increasing the degree of polymerization by ultraviolet irradiation, such as acrylated polyurethane, polyester resin, polyester acrylate, and acrylated silicone resin, are used.

コートはスピンコードをはじめ、超伝導薄膜表面に膜厚
2〜3川mにト記樹脂を塗布できればよく、その後加熱
(室温を含む)あるいは紫外線照射により硬化させるこ
とができればよいのである。
For coating, it is sufficient that the resin described above can be applied to the surface of a superconducting thin film such as a spin cord to a thickness of 2 to 3 meters, and then it can be cured by heating (including room temperature) or ultraviolet irradiation.

なお、本発明法はY−Ba−Cu−0系、B1−3 r
−Ca−Cu−0系、Tl−Ba−Ca −Cu−0系
の超伝導薄膜のみならず、スパッタリング法、蒸着法、
CVD法等により成膜される超伝導薄膜のすべてに適用
できることは勿論であり、超伝導薄膜が水や二酸化炭素
と反応して、その特性が劣化することを完全に防1ヒで
き、かつ悪影響を及ぼすこともないのである。
Note that the method of the present invention uses Y-Ba-Cu-0 system, B1-3 r
-Not only superconducting thin films of -Ca-Cu-0 system and Tl-Ba-Ca-Cu-0 system, but also sputtering method, vapor deposition method,
It goes without saying that it can be applied to all superconducting thin films formed by CVD methods, etc., and it can completely prevent superconducting thin films from reacting with water or carbon dioxide and deteriorating their properties, and also prevent any negative effects. It does not have any effect on it.

次に、本発明を実施例によって説明する。Next, the present invention will be explained by examples.

(ニ)実施例 実施例−1 SrTiOsの単結晶基板上にAr:O,、が3:1の
雰囲気で全圧4x10″″3torr (mmHg)下
で該基板温度を650℃に保持し、Y−Ba−Cu−0
系ターゲツトを使用し、スパッタリングしてY+ Ba
20u30? −X(1)超伝導薄膜を2gm成膜した
(d) Examples Example-1 A single crystal substrate of SrTiOs was coated in an Ar:O, 3:1 atmosphere under a total pressure of 4 x 10''3 torr (mmHg), the temperature of the substrate was maintained at 650°C, and Y -Ba-Cu-0
Y+Ba by sputtering using a target of
20u30? -X(1) A 2 gm superconducting thin film was deposited.

該超伝導薄膜表面に紫外線硬化型樹脂として大日本イン
キ株製「ユニデイック17−824−9」 (商品名)
を塗布し、その膜厚を2.5gmとした後、紫外線を照
射して硬化させた。
Dainippon Ink Co., Ltd. "UNIDIC 17-824-9" (trade name) is applied as an ultraviolet curable resin on the surface of the superconducting thin film.
was applied to a film thickness of 2.5 gm, and then cured by irradiation with ultraviolet rays.

これを100℃の水に2分間漬けた後、超伝導特性(T
c測定等)を調べた結果、全く劣化は認められなかった
。また、変色等も全く認められなかった。
After soaking this in water at 100℃ for 2 minutes, the superconducting property (T
c measurement, etc.), no deterioration was observed at all. Further, no discoloration or the like was observed at all.

実施例−2 Mg0の単結晶基板上に雰囲気Ar:0.、=3:1.
全圧4X I O−3torrの条件下で、該基板温度
を100℃に保持しながらY−Ba−Cu−0系ターゲ
ツトを用いて、Yl Ba2 Cu307−χの組成膜
をスパッタリング法で膜厚を28Lmに成膜した。
Example-2 An atmosphere of Ar: 0. ,=3:1.
Under conditions of a total pressure of 4X IO-3 torr, and while maintaining the substrate temperature at 100°C, a film with a composition of YlBa2Cu307-χ was sputtered using a Y-Ba-Cu-0 target. A film was formed to a thickness of 28 Lm.

該超伝導薄膜を850℃で3時間アニールし、更に60
0℃で5時間処理した後、熱硬化型のエポキシ樹脂を2
.5pm塗布し、室温硬化させた。
The superconducting thin film was annealed at 850°C for 3 hours and further heated at 60°C.
After processing at 0℃ for 5 hours, 2 thermosetting epoxy resins were added.
.. 5pm was applied and cured at room temperature.

これを100℃で2分間水につけた後、超伝導特性を調
べたが、特性変化および変色変化は全く認められなかっ
た。
After soaking this in water at 100° C. for 2 minutes, its superconducting properties were examined, but no changes in properties or discoloration were observed.

