JPH02133304A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02133304A
JPH02133304A JP63285495A JP28549588A JPH02133304A JP H02133304 A JPH02133304 A JP H02133304A JP 63285495 A JP63285495 A JP 63285495A JP 28549588 A JP28549588 A JP 28549588A JP H02133304 A JPH02133304 A JP H02133304A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconductor
base material
precursor
metallic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285495A
Other languages
Japanese (ja)
Inventor
Mikio Nakagawa
中川 三紀夫
Yasuhiro Iijima
康裕 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63285495A priority Critical patent/JPH02133304A/en
Publication of JPH02133304A publication Critical patent/JPH02133304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To prevent deterioration of superconducting characteristics caused by a diffusion reaction between an amorphous thin film of a precursor of the oxide superconductor formed on a metallic base material by specifying conditions of heat-treatment for crystallizing the thin film. CONSTITUTION:A thin film of a precursor of an oxide superconductor is formed on a metallic base material by sputtering, etc. The shape of the metallic base material may be any of plate, tape, or wire, etc. When a metallic base plate is used, an Ni alloy base material of such as stainless steel, 'Hastelloy (R)', etc., is suitable. Further, a buffer layer consisting of a chemically stable element having low reactivity with constituting elements for the oxide superconductor, more pref. a material having a coefft. of thermal expansion close to the coefft. of thermal expansion of the oxide superconductor, may be formed on the upper surface of the metallic base plate. After depositing the thin film of the precursor to a desired thickness, the thin film is heated together with the base material at >=800 deg.C, then cooled to <=500 deg.C at >=50 deg.C/min cooling rate, and heated thereafter at 250-500 deg.C.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は臨界温度が高いことで知られている酸化物超
電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing an oxide superconductor known to have a high critical temperature.

「従来の技術」 近年、常電導状態から超電導状態に遷移する臨界温度が
液体窒素温度を超える値を示す酸化物系の超電導体が種
々発見されている。そしてこの種の酸化物超電導体の薄
膜を基板上に形成して超電導回路などを形成し、ジョセ
フソン素子や超電導m子干渉素子などとして応用しよう
とする試みがなされている。
"Prior Art" In recent years, various oxide-based superconductors have been discovered whose critical temperature for transitioning from a normal conducting state to a superconducting state exceeds the temperature of liquid nitrogen. Attempts have been made to form a thin film of this type of oxide superconductor on a substrate to form a superconducting circuit, and to apply it as a Josephson device or a superconducting m-son interference device.

ここで従来知られている酸化物超電導薄膜の製造方法の
一般的なものに、金属からなる基板上に、半導体の製造
分野などで行なわれている化学気相成長法あるいは物理
蒸着法などの種々の方法を実施して成膜する技術が知ら
れている。ところが、このような成膜法により室温で形
成した薄膜は、アモルファス状態であって、はとんど超
電導特性を示さないものである。従ってこの薄膜を成膜
中あるいは成膜後に800℃以上の温度に加熱して結晶
化を行い、臨界温度が高い優秀な超電導特性を備えた酸
化物超電導薄膜を得ることがなされている。
Conventionally known methods for manufacturing oxide superconducting thin films include various methods such as chemical vapor deposition or physical vapor deposition, which are used in the semiconductor manufacturing field, on a metal substrate. A technique for forming a film by implementing the method described above is known. However, a thin film formed at room temperature by such a film forming method is in an amorphous state and hardly exhibits superconducting properties. Therefore, this thin film is crystallized by heating it to a temperature of 800° C. or higher during or after film formation to obtain an oxide superconducting thin film having excellent superconducting properties with a high critical temperature.

「発明が解決しようとする課題」 前記アモルファス状態の薄膜を800℃以上に加熱する
熱処理を行った場合、熱処理中に基板の構成元素と酸化
物超電導薄膜の構成元素とが界面を介して拡散反応を起
こし、その結果、超電導薄膜中に他の元素が侵入したり
、超電導薄膜の構成元素が逸脱して薄膜の組成がくずれ
、超電導特性が劣化したり、超電導薄膜が絶縁体化する
問題があった。また、前述のような基板と超電導薄膜と
の拡散反応を阻止する目的で、酸化物超電導薄膜の構成
元素に対する反応性の低い元素からなるバッファ層を基
板上に形成した後に酸化物超電導薄膜を形成することが
なされている。ところが、基板上にバッファ層を形成し
た場合であっても、バッファ層に存在するクラックや粒
界を介して前記拡散反応が進行することがあり、超電導
特性の劣化現象を引き起こすことがあった。
"Problem to be Solved by the Invention" When the thin film in an amorphous state is heat-treated to a temperature of 800°C or higher, a diffusion reaction occurs between the constituent elements of the substrate and the constituent elements of the oxide superconducting thin film through the interface during the heat treatment. As a result, other elements may enter the superconducting thin film, the constituent elements of the superconducting thin film may deviate, the composition of the thin film may deteriorate, the superconducting properties may deteriorate, or the superconducting thin film may become an insulator. Ta. In addition, in order to prevent the above-mentioned diffusion reaction between the substrate and the superconducting thin film, the oxide superconducting thin film is formed after forming a buffer layer made of an element with low reactivity to the constituent elements of the oxide superconducting thin film on the substrate. things are being done. However, even when a buffer layer is formed on a substrate, the diffusion reaction may proceed through cracks or grain boundaries existing in the buffer layer, resulting in deterioration of superconducting properties.

本発明は前記課題を解決するためになされたもので、熱
処理時に超電導特性の劣化現象を引き起こすことなく高
特性の酸化物超電導薄膜を製造することができる方法の
提供を目的とする。
The present invention has been made to solve the above problems, and aims to provide a method that can produce an oxide superconducting thin film with high characteristics without causing deterioration of superconducting characteristics during heat treatment.

[課題を解決するための手段] 本発明は前記課題を解決するために、金属基村上に形成
した酸化物超電導体の前駆体薄膜を800℃以上の温度
で加熱した後に、500℃以下の温度まで50℃/分以
上の冷却速度で冷却した後、250〜500℃の温度に
加熱するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention aims to solve the above problems by heating a precursor thin film of an oxide superconductor formed on a metal substrate at a temperature of 800°C or higher, and then heating it at a temperature of 500°C or lower. After cooling at a cooling rate of 50° C./min or more to a temperature of 250 to 500° C.

「作用 」 前駆体薄膜を8009C以上に加熱することによりアモ
ルファス状態の前駆体薄膜が結晶化する。
"Function" By heating the precursor thin film to 8009C or higher, the amorphous precursor thin film is crystallized.

また、この後に50℃/分以上の冷却速度で冷却するこ
とにより、前駆体薄膜が高温状態にある時間が極力短縮
化され、金属基材と前駆体薄膜との間の拡散反応時間が
短縮されて拡散反応が抑制される。更に250〜500
℃の温度に加熱ずろことによって薄膜の結晶が超電導特
性の良好な斜方晶などの結晶状聾に変容する。
In addition, by cooling at a cooling rate of 50°C/min or more after this, the time that the precursor thin film is in a high temperature state is shortened as much as possible, and the diffusion reaction time between the metal base material and the precursor thin film is shortened. diffusion reaction is suppressed. Another 250-500
By heating the thin film to a temperature of °C, the thin film crystals transform into crystalline crystals such as orthorhombic crystals, which have good superconducting properties.

以下にこの発明を更に詳細に説明する。This invention will be explained in more detail below.

この発明を実施して酸化物超電導薄膜を製造するには、
まず、金属基村上に、スパッタリング法などの成膜法を
用いて厚さ1〜数μm程度の酸化物超電導体の前駆体薄
膜を形成する。
To carry out this invention to produce an oxide superconducting thin film,
First, a precursor thin film of an oxide superconductor having a thickness of about 1 to several μm is formed on a metal substrate using a film forming method such as a sputtering method.

11)記金属基材としては、板状、テープ状、線状など
のいずれの形状のらのを用いても差し支えない。また、
前記金属基材として金属基板を用いる場合は、ステンレ
ス基板あるいはハステロイなどのN+金合金らなる基板
などが用いられる。また、金属基板の上面には、酸化物
超電導体の構成元素との反応性が低く、化学的に安定な
元素、更に好ましくは、酸化物超電導体の熱膨張係数に
近い熱膨張係数の材料からなるバッファ層を形成しても
差し支えない。この被覆層として、MgO,Zr01S
 r T i O3などの薄膜を用いることができる。
11) As the metal base material, any shape of plate, tape, wire, etc. may be used. Also,
When a metal substrate is used as the metal base material, a stainless steel substrate or a substrate made of an N+ gold alloy such as Hastelloy is used. The upper surface of the metal substrate is made of a chemically stable element that has low reactivity with the constituent elements of the oxide superconductor, and more preferably a material with a thermal expansion coefficient close to that of the oxide superconductor. There is no problem even if a buffer layer is formed. As this coating layer, MgO, Zr01S
Thin films such as r T i O3 can be used.

更に成膜手段としては、真空蒸着法、スパッタリング法
、M B E法(分子線エピタキシー法)、CVD法(
化学気相蒸着法)、IVD法(イオン気相蒸着法)など
の手段を用いることができる。
Furthermore, as a film forming method, vacuum evaporation method, sputtering method, MBE method (molecular beam epitaxy method), CVD method (
Methods such as chemical vapor deposition (chemical vapor deposition) and IVD (ionic vapor deposition) can be used.

前記成膜法としてスパッタリング法を行う場合には、製
造しようとする超電導薄膜と同等の組成の酸化物ターゲ
ットあるいは酸化物超電導体ターゲットを用いる。ここ
で使用されるターゲットの組成として代表的なものを例
示すると、Y+BazCu、07−A %B +2s 
r=c atc uso X 、T ltc azB 
atCurOxなどである。前述のような基板とタープ
・ソトをスパッタリング装置の真空容器の内部にセット
したならば、真空容器の内部を真空引きして所要のイオ
ン源からターゲットにイオンを照射するとターゲットの
構成原子が叩き出されて基板上に堆積されるので、基板
4二に前駆体薄膜を生成させろことができる。
When a sputtering method is used as the film forming method, an oxide target or an oxide superconductor target having the same composition as the superconducting thin film to be manufactured is used. Typical target compositions used here are Y+BazCu, 07-A %B +2s
r=c atc uso X, T ltc azB
atCurOx, etc. Once the substrate and tarp/soto as described above are set inside the vacuum chamber of the sputtering equipment, the inside of the vacuum chamber is evacuated and ions are irradiated from the desired ion source to the target, and the constituent atoms of the target are ejected. A thin precursor film can be formed on the substrate 42 as the precursor film is deposited on the substrate.

この前駆体薄膜を所望の厚さ堆積させたならば、前駆体
薄膜を基板とともに好ましくは酸素雰囲気中において熱
処理する。この熱処理を行うには、基板を800℃以上
の温度、好ましくは800〜9506Cの範囲の温度に
所定時間推持できるように加熱した後に、50℃/分以
上の冷却速度で500℃以下の温度まで冷却し、次いで
250〜500℃の範囲の温度(こ所定時間加熱推持し
た後に、常温まで冷却する。常温まで冷却する手段は急
冷でら徐冷でも差し支えない。
Once the precursor thin film has been deposited to a desired thickness, the precursor thin film is heat treated together with the substrate, preferably in an oxygen atmosphere. To perform this heat treatment, the substrate is heated to a temperature of 800°C or higher, preferably in the range of 800 to 9506°C, for a predetermined period of time, and then cooled to a temperature of 500°C or lower at a cooling rate of 50°C/min or higher. and then cooled to a temperature in the range of 250 to 500° C. (after being heated and maintained for a predetermined time, it is cooled to room temperature. The means for cooling to room temperature may be rapid cooling or slow cooling.

前記加熱時に800℃以上の温度に所要時間加熱するの
は、アモルファス状態の薄膜を十分に結晶化するととも
に、薄膜中に存在する欠陥を少なくするためである。ま
た、800℃以上に加熱する時間が長い場合は、基板と
薄膜との間で拡散反応が進行するので、薄膜を800℃
以上に推持ずる時間は0.5分〜30分の範囲が好まし
い。800℃以上に維持する時間が05分以下であると
アモルファス状態の薄膜の結晶化に時間的に不足であり
、30分を超えると基板と薄膜との間で拡散反応が進行
するので好ましくない。
The reason why the heating is performed at a temperature of 800° C. or more for a required period of time is to sufficiently crystallize the amorphous thin film and to reduce defects present in the thin film. In addition, if the heating time is longer than 800°C, a diffusion reaction will occur between the substrate and the thin film, so the thin film will be heated to 800°C or higher.
The holding time above is preferably in the range of 0.5 minutes to 30 minutes. If the time for maintaining the temperature at 800° C. or higher is less than 0.5 minutes, there is insufficient time for crystallization of the amorphous thin film, and if it exceeds 30 minutes, a diffusion reaction will proceed between the substrate and the thin film, which is not preferable.

前記冷却速度において、50℃/分以上とするのは、こ
れより遅い速度で冷却すると、基板と薄膜の拡散反応が
進行するためである。なお、空冷あるいは水冷、更には
液体窒素に浸す等のクエンチ冷却法などを行えば50℃
/分以上の冷却速度が容易に得られる。
The reason why the cooling rate is set to 50° C./min or more is that if the cooling rate is slower than this, the diffusion reaction between the substrate and the thin film will proceed. In addition, if you use air cooling, water cooling, or even quench cooling methods such as immersion in liquid nitrogen, the temperature will drop to 50°C.
Cooling rates of 1/min or more can be easily obtained.

前記熱処理において、特に250〜500℃に加熱する
場合は、薄膜の結晶構造が正方品から斜方晶に変態する
ので、変態時に結晶内に酸素が十分に取り込まれるよう
に、大気中あるいは酸素ガス雰囲気中などの酸素雰囲気
で熱処理することが好ましい。
In the above heat treatment, especially when heating to 250 to 500°C, the crystal structure of the thin film transforms from tetragonal to orthorhombic. It is preferable to perform the heat treatment in an oxygen atmosphere such as in an atmosphere.

以上説明したように金属基村上に超電導薄膜を形成した
場合であっても、前述の如き熱処理を行うならば、基材
と薄膜との間の拡散反応を抑制して臨界温度と臨界電流
密度が高く超電導特性の優れた超電導薄膜を得ることが
できる。
As explained above, even when a superconducting thin film is formed on a metal substrate, if the heat treatment described above is performed, the diffusion reaction between the substrate and the thin film can be suppressed and the critical temperature and critical current density can be reduced. A superconducting thin film with high and excellent superconducting properties can be obtained.

「実施例」 Ni合金(ハステロイC276)製の幅5ml111長
さ20m+n、厚さ1mmの基板とY IBarc u
30 ?−8なる組成のスパッタリングターゲットを用
い、これらを高周波スパッタリング装置の真空容器内に
セットして真空引きしてスパッタリングを行い、基板上
にY系酸化物超電導体の厚さ1μmの前駆体薄膜を形成
した。この際、スパッタリング装置の加速電圧は800
■、イオン電流は100mA、真空容器の圧力はlXl
0−’Pa% 100%アルゴンガス雰囲気に設定した
"Example" A substrate made of Ni alloy (Hastelloy C276) with a width of 5 ml, a length of 20 m + n, and a thickness of 1 mm and a Y IBarc u
30? Using a sputtering target with a composition of -8, these are placed in a vacuum chamber of a high-frequency sputtering device, and sputtering is performed under vacuum to form a precursor thin film of Y-based oxide superconductor with a thickness of 1 μm on the substrate. did. At this time, the accelerating voltage of the sputtering equipment was 800
■Ion current is 100mA, vacuum container pressure is lXl
0-'Pa% 100% argon gas atmosphere was set.

以上の条件で複数の基板に前駆体薄膜を形成した試料を
複数形成し、各々について第1図に示すように酸凰ガス
中において加熱し、900℃で5分間維持した後に種々
の冷却速度で冷却した場合に得られた薄膜の超電導特性
を測定した。また、前記冷却処理中において第1図に示
すように400℃で30分間加熱する熱処理を加えて得
られた薄膜の超電導特性ら測定した。以上の結果を併せ
て第1表に示す。なお、第1表において空冷時の冷却速
度は200〜b 体窒素クエンチの際の冷却速度は約り04℃/分に相当
する。
A plurality of samples with precursor thin films formed on a plurality of substrates were formed under the above conditions, and each sample was heated in acid phosphide gas as shown in Figure 1, maintained at 900°C for 5 minutes, and then cooled at various cooling rates. The superconducting properties of the thin film obtained when cooled were measured. In addition, during the cooling process, a heat treatment of heating at 400° C. for 30 minutes was added as shown in FIG. 1, and the superconducting properties of the obtained thin film were measured. The above results are also shown in Table 1. In addition, in Table 1, the cooling rate during air cooling corresponds to 200 to 200°C/min, and the cooling rate during nitrogen quenching corresponds to approximately 04°C/min.

第1表 ××:絶縁体  X・超電導遷移なし 第1表から明らかなように、この発明で限定した条件に
基いて熱処理を行うことにより製造された酸化物超電導
薄膜の臨界温度が優れていることが明らかとなっ1こ。
Table 1 XX: Insulator One thing became clear.

[発明の効果] 以上説明したように本発明は、金属i材上に超電導薄膜
を形成する場合に、800℃以上に加熱してアモルファ
ス状態の薄膜を十分に結晶化した後に、50℃/分以上
の冷却速度で冷却することにより、前駆体薄膜を高温状
態とする時間を極力短縮し、金属基材と前駆体薄膜との
間の拡散反応時間を可能な限り短縮するので、拡散反応
に起因する超電導薄膜の組成のみだれや不要原子の混入
を抑制して超Ti導特性の劣化現象を防止することがで
きる。また、250〜500℃の温度に加熱することに
より薄膜の結晶を超1導特性の良好な斜方晶などの結晶
状態に遷移さUるために、臨界温度の高い優れた酸化物
超電導薄膜を製造することがて°きろ。
[Effects of the Invention] As explained above, the present invention, when forming a superconducting thin film on a metal i material, heats the amorphous thin film to 800°C or higher to sufficiently crystallize it, and then heats the film at 50°C/min. By cooling at the above cooling rate, the time that the precursor thin film is kept in a high temperature state is shortened as much as possible, and the diffusion reaction time between the metal base material and the precursor thin film is shortened as much as possible. By suppressing the composition of the superconducting thin film and the incorporation of unnecessary atoms, deterioration of the super-Ti conductive properties can be prevented. In addition, in order to transition the crystal of the thin film to a crystalline state such as orthorhombic crystal with good super-uniconducting properties by heating it to a temperature of 250 to 500°C, we have developed an excellent oxide superconducting thin film with a high critical temperature. I can't manufacture it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で行った熱処理の際の温度と時間の関係
を説明するためのグラフである。
FIG. 1 is a graph for explaining the relationship between temperature and time during the heat treatment performed in the example.

Claims (1)

【特許請求の範囲】[Claims] 金属基材上に形成した酸化物超電導体の前駆体薄膜を8
00℃以上の温度で加熱した後に500℃以下の温度ま
で50℃/分以上の冷却速度で冷却し、その後、250
〜500℃の温度に加熱することを特徴とする酸化物超
電導体の製造方法。
A precursor thin film of an oxide superconductor formed on a metal base material is
After heating at a temperature of 00°C or more, cooling to a temperature of 500°C or less at a cooling rate of 50°C/min or more, and then cooling at a cooling rate of 250°C or more.
A method for producing an oxide superconductor, comprising heating to a temperature of ~500°C.
JP63285495A 1988-11-11 1988-11-11 Production of oxide superconductor Pending JPH02133304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285495A JPH02133304A (en) 1988-11-11 1988-11-11 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285495A JPH02133304A (en) 1988-11-11 1988-11-11 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02133304A true JPH02133304A (en) 1990-05-22

Family

ID=17692263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285495A Pending JPH02133304A (en) 1988-11-11 1988-11-11 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02133304A (en)

Similar Documents

Publication Publication Date Title
JPH03150218A (en) Production of superconductive thin film
JPH0474714A (en) Tl superconductor material
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPH02133304A (en) Production of oxide superconductor
JPH0218974A (en) Supeconducting device and its manufacture
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
KR970009739B1 (en) Method of manufacture for superconductor thin film
JPH01261204A (en) Production of oxide based superconductor
JPH01166419A (en) Manufacture of superconductive membrane
JPH02133303A (en) Production of oxide superconductor
JPH0365502A (en) Preparation of superconductive thin film
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPH06216417A (en) Preparation of cuo superconductor
US3988178A (en) Method for preparing superconductors
RU2199170C2 (en) Method for producing superconducting film coating and conductor built around it
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH03112810A (en) Production of oxide superconducting film
JPH04193703A (en) Production of superconducting thin film
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPH01282105A (en) Production of superconducting ceramic film
JPH0467691A (en) Tl-based superconductive material
JPH01249607A (en) Production of oxide superconducting film
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPH02212306A (en) Oxide superconducting thin film