JPH04193703A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH04193703A
JPH04193703A JP2331914A JP33191490A JPH04193703A JP H04193703 A JPH04193703 A JP H04193703A JP 2331914 A JP2331914 A JP 2331914A JP 33191490 A JP33191490 A JP 33191490A JP H04193703 A JPH04193703 A JP H04193703A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxygen
superconducting thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2331914A
Other languages
Japanese (ja)
Inventor
Masaya Osada
昌也 長田
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2331914A priority Critical patent/JPH04193703A/en
Publication of JPH04193703A publication Critical patent/JPH04193703A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce the superconducting thin film of a single crystal having good smoothness on the surface with a large area by supplying gaseous oxygen contg. a specific concn. of ozone and specifying pressure in a vacuum chamber to a specific range at the time of producing the superconducting thin film by a vacuum vapor deposition method. CONSTITUTION:The substrate temp. is set at 550 to 650 deg.C higher than the crystallization temp. and the gaseous oxygen/ozone mixture having 5 to 20wt.% ozone concn. is so supplied that the gaseous pressure in the vacuum chamber attains 5X10<-5> to 6X10<-4> Torr at the time of producing the superconducting thin film by the vacuum vapor deposition method. The sufficiently activated oxygen is supplied to the substrate in the same manner as in the case of the constitution of the method for supplying the oxygen in the above-mentioned manner if the plasma is generated in the vacuum chamber at the time of supplying the gaseous oxygen/ozone mixture to the substrate and, therefore, the superconducting thin film of the single crystal having the large area is obtd.

Description

【発明の詳細な説明】 〈産業」二の利用分野〉 本発明は酸化物超電導薄膜の作製方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industry> Second Field of Application The present invention relates to a method for producing an oxide superconducting thin film.

〈従来の技術〉 液体窒素温度(77K)で超電導状態となる酸化物高温
超電導体が見いだされて以来、この材1:・[の基礎及
び応用の研究が活発になされている。
<Prior Art> Since the discovery of an oxide high-temperature superconductor that becomes superconducting at liquid nitrogen temperature (77 K), research into the basics and applications of this material has been actively conducted.

近年、酸化物超電導薄膜(以下超電導薄膜)の作製方法
として、成膜後に高温アニールを必要としない、1n−
situ又は、as−depoでの成膜技術か注目され
ている。これらの成膜技術としては、例えばスパッタ法
、レーザ蒸95法、CVD法、反応性蒸着法等があげら
れるか、いずれの方法においても、基板に供給される酸
素の膜中への取り込みが重要な因子であり、成膜中の酸
素圧力を高くする、酸素プラズマを利用する、反応ガス
として酸素ガスよりも化学的に活性な原子状酸素、オゾ
ン、亜酸化窒素を使用する等の方法により、膜中の酸素
のストイキオメトリの向−にを図ることが行われている
In recent years, 1n-
In-situ or as-depo film formation technology is attracting attention. These film-forming techniques include, for example, sputtering, laser evaporation, CVD, and reactive evaporation. In all of these methods, it is important to incorporate oxygen supplied to the substrate into the film. This is a major factor, and methods such as increasing the oxygen pressure during film formation, using oxygen plasma, and using atomic oxygen, ozone, and nitrous oxide, which are chemically more active than oxygen gas, as reaction gases, Efforts have been made to improve the stoichiometry of oxygen in the membrane.

例えは、文献(電−j−情報通(1,学会技術研究報1
11S CE  rtlj電導エレク1−ロニクス、■
○a、89.No、54.  (1989)PP、II
〜16)には、反応性蒸着法により1超電導薄膜を作製
する場合に、反応ガスとして、約25%のオゾンを含ん
だ酸素ガスを3X10−”I’orrのガス圧で使用す
る方法が示されている。
For example, literature (Den-j-Information (1), Society Technical Research Report 1)
11S CE rtlj conductive electronics 1-ronics,■
○a, 89. No, 54. (1989) PP, II
~16) describes a method in which oxygen gas containing about 25% ozone is used as a reactive gas at a gas pressure of 3X10-"I'orr when producing a superconducting thin film by reactive vapor deposition. has been done.

また、文献(/ヤパニース ジャーナル オブアプライ
ト′  フィツクス(JAPANESEJ OU RN
 A i、、  OFA P P I−I E I)P
IfYS IC8,Voり 28.No、10゜○CT
ORBER,(1989)PP。
In addition, literature (/Japanese Journal of Appraisal' Fixtures)
A i,, OFA P P I-I E I) P
IfYS IC8, Vori 28. No, 10°○CT
ORBER, (1989) PP.

L l 809〜1.、 l 8 ] ] )には、M
BE(Molecular Beam Epitaxy
)−法により超電導薄膜を作製する場合に、反応ガスと
して、100%のオゾンを3X]、0−6Torrのガ
ス圧で使用する方法か示されている。
L l 809-1. , l 8 ] ]), M
BE(Molecular Beam Epitaxy)
)-method in which 100% ozone is used as a reactive gas at a gas pressure of 3X] and 0-6 Torr.

−・方、超電導薄膜を用いたテノ\イスとしてはトンネ
ル型のジョセフソン素子がある。このトンネル型のン1
セフソン素子に使用する超電導薄膜は、表面か平滑なl
j結晶−〇あることが要求されるが、更に、コヒーレン
ト長かC軸配向膜よりも長い、A軸配向膜、B軸配向膜
、<1.10>軸配向膜等を使用することが有利である
ことかわかっている。
- On the other hand, there is a tunnel-type Josephson device as a device using a superconducting thin film. This tunnel type N1
The superconducting thin film used in the Sefson element has a smooth surface.
Although it is required that the crystal has a crystal value of 〇, it is also advantageous to use an A-axis oriented film, a B-axis oriented film, a <1.10> axis oriented film, etc., which has a coherent length longer than the C-axis oriented film. I know that it is.

特開平]−] 83496には、(100)而を有する
SrTi03M板−1−にスパッタ法によって超電導薄
膜を形成する際、前記基板に照射する酸素イオンの加速
電圧とイオン電流密度を制御することにより、A軸配向
の超電導薄膜を形成させた例が示されている。
JP-A No. 83496 discloses that when a superconducting thin film is formed on a SrTi03M plate-1 having a (100) structure by sputtering, by controlling the acceleration voltage and ion current density of oxygen ions irradiated onto the substrate. , an example in which a superconducting thin film with A-axis orientation is formed is shown.

〈発明が解決しようとする問題点〉 超電導薄膜は、ある温度以上に加熱しないと結晶化せず
、高温では酸素が抜けてしまうという性質がある。従っ
て、一般に前記超電導薄膜は、成膜中の基板温度を結晶
化温度よりも高くして結晶化させた後、温度を下げて酸
素雰囲気中でアニールすることにより作製されている。
<Problems to be Solved by the Invention> A superconducting thin film has the property that it will not crystallize unless it is heated above a certain temperature, and oxygen will escape at high temperatures. Therefore, the superconducting thin film is generally produced by crystallizing the substrate during film formation by raising the temperature higher than the crystallization temperature, and then lowering the temperature and annealing in an oxygen atmosphere.

上記文献(電子情報通信学会技術研究報告SCE  超
電導エレク1ヘロニクス、voQ、89゜No、5/I
、  (1989)I月〕 11〜16)に示されてい
る方法においても、オゾンを使用する効果は冷却時にお
ける膜中への酸素の取り込みにあると記載されているか
、この方法によると、酸素ガスに対するオゾンの濃度か
25%と低いため、成膜中及び冷却時において、膜中に
充分酸素を取り込ませることができなかった。従って基
板全体にわたって均一な単結晶薄膜を得ることはできな
かった。
The above documents (IEICE technical research report SCE superconducting electronics 1 heronics, voQ, 89°No, 5/I
, (1989) I.] 11-16) also states that the effect of using ozone lies in the incorporation of oxygen into the film during cooling. Since the ozone concentration was as low as 25% relative to the gas, sufficient oxygen could not be incorporated into the film during film formation and cooling. Therefore, it was not possible to obtain a uniform single crystal thin film over the entire substrate.

また、文南K(ンヤパニース ジャーナル オフ゛アプ
ライド フィツクス(JΔI) A N E S EJ
 OU RN A l、  OF  AP I) L 
I E DPI−IYS IC3,VoQ、28.No
、] 0゜○c′roRBER,(1989)PPL 
I 809〜L]8]])に示されている方法では10
0%のオゾンを(Φ用しているため、酸素の活性化度は
高いか、3X]0−6Torrと低圧下で成膜している
ため、基板全体に、均一に酸素を供給することができな
か−)だ。従って、大面積で均一なtl結晶薄膜を得る
ことは困難であった。
In addition, Bunnan K (Nyapanese Journal Off-Applied Fixtures (JΔI) ANE S EJ
OU RN A l, OF A P I) L
IE DPI-IYS IC3, VoQ, 28. No
, ] 0゜○c'roRBER, (1989) PPL
In the method shown in I 809-L]8]]) 10
Since 0% ozone (Φ) is used, the degree of oxygen activation is high, or 3X] Because the film is formed under a low pressure of 0-6 Torr, it is possible to uniformly supply oxygen to the entire substrate. I can't do it. Therefore, it has been difficult to obtain a uniform tl crystal thin film over a large area.

また、100%のオゾンを使用すると製造装置が腐食さ
れやすく、繰り返し製造する場合には実用的でないとい
う問題もあった。
Further, there is also the problem that the use of 100% ozone tends to corrode the manufacturing equipment, making it impractical for repeated manufacturing.

また、特開平]−]、 83496に記載されている方
法では、酸素ガスのプラズマを基板に照射しているため
、酸素の活性化度が低く、膜中に充分に酸素を取り込ま
ゼることかできなかった。従って、部分的にはΔ軸配向
の超電導薄膜が得られるものの、大面積で単結晶薄膜を
得ることは困9!ifであった。
Furthermore, in the method described in JP-A-83496, the degree of activation of oxygen is low because the substrate is irradiated with oxygen gas plasma, and it is difficult to incorporate enough oxygen into the film. could not. Therefore, although it is possible to obtain a superconducting thin film partially oriented along the Δ axis, it is difficult to obtain a single crystal thin film over a large area! It was if.

本発明は、表面の平滑性が良好な、単結晶の超電導薄膜
を大面積で製造する方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a large-area single-crystal superconducting thin film with good surface smoothness.

く問題点を解決する手段〉 前記目的を達成するために本発明では、真空蒸着法によ
り超電導薄膜を作製する際、基板表面に酸素とオゾンの
混合ガスを供給することにより1摸中に酸素を取り込ま
せる方法において、前記反応ガスのオゾン濃度を5〜2
0wt%とし、真空チャンバ内のガス圧を5X]O’〜
6X ] O−’To r rとした。
Means for Solving Problems> In order to achieve the above-mentioned object, in the present invention, when producing a superconducting thin film by a vacuum evaporation method, oxygen is removed during one operation by supplying a mixed gas of oxygen and ozone to the substrate surface. In the method of incorporating, the ozone concentration of the reaction gas is set to 5 to 2.
0wt%, and the gas pressure in the vacuum chamber is 5X]O'~
6X] O-'Torr.

さらに+’+i+記目的記述目的るために本発明では、
真空蒸着法により超電導薄膜を作製する際、基板表面に
酸素とオゾンの混合ガスを供給することにより、膜中に
酸素を取り込ませる方法において、真空チャンバ内に前
記混合ガスのプラズマを発生させた。
Furthermore, in the present invention, for the purpose of +'+i+ purpose description,
When producing a superconducting thin film by vacuum evaporation, a plasma of the mixed gas was generated in a vacuum chamber in a method in which oxygen was introduced into the film by supplying a mixed gas of oxygen and ozone to the substrate surface.

〈作用〉 大面積の超電導薄膜を単結晶状態で得るためには、まず
、成膜時に膜中に充分酸素を取り込ませる必要かある。
<Operation> In order to obtain a large-area superconducting thin film in a single crystal state, it is first necessary to incorporate sufficient oxygen into the film during film formation.

本発明では、基板温度を結晶化温度よりも高い550〜
650°Cに設定すると共に、オゾン濃度が5〜20w
t%である酸素ガスとオゾンの混合ガスを、真空チャン
ノル内のガス圧が5x 10−5〜6X 10−’To
 r rとなるように基板に供給しているため、反応性
の高いガスを均一に基板に供給することができる。従っ
て、成膜時において膜中に充分な酸素を均一に取り込ま
せることができる。
In the present invention, the substrate temperature is set at 550°C to 550°C, which is higher than the crystallization temperature.
Set to 650°C and ozone concentration of 5 to 20W.
A mixed gas of oxygen gas and ozone having a concentration of
Since the gas is supplied to the substrate so that r r, highly reactive gas can be uniformly supplied to the substrate. Therefore, sufficient oxygen can be uniformly incorporated into the film during film formation.

但し、上記のように、基板温度が550〜650°Cで
あると、このままでは、超電導特性を示さない結晶形で
薄膜が得られる。この薄膜に酸素をさらに取り込まぜて
、超電導特性を示す結晶形にするためには、基板温度を
500°Cに下げ、酸素雰囲気中でアニールする必要が
あるが、このときに酸素が充分取り込まれないと、単結
晶化することができない。本発明では、反応ガスを供給
する条件を上述のように構成しているため、前記酸素雰
囲気中でのアニール時においても、膜中に充分酸素を取
り込ませることができ、良好な超電導特性を示す超電導
薄膜を単結晶で得ることができる。
However, as described above, if the substrate temperature is 550 to 650°C, a thin film in a crystalline form that does not exhibit superconducting properties can be obtained if the substrate temperature is 550 to 650°C. In order to further incorporate oxygen into this thin film and make it into a crystalline form that exhibits superconducting properties, it is necessary to lower the substrate temperature to 500°C and anneal it in an oxygen atmosphere. Without it, single crystallization cannot be achieved. In the present invention, since the conditions for supplying the reaction gas are configured as described above, even during annealing in the oxygen atmosphere, sufficient oxygen can be incorporated into the film, and the film exhibits good superconducting properties. A superconducting thin film can be obtained in the form of a single crystal.

尚、上記オゾン濃度が酸素ガスに対して、5wt%より
小さくなると、活性化された酸素の量か少なくなり、成
膜中及び冷却時に膜中に充分に酸素が取り込まれなくな
る。また、」−記オシン濃度が酸素ガスに対して、20
wt%よりも大きくなると製造装置が腐食されたり、蒸
着源が酸化されることにより、原料の蒸発速度か不安定
になる等の問題が発生する。
Note that if the ozone concentration is less than 5 wt % with respect to oxygen gas, the amount of activated oxygen will be small, and oxygen will not be sufficiently incorporated into the film during film formation and cooling. In addition, when the osine concentration is 20% relative to oxygen gas,
If it exceeds wt%, problems such as corrosion of the manufacturing equipment and oxidation of the evaporation source will occur, such as the evaporation rate of the raw material becoming unstable.

また、ガス圧が排気系直−にで5X]0−5T o r
 rよりも低くなると、基板に供給される混合ガスの濃
度が低くなり、膜中に充分に酸素が取り込まれなくなる
。6X 10−’To r rよりも高くなると、作製
される超電導薄膜の膜質が悪くなるという問題が発生す
る。
In addition, the gas pressure is increased directly to the exhaust system by 5X]0-5T or
When it is lower than r, the concentration of the mixed gas supplied to the substrate becomes low, and oxygen is not sufficiently incorporated into the film. If it is higher than 6X 10-' Torr, a problem arises in that the quality of the produced superconducting thin film deteriorates.

また、酸素とオゾンの混合ガスを基板に供給する際、第
1図に示す真空チャンバ116内にプラズマを発生させ
ると、酸素の供給方法を上述のように構成した場合と同
様に、充分に活性化された酸素が基板に供給されるため
、大面積の単結晶超電導薄膜が得られる。
Furthermore, when a mixed gas of oxygen and ozone is supplied to the substrate, if plasma is generated in the vacuum chamber 116 shown in FIG. Since the oxidized oxygen is supplied to the substrate, a large-area single-crystal superconducting thin film can be obtained.

〈実施例〉 本発明の実施例を図面を参照して詳細に説明する。<Example> Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例に使用した装置の概略的構成図
である。同図において、101.102はEB蒸着用の
るつほであり、103は抵抗加熱用のポートである。即
ち、この装置はEBガン2基と抵抗加熱1基とを備えて
おり、3元素を独立に蒸着できるようになっている。1
04.105.106は各々の蒸発源付近に設けられた
膜厚モニターであり、蒸着速度が常に一定になるように
、投入パワーにフィードバックをかけながら制御してい
る。107.108.109は蒸発源イ」近に設けられ
たンヤッタ、110は基板イ・j近に設けられたシャッ
タで、104.105.106でモニタしている蒸着速
度が一定になったとき、107.108.109を開き
、最終的に110を開くことで膜組成の制御性を高めて
いる。111はオゾンと酸素ガスの混合ガスを導入する
だめのパイプであり、112は前記混合ガスを真空チャ
ンバ116内でプラズマ化させるR Fコイルである。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention. In the figure, 101 and 102 are melting holes for EB evaporation, and 103 is a port for resistance heating. That is, this device is equipped with two EB guns and one resistance heating device, and is capable of independently vapor depositing three elements. 1
04, 105, and 106 are film thickness monitors installed near each evaporation source, and are controlled by applying feedback to the input power so that the evaporation rate is always constant. 107, 108, and 109 are shutters installed near the evaporation source A, and 110 are shutters installed near the substrate I and J. When the evaporation rate monitored at 104, 105, and 106 becomes constant, By opening 107, 108, and 109, and finally opening 110, the controllability of the film composition is improved. 111 is a pipe for introducing a mixed gas of ozone and oxygen gas, and 112 is an RF coil for turning the mixed gas into plasma in the vacuum chamber 116.

113は基板、114は基板ボルダ−1115は基板を
加熱させるためのヒータである。この基板ボルダ−11
4は、膜の均一性を高めるため、成膜時に] Or p
mの回転数で基板113を回転さぜる機構となっている
。116は上記の設備を設置しである真空チャンバであ
り、117はチャンバ内の真空度を測定するための真空
ケージ、118は真空チャンバ116を真空に引くため
の、ポンプである。
113 is a substrate, 114 is a substrate boulder, and 1115 is a heater for heating the substrate. This board boulder-11
4 is used during film formation to improve the uniformity of the film] Or p
The mechanism is such that the substrate 113 is rotated at a rotation speed of m. 116 is a vacuum chamber in which the above equipment is installed, 117 is a vacuum cage for measuring the degree of vacuum in the chamber, and 118 is a pump for evacuating the vacuum chamber 116.

一1〇− 実施例I 以下に本発明の超電導薄膜を作うクする工程を説明する
。尚、本実施例では組成比が Y、Ba2Cu307−1の超電導薄膜を作製した。
110-Example I The steps for making the superconducting thin film of the present invention will be described below. In this example, a superconducting thin film having a composition ratio of Y and Ba2Cu307-1 was fabricated.

まず、YとBaの金属をそれぞれEB蒸着用のるつぼ1
01.102に設置し、Cuの金属を抵抗加熱用のボー
1−103に設置した。真空ポンプ218で真空チャン
バ116を引き、真空ゲージ117の真空度か3XIO
−OTorri、:なったところで、ガス導入パイプ1
11から]Qwt%のオゾンを含んだ酸素ガスとオゾン
の混合ガスを導入し、真空度が5×10−”T o r
 rとなるようにした。
First, Y and Ba metals are each placed in crucible 1 for EB deposition.
01.102, and Cu metal was installed in the resistance heating bow 1-103. The vacuum chamber 116 is pulled by the vacuum pump 218, and the vacuum level of the vacuum gauge 117 is 3XIO.
-OTorri: Now, gas introduction pipe 1
11] A mixed gas of oxygen gas and ozone containing Qwt% ozone was introduced, and the degree of vacuum was 5 × 10-”T or
It was made to be r.

次に、基板ホルダー114に設置された基板113をヒ
ータ115で加熱し、600°Cに保持した。基板11
3には2Qmrn角のMg0(1,00)の単結晶基板
を用いた。尚、基板温度は550°C〜650°Cに設
定するのが望ましく、550°Cより低いと、超電導薄
膜は非結晶状態となる。また、650°Cをこえると膜
表面の平坦性が悪くなり、いずれも、均一な薄膜を得る
には不適当な状態となる。1−記ガス導入パイプIII
と基板113.七の距離は、10〜30mmとするのか
好ましく、本実施例では、25mmとなるようにした。
Next, the substrate 113 placed on the substrate holder 114 was heated with a heater 115 and maintained at 600°C. Substrate 11
For No. 3, an Mg0 (1,00) single crystal substrate of 2Q mrn angle was used. Note that the substrate temperature is desirably set at 550°C to 650°C, and if the temperature is lower than 550°C, the superconducting thin film will be in an amorphous state. Furthermore, if the temperature exceeds 650°C, the flatness of the film surface deteriorates, and both conditions are inappropriate for obtaining a uniform thin film. 1- Gas introduction pipe III
and the substrate 113. It is preferable that the distance 7 is 10 to 30 mm, and in this example, it is 25 mm.

ガス導入パイプ111と基板+13の距1雛か]、0m
m以下になると、ノi(板113への酸素の供給が不均
一になり、また、30mmをこえると基板113への酸
素の(](給量が不足することになる。
Distance between gas introduction pipe 111 and substrate +13], 0m
If the distance is less than 30 mm, the supply of oxygen to the board 113 will become uneven, and if it exceeds 30 mm, the amount of oxygen supplied to the substrate 113 will be insufficient.

次に、+01、+02、jo3それぞれの蒸発1原にパ
ワーを没入し、I戊f1%)Ily  ■3a : (
、u−]:2:3の組成比となるように膜厚モニタ10
4.105.106でそれぞれの蒸発源の蒸発速度をモ
ニタしながら、一定速度となった所で、/ヤッタ107
、+08.109を開いた。そして基板(1J近のンヤ
ッタ110を開き、成膜を開始した。最終的に超電導薄
膜を成j1ぐ速度05人/ s e cで厚さが1.0
00八となるように1戊膜した。成膜後、500°Cま
で冷却し、500℃を(V持したまま、チャンバ内が3
00To r rになるまで−tZ記混合比の酸素とオ
ゾンの混合ガスを導入し、1時間のアニールを行うこと
により、超電導特性を示さない状態から超電導特性を示
す状態に結晶形を変化さU゛た。その後は室を品まで自
然冷却させ、真空チャンバ11Gから取り出した。以1
−の工程により超電導薄膜を作製した。
Next, immerse power into the evaporation 1 source of +01, +02, and jo3, and create Ily ■3a: (
, u-]: the film thickness monitor 10 so that the composition ratio is 2:3.
4. While monitoring the evaporation rate of each evaporation source at 105 and 106, /Yatta107
, opened +08.109. Then, we opened the substrate (nearly 1J Nyatta 110) and started film formation.Finally, we formed a superconducting thin film with a thickness of 1.0 at a speed of 05 persons/sec.
One film was applied so that the number was 008. After film formation, cool to 500°C, and keep the temperature at 500°C (V) until the inside of the chamber reaches 3.
By introducing a mixed gas of oxygen and ozone at the mixing ratio shown below and annealing for 1 hour until the temperature reaches 00 Torr, the crystal form changes from a state that does not exhibit superconducting properties to a state that exhibits superconducting properties. It was. Thereafter, the chamber was allowed to cool down naturally, and the product was taken out from the vacuum chamber 11G. Below 1
A superconducting thin film was produced by the process of -.

第2図に本実施例によりf′1腸ゾしたj1α電導薄膜
のX線回折パターン図を示す。本実施例では同図に示す
とおり、完全にC軸配向した Y 、B a 2Cu 、O?−1の組成比を持つ超電
導薄膜か得られた。
FIG. 2 shows an X-ray diffraction pattern diagram of the j1α conductive thin film subjected to f'1 concentration according to this embodiment. In this example, as shown in the figure, Y 2 , B a 2Cu , O? A superconducting thin film with a composition ratio of −1 was obtained.

また、電子線回折法で膜表面を解析しな結果、基板上の
任意の点においC3ストリーク状のパターンか観測され
、基板全体にわたって単結晶tW膜になっていることか
分かった。
Furthermore, as a result of analyzing the film surface using electron beam diffraction, a C3 streak-like pattern was observed at arbitrary points on the substrate, indicating that the film was a single-crystal tW film over the entire substrate.

更に、電子顕微鏡で膜表面を観察した結果、基板全体に
わたって、双晶や粒界が見られない、単結晶薄膜になっ
ていることか分かった。
Furthermore, as a result of observing the film surface with an electron microscope, it was found that the film was a single-crystal thin film with no twins or grain boundaries observed over the entire substrate.

第3図に本実施例の特性の表面均一性を示す。FIG. 3 shows the surface uniformity of the characteristics of this example.

同図に小才とおり、本実施例に示す!j法で作製した超
電導薄膜は、基板20mm角全体にわたって均一に、ゼ
ロ抵抗温度T c−88Kの良好な超電導特性を示した
。尚、第3図において、縦軸はセロ抵抗41八度、(苗
輔は基板の中心からの距離である。
As shown in the figure, it is shown in this example! The superconducting thin film produced by the J method uniformly exhibited good superconducting properties over the entire 20 mm square substrate with a zero resistance temperature Tc of -88K. In FIG. 3, the vertical axis represents the cell resistance of 418 degrees (the distance from the center of the substrate).

また、臨界電流密度(、lc)はt晶度77Kにおいで
、6.5x l 06A/cm2てあった。
Further, the critical current density (, lc) was 6.5×l 06 A/cm 2 at a crystallinity of 77 K.

実施例2 ガス導入パイプI11のガス吹き出し[1と基板の中心
との距離か10mIT′lとなるようにパイプ111を
設置し、真空チャンバー内の真空度か5x ]、 0=
To r +“となるようにした以外は実施例1と同様
の方法で超電導薄膜を作;摸した。本実施例では実施例
1と同様、基板20mm角にわたりて均一に、ゼロ抵抗
温度TC=88に、温度77Kにおける臨界電流密度J
c=6.5X]、06A / c m 2の良好な超電
導特性が得られた。
Example 2 Gas blowout from gas introduction pipe I11 [Pipe 111 is installed so that the distance between I1 and the center of the substrate is 10 mIT'l, and the degree of vacuum in the vacuum chamber is 5x], 0=
A superconducting thin film was fabricated in the same manner as in Example 1, except that Tor 88, the critical current density J at a temperature of 77K
c=6.5X], 06A/cm2 good superconducting properties were obtained.

実施例3 基板113に5rTi○、(100)の単結晶Jj(板
を用い、基板温度を550°Cとした以外は実施例1と
同様の方法で超電導薄膜をft製した3、括−1べ 板温度は550〜650°Cにするのが好ましく、55
0°Cより低くなると超電導薄膜が非晶質となり、65
0℃より高くなると超電導薄膜が多結晶体となる。第4
図に本実施例で得られた5rTi○3(100)上に成
膜した超電導薄膜のX線回折パターンを示す。同図に示
すとおり、本実施例により、完全にA軸配向した Y + B a 2Cu 307−X超電導薄膜が得ら
れた。
Example 3 A superconducting thin film was fabricated using the same method as in Example 1 except that a 5rTi○ (100) single crystal Jj (plate was used as the substrate 113 and the substrate temperature was 550°C). The plate temperature is preferably 550 to 650°C, and 55
When the temperature drops below 0°C, the superconducting thin film becomes amorphous and 65
When the temperature is higher than 0°C, the superconducting thin film becomes polycrystalline. Fourth
The figure shows an X-ray diffraction pattern of a superconducting thin film formed on 5rTi○3 (100) obtained in this example. As shown in the figure, in this example, a completely A-axis oriented Y + B a 2Cu 307-X superconducting thin film was obtained.

また、電子線回折法で解析した結果、基板の任意の点に
おいてストリーク状のパターンが得られ、基板全体にわ
たって、単結晶薄膜が積層されていることが分かった。
Further, as a result of analysis using electron beam diffraction, a streak-like pattern was obtained at any point on the substrate, and it was found that single crystal thin films were laminated over the entire substrate.

更に、本実施例においても、実施例1同様基板20mm
角にわたって均一に、ゼロ抵抗温度Tc−8,8に、7
7Kにおける臨界電流密度Jc−6,0XI06A/c
m2の良好な超電導特性が得られた。
Furthermore, in this example, as in Example 1, the substrate is 20 mm.
uniformly over the corner to zero resistance temperature Tc-8,8,7
Critical current density Jc-6,0XI06A/c at 7K
Good superconducting properties of m2 were obtained.

実施例4 基板113にS iT 1o3(110)面を用い、た
以外は実施例1と同様にして超電導薄膜を作製した。
Example 4 A superconducting thin film was produced in the same manner as in Example 1 except that the substrate 113 was a SiT 1o3 (110) plane.

本実施例においても実施例3同様基板の温度範囲は55
0°C〜650℃か好ましい。
In this example, as in Example 3, the temperature range of the substrate is 55
0°C to 650°C is preferred.

本実施例により得られた超電導薄膜のX線回折パターン
を第5図に示す。同図に示すように、(103)ないし
は(110)に配向した超電導薄膜が得られた。この超
電導薄膜は、実施例1同様、20mm角の基板全体にわ
たって、均一にゼロ抵抗温度T c = 33 K、7
7Kにおける臨界電流密度Jc=6. 2A/cm2の
良好な超電導特性が得られた。
FIG. 5 shows the X-ray diffraction pattern of the superconducting thin film obtained in this example. As shown in the figure, a superconducting thin film with (103) or (110) orientation was obtained. As in Example 1, this superconducting thin film has a uniform zero resistance temperature T c = 33 K, 7 over the entire 20 mm square substrate.
Critical current density Jc at 7K = 6. Good superconducting properties of 2 A/cm2 were obtained.

実施例5 成膜中及び500°Cまての冷却中にRFコイル112
により、RFパワー100Wでプラズマを発生させた以
外は、実施例1と同様に超電導薄膜を作製した。上記の
ようにプラズマを発生させることにより、酸素の活性種
を増やし、膜がより酸化されやすくなり、オゾンと酸素
ガスの混合ガスのみを基板に供給した場合よりも更に、
表面の平坦性が良い膜が得られる。本実施例では実施例
1と同様、基板全体にわたって均一に、ゼロ抵抗温度T
c=9QK、臨界電流密度Jc− 7X106A/cm’の良好な超電導特性が得られた。
Example 5 RF coil 112 during film formation and cooling to 500°C
A superconducting thin film was produced in the same manner as in Example 1, except that plasma was generated with an RF power of 100 W. By generating plasma as described above, the number of oxygen active species increases, and the film becomes more easily oxidized, making it even more oxidized than when only a mixed gas of ozone and oxygen gas is supplied to the substrate.
A film with good surface flatness can be obtained. In this example, as in Example 1, the zero resistance temperature T
Good superconducting properties with c=9QK and critical current density Jc-7X106A/cm' were obtained.

以上、本発明のいずれの実施例においても、Y、Ba、
Cu30□−8の酸化物超電導薄膜を作製したが、この
組成に限定されず、他の酸化物超電導体である(L a
 、−、M、) 2Cu 04 (M= B a 。
As mentioned above, in any of the embodiments of the present invention, Y, Ba,
Although an oxide superconducting thin film of Cu30□-8 was fabricated, the composition is not limited to this, and other oxide superconductors (La
,−,M,) 2Cu 04 (M=B a .

S r、Ca)、Ln、Ba2Cu307−、。Sr, Ca), Ln, Ba2Cu307-,.

Ln、Ba、Cu、O,(Ln=Nd、Pm、Sm。Ln, Ba, Cu, O, (Ln=Nd, Pm, Sm.

Eu、Gd、Dy、Ho、Er、Tm、Yb)。Eu, Gd, Dy, Ho, Er, Tm, Yb).

B i、S r2Ca、Cu、、○IO+B il□P
bo25bo、+Ca2.oSr2.oCL12.sO
x+(B l67Pbo3)2S r2Ca、Cu30
.o。
B i, S r2Ca, Cu, ○IO+B il□P
bo25bo, +Ca2. oSr2. oCL12. sO
x+(B l67Pbo3)2S r2Ca, Cu30
.. o.

T I 2Ba2Ca2Cu30IO+  B a +
−xKxB I 03+Nd2−xCexCu○4−y
等でも本実施例と同様に基板全体にわたって均一な超電
導特性が得られる。
T I 2Ba2Ca2Cu30IO+ B a +
-xKxB I 03+Nd2-xCexCu○4-y
etc., uniform superconducting characteristics can be obtained over the entire substrate as in this embodiment.

また、基板として本実施例ではMgO(100)、5r
Ti03 (100)、(110)単結晶基板を用いた
が、LaAlO3単結晶基板、L a G a O3単
結晶基板、イツトリウム安定化ジルコニア(ysz)多
結晶基板等でも同様の超電導特性が得られた。
In addition, as a substrate in this example, MgO (100), 5r
Although Ti03 (100) and (110) single crystal substrates were used, similar superconducting properties were obtained with LaAlO3 single crystal substrate, La Ga O3 single crystal substrate, yttrium stabilized zirconia (ysz) polycrystalline substrate, etc. .

〈発明の効果〉 本発明は、以」−のように構成されているので以下のよ
うな効果を奏する。
<Effects of the Invention> Since the present invention is configured as follows, it produces the following effects.

本発明は、真空蒸着法により超電導薄膜を作製する際、
基板表面に酸素とオゾンの混合ガスを供給することによ
り、膜中に酸素を取り込ませる方法において、前記反応
ガスのオゾン濃度を5〜20wt%とし、真空チャンバ
内のガス圧を5×10−5〜6×1O−4TOrrとし
ているので、成膜中及び冷却中に膜中に充分に酸素を取
り込ませることができる。従って、表面平滑性の良い単
結晶の超電導薄膜を大面積にわたって得ることができる
In the present invention, when producing a superconducting thin film by a vacuum evaporation method,
In the method of introducing oxygen into the film by supplying a mixed gas of oxygen and ozone to the substrate surface, the ozone concentration of the reaction gas is set to 5 to 20 wt%, and the gas pressure in the vacuum chamber is set to 5 x 10-5. Since the value is 6×1 O −4 TOrr, sufficient oxygen can be incorporated into the film during film formation and cooling. Therefore, a single crystal superconducting thin film with good surface smoothness can be obtained over a large area.

さらに、本発明の超電導薄膜の製造方法では、真空蒸着
法により超電導薄膜を作製する際、基板表面に酸素とオ
ゾンの混合ガスを供給することにより酸素を取り込ませ
る方d;において、真空チャンバ内に前記混合ガスのプ
ラズマを発生させているため、膜中に充分に酸素を取り
込ませる事ができる。従って、表面平滑性の良い単結晶
の超電導薄膜を大面積にわたって得ることができる。
Furthermore, in the method for producing a superconducting thin film of the present invention, when producing a superconducting thin film by vacuum evaporation, oxygen is introduced into the substrate surface by supplying a mixed gas of oxygen and ozone to the substrate surface. Since plasma of the mixed gas is generated, sufficient oxygen can be incorporated into the film. Therefore, a single crystal superconducting thin film with good surface smoothness can be obtained over a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の装置の概略的構成図、第2図
は実施例1で得られた薄膜のX線回折パターン図、第3
図は実施例1で得られた薄膜の超電導特性の基板表面均
一性を示す図であり、縦軸はゼロ抵抗温度、横軸は基板
の中心からの距離である。第4図は実施例3で得られた
超電導薄膜のX線回折パターン図、第5図は実施例4で
得られた超電導薄膜のX線回折パターン図、第6図は実
施例5で得られた超電導薄膜のX線回折のパターン図で
ある。 101.102・・・電子ビーム加熱蒸発源103・・
・抵抗加熱蒸発源、 104.105.106・・・膜厚モニタ、107.1
08.109.110・シャッタ111・・・ガス導入
用パイプ、112・・・RFコイル、113・・基板、
114・・基板ボルダ−1115・・・ヒータ、116
・・・真空ケージ、117・真空チャンバ、118・真
空ポンプ代理人 弁理士 梅1)勝(他2名) 日匂舐〈 日洋函〈 叩ミ飄〈 )      o     Q o−、−、30 し) わ0ミ偏偶・く(y)
FIG. 1 is a schematic configuration diagram of an apparatus according to an example of the present invention, FIG. 2 is an X-ray diffraction pattern diagram of a thin film obtained in Example 1, and FIG.
The figure is a diagram showing the substrate surface uniformity of the superconducting properties of the thin film obtained in Example 1, where the vertical axis is the zero resistance temperature and the horizontal axis is the distance from the center of the substrate. Figure 4 is an X-ray diffraction pattern diagram of the superconducting thin film obtained in Example 3, Figure 5 is an X-ray diffraction pattern diagram of the superconducting thin film obtained in Example 4, and Figure 6 is an X-ray diffraction pattern diagram of the superconducting thin film obtained in Example 5. FIG. 2 is an X-ray diffraction pattern diagram of a superconducting thin film. 101.102...Electron beam heating evaporation source 103...
・Resistance heating evaporation source, 104.105.106...Film thickness monitor, 107.1
08.109.110・Shutter 111... Gas introduction pipe, 112... RF coil, 113... Board,
114...Substrate boulder-1115...Heater, 116
・・・Vacuum cage, 117・Vacuum chamber, 118・Vacuum pump agent Patent attorney Ume 1) Masaru (and 2 others) Nichiyo Nuri〈Nichiyokan〈Takimiku〈) o Q o-, -, 30 shi ) wa 0 mi lopsided ku (y)

Claims (1)

【特許請求の範囲】 1、真空蒸着法により超電導薄膜を作製する際、基板表
面に酸素とオゾンの混合ガスを供給することにより、膜
中に酸素を取り込ませる方法において、 前記混合ガスのオゾン濃度を5〜20wt%とし、真空
チャンバ内のガス圧を5×10^−^5〜6×10^−
^4Torrとしたことを特徴とする超電導薄膜の作製
方法。 2、真空蒸着法により、超電導薄膜を作製する際、基板
表面に酸素とオゾンの混合ガスを供給することにより、
膜中に酸素を取り込ませる方法において、 真空チャンバ内に前記混合ガスのプラズマを発生させる
ことを特徴とする超電導薄膜の作製方法。
[Claims] 1. In a method in which oxygen is incorporated into the film by supplying a mixed gas of oxygen and ozone to the substrate surface when producing a superconducting thin film by vacuum evaporation, the ozone concentration of the mixed gas is is set to 5 to 20 wt%, and the gas pressure in the vacuum chamber is set to 5 × 10^-^5 to 6 × 10^-
A method for producing a superconducting thin film characterized by setting the temperature to ^4 Torr. 2. When producing a superconducting thin film using the vacuum evaporation method, by supplying a mixed gas of oxygen and ozone to the substrate surface,
A method for producing a superconducting thin film, the method comprising: generating a plasma of the mixed gas in a vacuum chamber.
JP2331914A 1990-11-27 1990-11-27 Production of superconducting thin film Pending JPH04193703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331914A JPH04193703A (en) 1990-11-27 1990-11-27 Production of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331914A JPH04193703A (en) 1990-11-27 1990-11-27 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH04193703A true JPH04193703A (en) 1992-07-13

Family

ID=18249048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331914A Pending JPH04193703A (en) 1990-11-27 1990-11-27 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH04193703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622918A (en) * 1994-08-26 1997-04-22 Sumitomo Electric Industries, Ltd. Process and apparatus for preparing YBaCuO superconducting films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622918A (en) * 1994-08-26 1997-04-22 Sumitomo Electric Industries, Ltd. Process and apparatus for preparing YBaCuO superconducting films

Similar Documents

Publication Publication Date Title
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
US6610428B2 (en) Controlled conversion of metal oxyfluorides into superconducting oxides
EP1386979B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
KR20070112071A (en) Coated conductor and polycrystalline films useful for the production of high temperatures superconductor layers
US6794339B2 (en) Synthesis of YBa2CU3O7 using sub-atmospheric processing
US5453306A (en) Process for depositing oxide film on metallic substrate by heat plasma flash evaporation method
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
Yu et al. HgBa2CaCu2Oy superconducting thin films prepared by laser ablation
JPH01309956A (en) Production of oxide superconductor
JPH04193703A (en) Production of superconducting thin film
US5489573A (en) Thallium-calcium-barium-copper-oxide superconductor with silver and method
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPH01208327A (en) Production of thin film of superconductor
KR970009739B1 (en) Method of manufacture for superconductor thin film
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JP3562120B2 (en) Composite structure of stabilized zirconia thin film and single-crystal silicon substrate and method for producing the same
Cheng et al. Preparation and characterization of Pt/MgO/Si multilayer thin films
JP2551983B2 (en) Preparation method of oxide superconducting film using chemical vapor deposition
JPH0196015A (en) Formation of superconducting thin film
Ressler et al. Ion Beam-Assisted Deposition of Biaxially Aligned CeO2 and ZrO2 Thin Films on Amorphous Substrates
JPH01183496A (en) Production of single crystal oxide superconducting thin film
JP2919956B2 (en) Superconducting member manufacturing method