比較例−1 上記実施例1と同様にして成膜したY1Ba2Cu30
.−χ超伝導薄膜について、紫外線硬化型樹脂の保護膜
を成膜することなく、実施例1と同様に100℃で2分
間水につけた後、超伝導特性を調べたところ、変色して
、著しく特性劣化していた。
Comparative Example-1 Y1Ba2Cu30 film formed in the same manner as in Example 1 above
.. -When examining the superconducting properties of the χ superconducting thin film after immersing it in water at 100°C for 2 minutes in the same manner as in Example 1 without forming a protective film of ultraviolet curable resin, it was found that the film changed color significantly. Characteristics had deteriorated.

(ホ)発明の効果 本発明法は、上記のように超伝導薄膜表面に有機系硬化
膜、特に紫外線硬化性樹脂あるいは熱硬化性樹脂をコー
トして硬化させることにより、水や空気中の二酸化炭素
等と反応して超伝導特性が劣化するのを完全に防止する
ことができる効果がある。
(E) Effects of the Invention The method of the present invention, as described above, coats the surface of a superconducting thin film with an organic cured film, especially an ultraviolet curable resin or a thermosetting resin, and cures it, thereby reducing the amount of carbon dioxide in water or air. This has the effect of completely preventing deterioration of superconducting properties due to reaction with carbon and the like.

Claims (1)

【特許請求の範囲】[Claims]  基板表面に形成された超伝導薄膜の表面を硬化型樹脂
膜で被覆した後、該樹脂膜を硬化させることを特徴とす
る超伝導薄膜の保護膜形成方法。
A method for forming a protective film for a superconducting thin film, which comprises coating the surface of a superconducting thin film formed on a substrate surface with a curable resin film, and then curing the resin film.
JP63136537A 1988-06-02 1988-06-02 Method for forming protective film of superconducting thin film Expired - Fee Related JPH0822792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136537A JPH0822792B2 (en) 1988-06-02 1988-06-02 Method for forming protective film of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136537A JPH0822792B2 (en) 1988-06-02 1988-06-02 Method for forming protective film of superconducting thin film

Publications (2)

Publication Number Publication Date
JPH01305880A true JPH01305880A (en) 1989-12-11
JPH0822792B2 JPH0822792B2 (en) 1996-03-06

Family

ID=15177507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136537A Expired - Fee Related JPH0822792B2 (en) 1988-06-02 1988-06-02 Method for forming protective film of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0822792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126206A (en) * 1987-07-27 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643914A (en) * 1987-06-26 1989-01-09 Tdk Corp Superconductive oxide ceramic material
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643914A (en) * 1987-06-26 1989-01-09 Tdk Corp Superconductive oxide ceramic material
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126206A (en) * 1987-07-27 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film

Also Published As

Publication number Publication date
JPH0822792B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US5021398A (en) Method of forming patterned oxide superconducting films
DE3855305T2 (en) Super Tc superconductor layers and process for their manufacture
Peshev et al. Preparation of lanthanum aluminate thin films by a sol-gel procedure using alkoxide precursors
JPH01305880A (en) Formation of protective film on superconducting thin film
JPH01305580A (en) Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element
US5070072A (en) Conductive articles and processes for their preparation
JP2715667B2 (en) Apparatus for producing oxide superconducting thin film and method for producing oxide superconducting single crystal thin film
JPH01275434A (en) Production of high temperature superconducting oxide film
US3480484A (en) Method for preparing high mobility indium antimonide thin films
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH0337913A (en) Oxide superconductor film material
JP3086876B1 (en) Method for producing thin film of ribbon-shaped oxide high-temperature superconductor
JPH0393685A (en) Surface stabilizing treatment for oxide superconductive bulk
JPS63289725A (en) Manufacture of compound superconductive thin film
JPH01170060A (en) Semiconductor substrate having superconductor layer
JPH01170062A (en) Semiconductor substrate having superconductor layer
SAKAI et al. Epitaxial Growth of Bi (2201) Phase in Atomic Layer-by-Layer Deposition by Ion Beam Sputtering Method
JPH01170078A (en) Semiconductor substrate provided with superconductor layer
JPH02212306A (en) Oxide superconducting thin film
JPH01126206A (en) Superconducting thin film
JPH01170065A (en) Semiconductor substrate having superconductor layer
JPH01170073A (en) Semiconductor substrate provided with superconductor layer
JPH0297420A (en) Production of high temperature superconducting thin film
JPH02133304A (en) Production of oxide superconductor
JPH01170066A (en) Semiconductor substrate equipped with superconductor layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees