JP4619697B2 - Oxide superconducting conductor and manufacturing method thereof - Google Patents

Oxide superconducting conductor and manufacturing method thereof Download PDF

Info

Publication number
JP4619697B2
JP4619697B2 JP2004178230A JP2004178230A JP4619697B2 JP 4619697 B2 JP4619697 B2 JP 4619697B2 JP 2004178230 A JP2004178230 A JP 2004178230A JP 2004178230 A JP2004178230 A JP 2004178230A JP 4619697 B2 JP4619697 B2 JP 4619697B2
Authority
JP
Japan
Prior art keywords
thin film
polycrystalline
polycrystalline thin
oxide superconducting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004178230A
Other languages
Japanese (ja)
Other versions
JP2005294240A (en
Inventor
泰範 須藤
一臣 柿本
康裕 飯島
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004178230A priority Critical patent/JP4619697B2/en
Publication of JP2005294240A publication Critical patent/JP2005294240A/en
Application granted granted Critical
Publication of JP4619697B2 publication Critical patent/JP4619697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、基材上に酸化物超電導薄膜を有する酸化物超電導導体の中間層として好適な多結晶配向中間薄膜とその製造方法及び該多結晶配向中間薄膜を中間層として用いた酸化物超電導導体とその製造方法に関する。   The present invention relates to a polycrystalline oriented intermediate thin film suitable as an intermediate layer of an oxide superconducting conductor having an oxide superconducting thin film on a substrate, a manufacturing method thereof, and an oxide superconducting conductor using the polycrystalline oriented intermediate thin film as an intermediate layer And its manufacturing method.

近年になって発見された酸化物超電導体は、液体窒素温度を超える臨界温度を示す優れた超電導体である。このような酸化物超電導体を超電導導体として実用化するためには、金属製のテープ基材(以下、「金属テープ基材」とも言う。)上に、結晶配向性の良好な酸化物超電導薄膜を形成する必要がある。
一般に金属テープ基材は多結晶質であり、その結晶構造が酸化物超電導体と大きく異なっている。そのため、金属テープ基材上に、結晶配向性の良好な酸化物超電導薄膜を直に形成することは難しい。
そこで、ハステロイテープなどの金属テープ基材上に、中間層として結晶配向性に優れたGdZrなどの多結晶薄膜を形成した後、この多結晶薄膜上にYBaCu系の酸化物超電導薄膜を形成した酸化物超電導導体が開発されている(例えば、特許文献1参照。)。
Oxide superconductors discovered in recent years are excellent superconductors that exhibit a critical temperature above the liquid nitrogen temperature. In order to put such an oxide superconductor into practical use as a superconductor, an oxide superconducting thin film having a good crystal orientation on a metal tape substrate (hereinafter also referred to as “metal tape substrate”). Need to form.
In general, a metal tape base material is polycrystalline, and its crystal structure is significantly different from that of an oxide superconductor. Therefore, it is difficult to directly form an oxide superconducting thin film with good crystal orientation on a metal tape substrate.
Therefore, after forming a polycrystalline thin film such as Gd 2 Zr 2 O 7 having excellent crystal orientation as an intermediate layer on a metal tape substrate such as hastelloy tape, Y 1 Ba 2 Cu 3 is formed on this polycrystalline thin film. O x based oxide superconductor to form an oxide superconducting thin film have been developed (e.g., see Patent Document 1.).

この多結晶薄膜は、その結晶が予めc軸配向し、a軸およびb軸においても配向するように、イオンビームアシスト(Ion Beam Assisted Deposition:略称IBAD。)法により形成される。
BaCu系の酸化物超電導薄膜を形成するには、多結晶薄膜上に均質に薄膜を形成することができるパルスレーザ蒸着(Pulsed Laser Deposition:略称PLD。)法などが用いられる。
そして、この多結晶薄膜上にYBaCu系の酸化物超電導薄膜を形成すると、その結晶のc軸,a軸およびb軸が多結晶薄膜の結晶に整合するようにエピタキシャル成長して結晶化し、これにより結晶配向性の良好なYBaCu系の酸化物超電導薄膜が得られる。
This polycrystalline thin film is formed by an ion beam assisted deposition (abbreviated as IBAD) method so that the crystals are pre-c-axis oriented and also oriented in the a-axis and b-axis.
In order to form a Y 1 Ba 2 Cu 3 O x- based oxide superconducting thin film, a pulsed laser deposition (abbreviated as PLD) method that can form a thin film uniformly on a polycrystalline thin film is used. It is done.
When a Y 1 Ba 2 Cu 3 O x- based oxide superconducting thin film is formed on this polycrystalline thin film, it is epitaxially grown so that the c-axis, a-axis and b-axis of the crystal are aligned with the polycrystalline thin-film crystal. Thus, a Y 1 Ba 2 Cu 3 O x -based oxide superconducting thin film having good crystal orientation can be obtained.

このように、酸化物超電導導体の作製において、基材上に結晶配向性を制御した多結晶薄膜を形成し、この上に結晶配向性の良好なYBaCu系の酸化物超電導薄膜を形成することで、超電導導体の超電導特性(臨界電流(Ic)、臨界電流密度(Jc)など)を改善することができる。 Thus, in the production of an oxide superconducting conductor, a polycrystalline thin film with controlled crystal orientation is formed on a substrate, and a Y 1 Ba 2 Cu 3 O x- based oxide with good crystal orientation is formed thereon. By forming the superconducting thin film, the superconducting characteristics (critical current (Ic), critical current density (Jc), etc.) of the superconducting conductor can be improved.

さらに、本発明者らが研究を重ねた結果、IBAD法により形成された多結晶薄膜上に、PLD法などにより同一材料からなる第二の多結晶薄膜を形成すると、IBAD法により形成された多結晶薄膜の結晶配向性が改善されることが分かった。また、基材上に第一の多結晶薄膜と第二の多結晶薄膜とからなる多結晶配向中間薄膜を形成し、この第二の多結晶薄膜上にYBaCu系の酸化物超電導薄膜を形成することによって、得られる超電導導体の超電導特性を更に向上させることが可能である。
特開平11−86647号公報
Furthermore, as a result of repeated studies by the present inventors, when a second polycrystalline thin film made of the same material is formed on the polycrystalline thin film formed by the IBAD method by the PLD method or the like, the polycrystalline thin film formed by the IBAD method is formed. It was found that the crystal orientation of the crystal thin film was improved. Further, a polycrystalline oriented intermediate thin film composed of a first polycrystalline thin film and a second polycrystalline thin film is formed on a substrate, and a Y 1 Ba 2 Cu 3 O x -based film is formed on the second polycrystalline thin film. By forming an oxide superconducting thin film, it is possible to further improve the superconducting properties of the resulting superconducting conductor.
Japanese Patent Laid-Open No. 11-86647

前述したように、IBAD法により形成された第一の多結晶薄膜上に、PLD法により同一材質からなる第二の多結晶薄膜を形成し、結晶配向性を改善するためには、数mTorrの低酸素雰囲気中で成膜を行うことが望ましい。   As described above, in order to improve the crystal orientation by forming the second polycrystalline thin film made of the same material by the PLD method on the first polycrystalline thin film formed by the IBAD method, several mTorr. It is desirable to perform film formation in a low oxygen atmosphere.

しかしながら、このような低酸素雰囲気中で長時間蒸着を行うと、真空装置内部にレーザ光を導光するウィンドウにターゲットからの蒸発粒子が付着してしまい、ウィンドウが汚れ、ウィンドウを透過してターゲットに照射される透過光強度が低下してしまうため、成膜速度が遅くなり、所望の配向性が得られる膜厚を得るために時間がかかってしまう問題がある。   However, if vapor deposition is performed for a long time in such a low oxygen atmosphere, the evaporated particles from the target adhere to the window that guides the laser beam inside the vacuum apparatus, the window becomes dirty, and the target is transmitted through the window. As a result, the intensity of transmitted light applied to the film decreases, so that there is a problem that the film forming speed is slow and it takes a long time to obtain a film thickness with which desired orientation can be obtained.

本発明は前記事情に鑑みてなされ、長時間蒸着によるウィンドウの汚れを低減でき、長時間安定して成膜することで良好な配向性を持った多結晶配向中間薄膜の形成方法とそれを含む酸化物超電導導体を製造する方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and includes a method for forming a polycrystalline oriented intermediate thin film having good orientation by being able to reduce window contamination due to long-time deposition and stably forming a film for a long time. It aims at providing the method of manufacturing an oxide superconductor.

前記目的を達成するため、本発明は、金属製の基材上にイオンビームアシスト法により、A Zr あるいはA Hf のいずれかの組成式(ただし、前記組成式においてAは、Y、Yb、Tm、Er、Ho、Dy、Eu、Gd、Sm、Nd、Pr、Ce、Laの中から選択される1種を示す。)で示される複合酸化物あるいはイットリア安定化ジルコニアからなる第一の多結晶薄膜を形成し、該第一の多結晶薄膜上に、圧力を10〜30mTorrの範囲とした窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気中、パルスレーザ蒸着法により第一の多結晶薄膜と同じ材料からなる第二の多結晶薄膜を形成して多結晶配向中間薄膜を形成し、次いで該多結晶配向中間薄膜上に酸化物超電導薄膜を形成して酸化物超電導導体を製造することを特徴とする酸化物超電導導体の製造方法を提供する。 In order to achieve the above object, the present invention provides a composition formula of either A 2 Zr 2 O 7 or A 2 Hf 2 O 7 on a metal substrate by an ion beam assist method (however, in the above composition formula) A represents one selected from Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La.) A first polycrystalline thin film made of zirconia is formed, and the first polycrystalline thin film is formed on the first polycrystalline thin film by a pulse laser deposition method in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere with a pressure in the range of 10 to 30 mTorr. A second polycrystalline thin film made of the same material as the first polycrystalline thin film is formed to form a polycrystalline oriented intermediate thin film, and then an oxide superconducting thin film is formed on the polycrystalline oriented intermediate thin film, thereby forming an oxide superconducting conductor. Manufacture A method for producing an oxide superconducting conductor is provided.

本発明の酸化物超電導導体の製造方法において、前記第二の多結晶薄膜上に、反応抑止膜として第三の多結晶薄膜を形成して多結晶配向中間薄膜を形成することが好ましい。
本発明の酸化物超電導導体の製造方法において、前記第一の多結晶薄膜上に、パルスレーザ蒸着法により前記第二の多結晶薄膜と第三の多結晶薄膜を交互に、それぞれ2層以上積層して多結晶配向中間薄膜を形成することもできる。
前記第二の多結晶薄膜を窒素ガス+酸素ガス雰囲気中、パルスレーザ蒸着法により形成し、前記第三の多結晶薄膜を酸素ガス雰囲気中、パルスレーザ蒸着法により形成することが好ましい。
本発明の酸化物超電導導体の製造方法において、前記多結晶薄膜が、GdZr、SmZr、LaZr、CeZr、PrZr、GdHf、SmHf、LaHf、YZr、YbZr、TmZr、ErZr、HoZr、DyZr、EuZr、NdZr 、Y Hf、YbHf、TmHf、ErHf、HoHf、DyHf、EuHf、NdHf、PrHf、CeHf のいずれかの組成式で示される複合酸化物の1種、あるいはイットリア安定化ジルコニアであることが好ましい。
本発明の酸化物超電導導体の製造方法において、前記窒素ガス+酸素ガス雰囲気の窒素と酸素ガスの流量比が5:1または3:2であることが好ましい。


In the method for producing an oxide superconducting conductor of the present invention, it is preferable to form a polycrystalline oriented intermediate thin film by forming a third polycrystalline thin film as a reaction inhibiting film on the second polycrystalline thin film.
In the method for producing an oxide superconducting conductor of the present invention, two or more layers of the second polycrystalline thin film and the third polycrystalline thin film are alternately laminated on the first polycrystalline thin film by a pulse laser deposition method. Thus, a polycrystalline oriented intermediate thin film can also be formed.
Preferably, the second polycrystalline thin film is formed by a pulse laser deposition method in a nitrogen gas + oxygen gas atmosphere, and the third polycrystalline thin film is formed by a pulse laser deposition method in an oxygen gas atmosphere.
In the method for producing an oxide superconducting conductor of the present invention, the polycrystalline thin film is made of Gd 2 Zr 2 O 7 , Sm 2 Zr 2 O 7 , La 2 Zr 2 O 7 , Ce 2 Zr 2 O 7 , Pr 2 Zr 2. O 7 , Gd 2 Hf 2 O 7 , Sm 2 Hf 2 O 7 , La 2 Hf 2 O 7 , Y 2 Zr 2 O 7 , Yb 2 Zr 2 O 7 , Tm 2 Zr 2 O 7 , Er 2 Zr 2 O 7 , Ho 2 Zr 2 O 7 , Dy 2 Zr 2 O 7 , Eu 2 Zr 2 O 7 , Nd 2 Zr 2 O 7 , Y 2 Hf 2 O 7 , Yb 2 Hf 2 O 7 , Tm 2 Hf 2 O 7 , of Er 2 Hf 2 O 7, Ho 2 Hf 2 O 7, Dy 2 Hf 2 O 7, Eu 2 Hf 2 O 7, Nd 2 Hf 2 O 7, Pr 2 Hf 2 O 7, Ce 2 Hf 2 O 7 composite oxide represented by any one of formula It is preferable one, or a yttria-stabilized zirconia.
In the method for producing an oxide superconducting conductor of the present invention, the flow rate ratio of nitrogen and oxygen gas in the nitrogen gas + oxygen gas atmosphere is preferably 5: 1 or 3: 2.


また本発明は、前記酸化物超電導導体の製造方法により形成された酸化物超電導導体を提供する。 The present invention also provides an oxide superconducting conductor formed by the method for producing the oxide superconducting conductor .

本発明は、IBAD法により金属製の基材上に形成されたGdZr等からなる第一の多結晶薄膜上に、同一材料をPLD法によりホモエピタキシャル成長させる際に、窒素ガス雰囲気中、あるいは窒素ガス中に少量の酸素ガスを流入させた混合ガス雰囲気中で成膜を行うことにより、雰囲気圧力を高くしても低酸素雰囲気状態を維持することができ、結晶配向性の良好な第二の多結晶薄膜を形成することが可能となる。
雰囲気圧力が高くなることにより、ウィンドウに到達する蒸着粒子が低減され、長時間蒸着におけるウィンドウの汚れによる成膜速度の低下を抑えることが可能となる。
また、第二の多結晶薄膜上に、反応抑止膜として第三の多結晶薄膜を形成して多結晶配向中間薄膜を形成することによって、多結晶配向中間薄膜上に形成される酸化物超電導薄膜の臨界電流密度などの超電導特性を向上させることができる。
また、第一の多結晶薄膜上に、パルスレーザ蒸着法により前記第二の多結晶薄膜と第三の多結晶薄膜を交互に、それぞれ2層以上積層して多結晶配向中間薄膜を形成することによって結晶配向性の良好な多結晶配向中間薄膜を形成することができ、さらにこの多結晶配向中間薄膜上に酸化物超電導薄膜を形成すると、各結晶軸が結晶配向性の良好な多結晶配向中間薄膜の結晶に整合するようにエピタキシャル成長して結晶化し、結晶配向性が良好で超電導特性の高い酸化物超電導導体を得ることができる。
The present invention provides a nitrogen gas atmosphere for homoepitaxial growth of the same material on a first polycrystalline thin film made of Gd 2 Zr 2 O 7 or the like formed on a metal substrate by the IBAD method by the PLD method. By forming a film in a mixed gas atmosphere in which a small amount of oxygen gas is introduced into nitrogen gas, a low oxygen atmosphere state can be maintained even when the atmospheric pressure is increased, and the crystal orientation is excellent. It is possible to form a second polycrystalline thin film.
By increasing the atmospheric pressure, the number of vapor deposition particles reaching the window is reduced, and it is possible to suppress a decrease in film formation rate due to window contamination during long-time vapor deposition.
In addition, an oxide superconducting thin film formed on a polycrystalline oriented intermediate thin film by forming a third polycrystalline thin film as a reaction inhibiting film on the second polycrystalline thin film to form a polycrystalline oriented intermediate thin film The superconducting properties such as the critical current density can be improved.
Also, the second polycrystalline thin film and the third polycrystalline thin film are alternately laminated on the first polycrystalline thin film by a pulse laser deposition method to form a polycrystalline oriented intermediate thin film. With this, it is possible to form a polycrystalline oriented intermediate thin film with good crystal orientation, and when an oxide superconducting thin film is formed on this polycrystalline oriented intermediate thin film, each crystal axis has a polycrystalline oriented intermediate with good crystalline orientation. An oxide superconducting conductor having good crystal orientation and high superconducting characteristics can be obtained by epitaxial growth and crystallization so as to match the crystal of the thin film.

以下、本発明の多結晶配向中間薄膜とその製造方法、並びに酸化物超電導導体とその製造方法について、図面を参照して説明する。
図1は、本発明の酸化物超電導導体の第1実施形態を示す模式図である。図1中、符号1Aは多結晶配向中間薄膜、2Aは酸化物超電導導体、3は基材、4は第一の多結晶薄膜、5は第二の多結晶薄膜、6は酸化物超電導薄膜をそれぞれ示している。
本実施形態の酸化物超電導導体2Aは、金属製の基材3上に設けられた多結晶配向中間薄膜1Aと、この多結晶配向中間薄膜1A上に設けられた酸化物超電導薄膜6とから構成されている。
まず、多結晶配向中間薄膜1Aについて、以下に説明する。
Hereinafter, the polycrystalline oriented intermediate thin film of the present invention and its manufacturing method, and the oxide superconducting conductor and its manufacturing method will be described with reference to the drawings.
FIG. 1 is a schematic view showing a first embodiment of the oxide superconducting conductor of the present invention. In FIG. 1, reference numeral 1A denotes a polycrystalline oriented intermediate thin film, 2A denotes an oxide superconducting conductor, 3 denotes a base material, 4 denotes a first polycrystalline thin film, 5 denotes a second polycrystalline thin film, and 6 denotes an oxide superconducting thin film. Each is shown.
The oxide superconducting conductor 2A of the present embodiment is composed of a polycrystalline oriented intermediate thin film 1A provided on a metal substrate 3 and an oxide superconducting thin film 6 provided on the polycrystalline oriented intermediate thin film 1A. Has been.
First, the polycrystalline oriented intermediate thin film 1A will be described below.

本実施形態の多結晶配向中間薄膜1Aは、金属製の基材3上にIBAD法によって成膜された第一の多結晶薄膜4と、この第一の多結晶薄膜4と同じ組成からなり、窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気中でPLD法により成膜された第二の多結晶薄膜5とを備えて構成されている。
前記基材3としては、例えば、銀、白金、ステンレス鋼、銅、ハステロイなどのニッケル合金などの金属材料からなる板材、線材、テープ材などの種々の形状のものを用いることができる。
The polycrystalline oriented intermediate thin film 1A of the present embodiment has the same composition as the first polycrystalline thin film 4 formed on the metal substrate 3 by the IBAD method, and the first polycrystalline thin film 4, And a second polycrystalline thin film 5 formed by a PLD method in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere.
As the base material 3, various shapes such as a plate material, a wire material, and a tape material made of a metal material such as a nickel alloy such as silver, platinum, stainless steel, copper, and hastelloy can be used.

第一の多結晶薄膜4は、IBAD法により形成され、GdZrなどの組成式で示される立方晶系の結晶構造を有する微細な結晶の集合体の結晶粒が、多数、相互に結晶粒界を介し接合一体化されてなり、各結晶粒の結晶軸のc軸は基材3の上面(被成膜面)に対して直角に向けられ、各結晶粒の結晶軸のa軸同士およびb軸同士は、互いに同一方向に向けられて面内配向されている。第一の多結晶薄膜4の厚さは限定されないが、通常は0.5〜2.0μmの範囲、好ましくは1.0〜1.5μm程度とされる。 The first polycrystalline thin film 4 is formed by the IBAD method, and includes a large number of fine crystal aggregates having a cubic crystal structure represented by a composition formula such as Gd 2 Zr 2 O 7. The crystal axis of each crystal grain is oriented at right angles to the upper surface (deposition surface) of the substrate 3, and the crystal axis a of each crystal grain is a. The axes and the b-axis are oriented in the same direction in the same direction. Although the thickness of the 1st polycrystalline thin film 4 is not limited, Usually, it is the range of 0.5-2.0 micrometers, Preferably it is about 1.0-1.5 micrometers.

第一の多結晶薄膜4を構成する複合酸化物としては、GdZrの他に、SmZr、LaZr、CeZr、PrZr、GdHf、SmHf、LaHf、YZr、YbZr、TmZr、ErZr、HoZr、DyZr、EuZr、NdZr、YZr、YHf、YbHf、TmHf、ErHf、HoHf、DyHf、EuHf、NdHf、PrHf、CeHfの組成のAZrOあるいはAHfOのいずれかの組成式(ただし、前記組成式においてAは、Y、Yb、Tm、Er、Ho、Dy、Eu、Gd、Sm、Nd、Pr、Ce、Laの中から選択される1種を示す。)で示される複合酸化物や、イットリア安定化ジルコニア(以下、YSZと略記。)などを適用することができる。
なお、前記組成(AZrOあるいはAHfO)の希土類元素どうしの相対比が1:1のものに限らず、0.1:0.9〜0.9:0.1の範囲で任意の相対比のものも採用することができる。
As the composite oxide forming the first polycrystalline thin film 4, in addition to the Gd 2 Zr 2 O 7, Sm 2 Zr 2 O 7, La 2 Zr 2 O 7, Ce 2 Zr 2 O 7, Pr 2 Zr 2 O 7 , Gd 2 Hf 2 O 7 , Sm 2 Hf 2 O 7 , La 2 Hf 2 O 7 , Y 2 Zr 2 O 7 , Yb 2 Zr 2 O 7 , Tm 2 Zr 2 O 7 , Er 2 Zr 2 O 7 , Ho 2 Zr 2 O 7 , Dy 2 Zr 2 O 7 , Eu 2 Zr 2 O 7 , Nd 2 Zr 2 O 7 , Y 2 Zr 2 O 7 , Y 2 Hf 2 O 7 , Yb 2 Hf 2 O 7 , Tm 2 Hf 2 O 7 , Er 2 Hf 2 O 7 , Ho 2 Hf 2 O 7 , Dy 2 Hf 2 O 7 , Eu 2 Hf 2 O 7 , Nd 2 Hf 2 O 7 , Pr 2 Hf 2 O 7 AZrO or AH having a composition of Ce 2 Hf 2 O 7 Any compositional formula of fO (wherein A is one selected from Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, La) Or a yttria-stabilized zirconia (hereinafter abbreviated as YSZ) or the like can be applied.
In addition, the relative ratio of the rare earth elements of the composition (AZrO or AHfO) is not limited to 1: 1, but has an arbitrary relative ratio in the range of 0.1: 0.9 to 0.9: 0.1. Can also be adopted.

第一の多結晶薄膜4の各結晶粒のa軸(あるいはb軸)同士は、それらのなす角度(粒界斜角)を10度以内にして接合一体化されていることが好ましい。これにより、第一の多結晶薄膜4上に第二の多結晶薄膜5を形成すると、非常に結晶配向性の良好な第二の多結晶薄膜5を得ることができる。   The a-axis (or b-axis) of each crystal grain of the first polycrystalline thin film 4 is preferably joined and integrated with an angle (grain boundary oblique angle) formed by them within 10 degrees. Thereby, when the second polycrystalline thin film 5 is formed on the first polycrystalline thin film 4, the second polycrystalline thin film 5 having very good crystal orientation can be obtained.

第二の多結晶薄膜5は、第一の多結晶薄膜4の表面上に、第一の多結晶薄膜4と同一材料を窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気中、PLD法によりエピタキシャル成長させて形成されたものである。第二の多結晶薄膜5は、第一の多結晶薄膜4と同一の材質からなり、GdZrなどの組成式で示される立方晶系の結晶構造を有する微細な結晶の集合体の結晶粒が、多数、相互に結晶粒界を介し接合一体化されてなり、各結晶粒の結晶軸のc軸は第一の多結晶薄膜4の上面(被成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸同士およびb軸同士は、互いに同一方向に向けられて面内配向されている。この第二の多結晶薄膜5の厚さは限定されないが、通常は0.2〜5μmの範囲、好ましくは0.5〜1.5μm程度とされる。 The second polycrystalline thin film 5 is obtained by epitaxially growing the same material as the first polycrystalline thin film 4 on the surface of the first polycrystalline thin film 4 by a PLD method in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere. It is formed. The second polycrystalline thin film 5 is made of the same material as the first polycrystalline thin film 4, and is an aggregate of fine crystals having a cubic crystal structure represented by a composition formula such as Gd 2 Zr 2 O 7. A large number of crystal grains are joined and integrated with each other via crystal grain boundaries, and the c-axis of the crystal axis of each crystal grain is substantially the same as the upper surface (film formation surface) of the first polycrystalline thin film 4. The a axes and the b axes of the crystal axes of each crystal grain are oriented in the same direction and are in-plane oriented. The thickness of the second polycrystalline thin film 5 is not limited, but is usually in the range of 0.2 to 5 μm, preferably about 0.5 to 1.5 μm.

この多結晶配向中間薄膜1Aは、第一の多結晶薄膜4と第二の多結晶薄膜5とが、前述したAZrO、あるいはAHfOのいずれかの組成式(ただし、前記組成式においてAは、Y、Yb、Tm、Er、Ho、Dy、Eu、Gd、Sm、Nd、Pr、Ce、Laの中から選択される1種を示す。)で示される複合酸化物、又はYSZなどから構成されており、複合酸化物の最近接原子間距離は、例えばGdZrでは3.72Å、LaZrでは3.81Å、CeZrでは3.78Å、PrZrでは3.78Å、GdHfでは3.72Å、SmHfでは3.74Å、LaHfでは3.81Åであり、YBaCuなる組成の酸化物超電導体の最近接原子間距離の3.81Åに近い値となる。このため、前記複合酸化物とYBaCu系の酸化物超電導体とは結晶の整合性に優れ、この多結晶配向中間薄膜1上にYBaCu系の酸化物超電導薄膜6を形成すると、その結晶のc軸,a軸およびb軸が多結晶配向中間薄膜1の結晶に整合するようにエピタキシャル成長して結晶化し、これにより結晶配向性の良好なYBaCu系の酸化物超電導薄膜6が得られる。 In this polycrystalline oriented intermediate thin film 1A, the first polycrystalline thin film 4 and the second polycrystalline thin film 5 are composed of any one of the above-described composition formulas of AZrO and AHfO (where A is Y Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La.)) Or a composite oxide represented by YSZ. The distance between the nearest atoms of the composite oxide is, for example, 3.72 mm for Gd 2 Zr 2 O 7 , 3.81 mm for La 2 Zr 2 O 7 , 3.78 mm for Ce 2 Zr 2 O 7 , Pr 2 Zr 2 O 7 is 3.78 mm, Gd 2 Hf 2 O 7 is 3.72 mm, Sm 2 Hf 2 O 7 is 3.74 mm, La 2 Hf 2 O 7 is 3.81 mm, and Y 1 Ba 2 Cu 3 O The nearest interatomic distance of the oxide superconductor with the composition x The distance is close to 3.81 mm. Therefore, the composite oxide and the Y 1 Ba 2 Cu 3 O x- based oxide superconductor are excellent in crystal matching, and the Y 1 Ba 2 Cu 3 O x- based is formed on the polycrystalline oriented intermediate thin film 1. When the oxide superconducting thin film 6 is formed, the crystal is epitaxially grown and crystallized so that the c-axis, a-axis, and b-axis of the crystal are aligned with the crystal of the polycrystalline oriented intermediate thin film 1, whereby Y 1 having good crystal orientation. A Ba 2 Cu 3 O x- based oxide superconducting thin film 6 is obtained.

次に、酸化物超電導薄膜6について説明する。
酸化物超電導薄膜6は、その結晶粒のc軸が、前記多結晶配向中間薄膜1の最上層の上面に対して直角に配向され、その結晶粒のa軸およびb軸は、前述した第一、第二の多結晶薄膜4,5と同様に、基材3の上面と平行な面に沿って面内配向されている。
Next, the oxide superconducting thin film 6 will be described.
The oxide superconducting thin film 6 has its crystal grains c-axis oriented at right angles to the top surface of the uppermost layer of the polycrystalline oriented intermediate thin film 1, and the a-axis and b-axis of the crystal grains are the same as those described above. Like the second polycrystalline thin films 4 and 5, in-plane orientation is performed along a plane parallel to the upper surface of the substrate 3.

酸化物超電導薄膜6を構成する酸化物超電導体としては、YBaCu、YBaCu、YBaCuなる組成、あるいは(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいは、TlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導体が挙げられるが、これら以外の酸化物系の超電導体を用いてもよい。 As an oxide superconductor in the oxide superconducting thin film 6, Y 1 Ba 2 Cu 3 O x, Y 2 Ba 4 Cu 8 O x, Y 3 Ba 3 Cu 6 O x having a composition, or (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O x, (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O x having a composition, or, Tl 2 Ba 2 Ca 2 Cu 3 O x, Tl 1 Ba 2 Ca 2 Cu 3 O x An oxide superconductor having a high critical temperature typified by a composition such as Tl 1 Ba 2 Ca 3 Cu 4 O x may be used, but oxide-based superconductors other than these may be used.

本実施形態の酸化物超電導導体2Aは、前述した多結晶配向中間薄膜1A上に、YBaCu系等の酸化物超電導薄膜6が設けられた構造なので、優れた結晶配向性を有する酸化物超電導薄膜6が形成可能となり、これにより、この酸化物超電導導体2Aは優れた超電導特性が得られ、強磁場発生用のコイルなど種々の超電導応用機器に適用することで、それらの性能向上を図ることができる。 Since the oxide superconducting conductor 2A of the present embodiment has a structure in which the oxide superconducting thin film 6 such as Y 1 Ba 2 Cu 3 O x is provided on the above-described polycrystalline oriented intermediate thin film 1A, it has excellent crystal orientation. The oxide superconducting thin film 6 can be formed, whereby the oxide superconducting conductor 2A has excellent superconducting characteristics, and can be applied to various superconducting applications such as a coil for generating a strong magnetic field. The performance can be improved.

次に、図2および図3を用いて、前記多結晶配向中間薄膜1Aの製造方法及び前記酸化物超電導導体2Aの製造方法について説明する。
図2は、前記第一の多結晶薄膜4を形成するために用いられるIBAD装置の一例を示す構成図である。
このIBAD装置は、テープ状の基材3を支持するとともに所望の温度に加熱することができる基材ホルダ10と、基材ホルダ10の斜め上方に所定間隔をおいて対向配置された板状のターゲット20と、ターゲット20の斜め上方においてターゲット20の下面に対向して配置されたスパッタビーム照射装置22と、基材ホルダ10の側方に所定間隔をおいて対向され、かつ、ターゲット20と離間して配置されたイオンソース23とが真空排気可能な成膜処理容器25内に収容された概略構成となっている。
Next, with reference to FIG. 2 and FIG. 3, a method for manufacturing the polycrystalline oriented intermediate thin film 1A and a method for manufacturing the oxide superconducting conductor 2A will be described.
FIG. 2 is a block diagram showing an example of an IBAD apparatus used for forming the first polycrystalline thin film 4.
This IBAD device supports a tape-shaped substrate 3 and can be heated to a desired temperature, and a plate-shaped substrate disposed oppositely at a predetermined interval obliquely above the substrate holder 10. The target 20 is opposed to the sputter beam irradiation apparatus 22 that is disposed obliquely above the target 20 so as to face the lower surface of the target 20, and is opposed to the side of the substrate holder 10 at a predetermined interval, and is separated from the target 20. The ion source 23 arranged in this manner has a schematic configuration in which it is accommodated in a film forming treatment container 25 that can be evacuated.

前記ターゲット20としては、目的とする組成の第一の多結晶薄膜4と同一組成あるいは近似組成のものなどを用いる。具体的には、前記第一の多結晶薄膜4を構成する複合酸化物と同一組成あるいは近似組成の複合酸化物が用いられる。   As the target 20, a target having the same composition as that of the first polycrystalline thin film 4 having a target composition or an approximate composition is used. Specifically, a composite oxide having the same composition as that of the composite oxide constituting the first polycrystalline thin film 4 or an approximate composition is used.

まず、基材3として、ハステロイなどの金属からなるテープ状の基材3を用意する。
次いで、図2に示すIBAD装置を用い、IBAD法によりテープ状の基材3上に第一の多結晶薄膜4を形成する。
基材3上に第一の多結晶薄膜4を形成するには、ターゲット20を用い、基材3を収納している成膜処理容器25内部を真空引きして減圧雰囲気とするとともに、基材送出ボビン11から基材ホルダ10に基材3を所定の速度で送り出し、さらにイオンソース23とスパッタビーム照射装置22を作動させる。
First, as the base material 3, a tape-shaped base material 3 made of a metal such as Hastelloy is prepared.
Subsequently, the 1st polycrystalline thin film 4 is formed on the tape-shaped base material 3 by IBAD method using the IBAD apparatus shown in FIG.
In order to form the first polycrystalline thin film 4 on the base material 3, the target 20 is used, and the inside of the film-forming treatment container 25 containing the base material 3 is evacuated to form a reduced pressure atmosphere. The substrate 3 is delivered from the delivery bobbin 11 to the substrate holder 10 at a predetermined speed, and the ion source 23 and the sputter beam irradiation device 22 are operated.

スパッタビーム照射装置22からターゲット20に、所定の照射角度でイオンのビームを照射すると、ターゲット20の構成粒子が叩き出されて基材3上に飛来する。そして、基材ホルダ10上に送り出された基材3上にターゲット20から叩き出した構成粒子を成膜速度数nm/minで堆積させると同時にイオンソース23からアシストイオンビームとして、例えば、Arイオンのイオンビーム、Krイオンのイオンビーム、Xeイオンのイオンビーム、あるいは、KrイオンとXeイオンの混合イオンビームを照射して、所望の厚みの第一の多結晶薄膜4を成膜し、成膜後の基材3を基材巻取ボビン12に巻き取る。 When the target 20 is irradiated with an ion beam from the sputter beam irradiation device 22 at a predetermined irradiation angle, the constituent particles of the target 20 are knocked out and fly onto the substrate 3. Then, the constituent particles knocked out from the target 20 are deposited on the base material 3 sent out on the base material holder 10 at a film forming rate of several nm / min, and at the same time as an assist ion beam from the ion source 23, for example, Ar + Irradiation with an ion beam of ions, an ion beam of Kr + ions, an ion beam of Xe + ions, or a mixed ion beam of Kr + ions and Xe + ions forms a first polycrystalline thin film 4 having a desired thickness. The base material 3 after film formation is wound on the base material winding bobbin 12.

また、第一の多結晶薄膜4の成膜の際、基材3を適切な温度に加熱し、イオンソース23から照射されるアシストイオンビームのエネルギーを適切な範囲内に設定することが望ましい。このように、基材3の温度およびアシストイオンビームのエネルギーを適切な範囲に設定することにより、望ましい結晶配向性を持った第一の多結晶薄膜4を成膜することができる。   Further, when the first polycrystalline thin film 4 is formed, it is desirable to heat the substrate 3 to an appropriate temperature and set the energy of the assist ion beam irradiated from the ion source 23 within an appropriate range. Thus, the first polycrystalline thin film 4 having a desired crystal orientation can be formed by setting the temperature of the substrate 3 and the energy of the assist ion beam within appropriate ranges.

次いで、図3に示すようなパルスレーザ蒸着装置を用いて、PLD法により、第一の多結晶薄膜4上に第二の多結晶薄膜5を形成する。
図3は、本発明の製造方法において使用されるパルスレーザ蒸着装置の一例を示す構成図である。このパルスレーザ蒸着装置は、パルスレーザ光を入射するためのウィンドウ36を備えた処理容器30と、この処理容器30の内部の蒸着処理室31に設置されたターゲット支持部32と、第一の多結晶薄膜4を形成済みの基材3を水平状態に設置できる基台33と、真空排気装置34と、レーザ発光装置35とから概略構成されている。さらに、このパルスレーザ蒸着装置には、図示しない窒素ガスと酸素ガスの供給手段(窒素ガスボンベや酸素ガスボンベ等)が接続されており、処理容器30内を所定圧力の窒素ガス雰囲気、窒素ガス+酸素ガス雰囲気又は酸素ガス雰囲気とし、窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気中で第二の多結晶薄膜5を成膜し、その後ターゲットを変更し酸素ガス雰囲気中で酸化物超電導薄膜6又は第三の多結晶薄膜7を成膜できるようになっている。
Next, a second polycrystalline thin film 5 is formed on the first polycrystalline thin film 4 by the PLD method using a pulse laser deposition apparatus as shown in FIG.
FIG. 3 is a block diagram showing an example of a pulse laser deposition apparatus used in the manufacturing method of the present invention. This pulse laser vapor deposition apparatus includes a processing container 30 having a window 36 for incident pulse laser light, a target support portion 32 installed in a vapor deposition processing chamber 31 inside the processing container 30, and a first multi-layer. A base 33 on which the base material 3 on which the crystal thin film 4 has been formed can be set in a horizontal state, a vacuum exhaust device 34, and a laser light emitting device 35 are schematically configured. Further, a nitrogen gas and oxygen gas supply means (nitrogen gas cylinder, oxygen gas cylinder or the like) (not shown) is connected to the pulse laser deposition apparatus, and the inside of the processing vessel 30 is in a nitrogen gas atmosphere, nitrogen gas + oxygen at a predetermined pressure. The second polycrystalline thin film 5 is formed in a gas atmosphere or an oxygen gas atmosphere in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere, and then the target is changed, and the oxide superconducting thin film 6 or the third in the oxygen gas atmosphere. The polycrystalline thin film 7 can be formed.

前記レーザ発光装置35は、ターゲット支持部32に取り付けられたターゲットから構成粒子を叩き出すことが可能なパルスレーザ光を出力できればよく、特に限定されないが、例えばYAGレーザ、COレーザ、エキシマレーザなどのレーザ発振手段を備えた装置が好ましい。
前記ターゲット支持部32としては、2種以上のターゲットを固定でき、かつ回転機構が設けられ、レーザ発光装置35からのレーザビームの照射位置に、目的とするターゲットがくるように位置調節できるものが適用できる。
The laser light emitting device 35 is not particularly limited as long as it can output pulsed laser light capable of knocking out constituent particles from a target attached to the target support portion 32. For example, a YAG laser, a CO 2 laser, an excimer laser, or the like is used. An apparatus provided with the above laser oscillation means is preferable.
As the target support portion 32, two or more types of targets can be fixed, a rotation mechanism is provided, and the target can be adjusted so that the target target comes to the irradiation position of the laser beam from the laser light emitting device 35. Applicable.

ターゲット支持部32に設置するターゲットとしては、第二の多結晶薄膜5形成用のターゲット、酸化物超電導薄膜6形成用のターゲット及び第三の多結晶薄膜7形成用のターゲットが用いられる。
具体的には、第二の多結晶薄膜5形成用のターゲットとしては、前述の第二の多結晶薄膜5を構成する複合酸化物と同一組成あるいは近似組成の複合酸化物が用いられる。また酸化物超電導薄膜6形成用のターゲットとしては、酸化物超電導薄膜6を構成する酸化物超電導体と同一組成あるいは近似組成の複合酸化物が用いられる。また第三の多結晶薄膜7形成用のターゲットとしてはY、CeOなどからなる第三の多結晶薄膜7と同一組成あるいは近似組成の酸化物が用いられる。
As a target installed on the target support portion 32, a target for forming the second polycrystalline thin film 5, a target for forming the oxide superconducting thin film 6, and a target for forming the third polycrystalline thin film 7 are used.
Specifically, as the target for forming the second polycrystalline thin film 5, a composite oxide having the same composition or an approximate composition as the composite oxide constituting the second polycrystalline thin film 5 is used. Further, as a target for forming the oxide superconducting thin film 6, a composite oxide having the same composition as that of the oxide superconductor constituting the oxide superconducting thin film 6 or an approximate composition is used. As the target for forming the third polycrystalline thin film 7, an oxide having the same composition as that of the third polycrystalline thin film 7 made of Y 2 O 3 , CeO 2 or the like or an approximate composition is used.

このパルスレーザ蒸着装置を用いて第一の多結晶薄膜4上に第二の多結晶薄膜5を形成するには、まず、第一の多結晶薄膜4が形成された基材3を、このレーザ蒸着装置の基台33上に設置する。
次いで、蒸着処理室31内を真空ポンプで減圧する。蒸着処理室31内を真空ポンプで減圧し、室内のガス(空気)を排出した後、図示しない窒素ガスと酸素ガスの供給手段から、蒸着処理室31内に窒素ガス又は窒素ガスと酸素ガスの混合ガスを所定圧力となるように供給する。蒸着処理室31内の窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気の圧力は、10〜30mTorrの範囲とすることが好ましい。この圧力が10mTorr未満であると、これらのガスによって、PLD法による成膜時にターゲットから生じた微粒子がウィンドウ36に付着するのを防ぐ効果が十分に得られなくなる。一方、この圧力が30mTorrを超えると、第二の多結晶薄膜5の構成元素の組成比が変化したり、望ましい結晶配向性が得られなくなる可能性がある。蒸着処理室31内のガス雰囲気及び圧力を維持するために、蒸着処理室31内を真空ポンプで減圧しつつ、蒸着処理室31内に窒素ガス又は窒素ガスと酸素ガスの混合ガスを所定圧力となるように連続的に供給してもよい。
また、蒸着を開始するまでに、基台33に設けられた加熱ヒータを作動させ、基材3を所定の温度に加熱しておく。
In order to form the second polycrystalline thin film 5 on the first polycrystalline thin film 4 using this pulse laser vapor deposition apparatus, first, the base material 3 on which the first polycrystalline thin film 4 is formed is applied to this laser. It installs on the base 33 of a vapor deposition apparatus.
Next, the inside of the vapor deposition chamber 31 is depressurized with a vacuum pump. The inside of the vapor deposition chamber 31 is depressurized by a vacuum pump, and the gas (air) in the chamber is discharged. Then, nitrogen gas or nitrogen gas and oxygen gas are supplied into the vapor deposition chamber 31 from a supply means of nitrogen gas and oxygen gas (not shown). A mixed gas is supplied at a predetermined pressure. The pressure of the nitrogen gas atmosphere or nitrogen gas + oxygen gas atmosphere in the vapor deposition chamber 31 is preferably in the range of 10 to 30 mTorr. If this pressure is less than 10 mTorr, the effect of preventing the fine particles generated from the target from adhering to the window 36 during film formation by the PLD method cannot be sufficiently obtained by these gases. On the other hand, if this pressure exceeds 30 mTorr, the composition ratio of the constituent elements of the second polycrystalline thin film 5 may change, or a desired crystal orientation may not be obtained. In order to maintain the gas atmosphere and pressure in the vapor deposition chamber 31, the vapor deposition chamber 31 is decompressed with a vacuum pump, and nitrogen gas or a mixed gas of nitrogen gas and oxygen gas is set to a predetermined pressure in the vapor deposition chamber 31. You may supply continuously so that it may become.
Moreover, before starting vapor deposition, the heater provided in the base 33 is operated, and the base material 3 is heated to a predetermined temperature.

次いで、レーザ発光装置35から発生させたレーザビームを、ウィンドウ36を通して蒸着処理室31に導入し、該室内の第二の多結晶薄膜形成用のターゲットに集光照射する。これにより、ターゲットの構成粒子がえぐり出されるか蒸発されて、その粒子が第一の多結晶薄膜4上に堆積し、第二の多結晶薄膜5が形成される。
この際、レーザビームの射出強度は100mJ〜400mJ、パルス周波数は10Hz〜250Hzの範囲とすることが好ましい。また、基材3の温度は、500〜1000℃程度とするのが好ましく、基材3の線速を1m/h〜10m/hとして、基材3を移動させながら数回堆積し、所望の膜厚の第二の多結晶薄膜5を形成することが好ましい。
Next, the laser beam generated from the laser light emitting device 35 is introduced into the vapor deposition processing chamber 31 through the window 36, and focused on the second polycrystalline thin film forming target in the chamber. As a result, the constituent particles of the target are extracted or evaporated, and the particles are deposited on the first polycrystalline thin film 4 to form the second polycrystalline thin film 5.
At this time, it is preferable that the laser beam emission intensity is 100 mJ to 400 mJ and the pulse frequency is 10 Hz to 250 Hz. Moreover, it is preferable that the temperature of the base material 3 is about 500 to 1000 ° C., the linear velocity of the base material 3 is set to 1 m / h to 10 m / h, and the base material 3 is deposited several times while moving, It is preferable to form the second polycrystalline thin film 5 having a thickness.

この第二の多結晶薄膜5の形成において、その構成粒子の堆積の際に、GdZr等からなる第一の多結晶薄膜4が予めc軸配向し、a軸とb軸でも配向しているので、第一の多結晶薄膜4上に形成される第二の多結晶薄膜5の結晶のc軸とa軸とb軸も、第一の多結晶薄膜4に整合するようにエピタキシャル成長して結晶化する。 In the formation of the second polycrystalline thin film 5, the first polycrystalline thin film 4 made of Gd 2 Zr 2 O 7 or the like is preliminarily c-axis oriented at the time of deposition of the constituent particles. Since it is oriented, the c-axis, a-axis, and b-axis of the second polycrystalline thin film 5 formed on the first polycrystalline thin film 4 are also aligned with the first polycrystalline thin film 4. Crystallize by epitaxial growth.

以上により、金属製の基材3上に、本実施形態の多結晶配向中間薄膜1Aを形成することができる。
通常、IBAD法により多結晶薄膜を形成する場合、その成膜速度は数nm/min程度である。これに対して、PLD法により多結晶薄膜を形成する場合、その成膜速度は数100nm/min程度と格段に大きい。このため、本実施形態の多結晶配向中間薄膜1Aの製造方法によると、PLD法により第二の多結晶薄膜5を形成することによって、従来のIBAD法のみにより多結晶薄膜を形成する場合に比べて、成膜時間を大幅に短縮でき、生産効率に優れ、かつ優れた結晶配向性を有する多結晶配向中間薄膜1Aを製造できる。
As described above, the polycrystalline oriented intermediate thin film 1 </ b> A of the present embodiment can be formed on the metal base 3.
Usually, when a polycrystalline thin film is formed by the IBAD method, the film forming rate is about several nm / min. On the other hand, when a polycrystalline thin film is formed by the PLD method, the film forming rate is remarkably large, about several hundred nm / min. Therefore, according to the method for manufacturing the polycrystalline oriented intermediate thin film 1A of the present embodiment, the second polycrystalline thin film 5 is formed by the PLD method, compared with the case where the polycrystalline thin film is formed only by the conventional IBAD method. Thus, it is possible to significantly reduce the film formation time, to produce the polycrystalline oriented intermediate thin film 1A having excellent production efficiency and excellent crystal orientation.

この多結晶配向中間薄膜1Aの製造方法は、IBAD法により金属製の基材3上に形成されたGdZr等からなる第一の多結晶薄膜4上に、同一材料をPLD法によりホモエピタキシャル成長させる際に、窒素ガス雰囲気中、あるいは窒素ガス中に少量の酸素ガスを流入させた雰囲気中で成膜を行うことにより、雰囲気圧力を高くしても低酸素雰囲気状態を維持することができ、結晶配向性の良好な第二の多結晶薄膜5を形成することができる。
そして、PLD法により第二の多結晶薄膜5を形成する際、雰囲気圧力が高くなることにより、ウィンドウ36に到達する蒸着粒子が低減され、長時間蒸着におけるウィンドウ36の汚れによる成膜速度の低下を抑えることができ、安定して効率よく多結晶配向中間薄膜1Aを形成することができる。
This polycrystalline oriented intermediate thin film 1A is manufactured by the PLD method using the same material on the first polycrystalline thin film 4 made of Gd 2 Zr 2 O 7 or the like formed on the metal substrate 3 by the IBAD method. When performing homoepitaxial growth by performing film formation in a nitrogen gas atmosphere or an atmosphere in which a small amount of oxygen gas is introduced into the nitrogen gas, a low oxygen atmosphere state can be maintained even if the atmospheric pressure is increased. The second polycrystalline thin film 5 having good crystal orientation can be formed.
When the second polycrystalline thin film 5 is formed by the PLD method, the atmospheric pressure increases, so that the vapor deposition particles reaching the window 36 are reduced, and the film formation rate is lowered due to the contamination of the window 36 during long-time vapor deposition. Thus, the polycrystalline oriented intermediate thin film 1A can be formed stably and efficiently.

次に、前記多結晶配向中間薄膜1A上に酸化物超電導薄膜6を形成する方法について説明する。
図3に示すパルスレーザ蒸着装置を用い、ターゲットを変更し、PLD法によって前記多結晶配向中間薄膜1A上に酸化物超電導薄膜6を形成する。
酸化物超電導薄膜6の形成においては、ターゲットとして、酸化物超電導薄膜6を構成する酸化物超電導体と同一組成あるいは近似組成の酸化物超電導体が用いられる。
Next, a method for forming the oxide superconducting thin film 6 on the polycrystalline oriented intermediate thin film 1A will be described.
The target is changed using the pulse laser deposition apparatus shown in FIG. 3, and the oxide superconducting thin film 6 is formed on the polycrystalline oriented intermediate thin film 1A by the PLD method.
In the formation of the oxide superconducting thin film 6, an oxide superconductor having the same composition as that of the oxide superconductor constituting the oxide superconducting thin film 6 or an approximate composition is used as a target.

酸化物超電導薄膜6を形成するには、まず、前記多結晶配向中間薄膜1Aが形成された基材3を、このパルスレーザ蒸着装置の基台33上に設置する。
次いで、蒸着処理室31を一旦減圧排気した後、酸素ガス又は酸素ガスと窒素ガスの混合ガスを導入し、蒸着処理室31を適当な圧力の酸素ガス雰囲気とする。また、基台33に設けられた加熱ヒータを作動させて基材3を所定の温度に加熱する。
In order to form the oxide superconducting thin film 6, first, the base material 3 on which the polycrystalline oriented intermediate thin film 1A is formed is placed on the base 33 of this pulse laser deposition apparatus.
Next, after evacuating the vapor deposition chamber 31 once, oxygen gas or a mixed gas of oxygen gas and nitrogen gas is introduced to make the vapor deposition chamber 31 an oxygen gas atmosphere at an appropriate pressure. Further, the heater 3 provided on the base 33 is operated to heat the substrate 3 to a predetermined temperature.

次いで、レーザ発光装置35から発生させたレーザビームを、蒸着処理室31のターゲットに集光照射する。これにより、ターゲットの構成粒子がえぐり出されるか蒸発されて、その粒子が第二の多結晶薄膜5上に堆積し、酸化物超電導薄膜6が形成されて、酸化物超電導導体2Aが得られる。   Next, the laser beam generated from the laser light emitting device 35 is focused and applied to the target in the vapor deposition chamber 31. Thereby, the constituent particles of the target are extracted or evaporated, and the particles are deposited on the second polycrystalline thin film 5, and the oxide superconducting thin film 6 is formed to obtain the oxide superconducting conductor 2A.

酸化物超電導体の構成粒子が前記多結晶配向中間薄膜1A上に堆積する際、GdZr等からなる第二の多結晶薄膜5が予めc軸配向し、a軸とb軸でも配向しているので、第二の多結晶薄膜5上に形成される酸化物超電導薄膜6の結晶のc軸とa軸とb軸も、第二の多結晶薄膜5に整合するようにエピタキシャル成長して結晶化する。 When the constituent particles of the oxide superconductor are deposited on the polycrystalline oriented intermediate thin film 1A, the second polycrystalline thin film 5 made of Gd 2 Zr 2 O 7 or the like is preliminarily c-axis oriented, Since it is oriented, the c-axis, a-axis, and b-axis of the oxide superconducting thin film 6 formed on the second polycrystalline thin film 5 are epitaxially grown so as to be aligned with the second polycrystalline thin film 5. To crystallize.

BaCuからなる酸化物超電導薄膜6を形成する場合、数百mTorr程度の圧力の酸素雰囲気にすることで、ターゲットから蒸発した粒子の酸化を促進させることができる。これにより、酸素欠陥のないYBaCu系酸化物超電導薄膜を形成することができる。 When the oxide superconducting thin film 6 made of Y 1 Ba 2 Cu 3 O x is formed, the oxidation of particles evaporated from the target can be promoted by using an oxygen atmosphere having a pressure of about several hundred mTorr. Thus, it is possible to form a no oxygen defects Y 1 Ba 2 Cu 3 O x based oxide superconducting thin film.

一方、PLD法によって第二の多結晶薄膜5を形成する場合は、YBaCu系酸化物超電導薄膜よりも結晶構造が単純であり、PLD法による成膜時に酸素雰囲気としなくとも、ターゲット中に含まれている酸素のみで十分である。しかし、本発明では、第二の多結晶薄膜5を形成する際に、10〜30mTorr程度の圧力の窒素ガス雰囲気中又は窒素ガス+酸素ガス雰囲気中で成膜することで、配向性が高くなる最適圧力条件が高くなるため、第二の多結晶薄膜5の結晶配向性を良好に保ったまま、ウィンドウ36に到達する蒸着粒子が低減され、長時間蒸着におけるウィンドウ36の汚れによる成膜速度の低下を抑えることができ、安定して効率よく多結晶配向中間薄膜1Aを形成することができる。 On the other hand, when the second polycrystalline thin film 5 is formed by the PLD method, the crystal structure is simpler than that of the Y 1 Ba 2 Cu 3 O x- based oxide superconducting thin film, and the oxygen atmosphere is not generated when forming the film by the PLD method. In both cases, only oxygen contained in the target is sufficient. However, in the present invention, when the second polycrystalline thin film 5 is formed, the orientation is improved by forming the film in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere at a pressure of about 10 to 30 mTorr. Since the optimum pressure condition becomes high, the vapor deposition particles reaching the window 36 are reduced while maintaining the crystal orientation of the second polycrystalline thin film 5 in good condition, and the film formation rate due to the contamination of the window 36 in the long-time vapor deposition is reduced. The decrease can be suppressed, and the polycrystalline oriented intermediate thin film 1A can be formed stably and efficiently.

図4は、本発明の酸化物超電導導体の第2実施形態を示す模式図である。図4において、前述した第1実施形態による酸化物超電導導体2Aと同一の構成要素には同一符号を付してある。図4中、符号1Bは多結晶配向中間薄膜、2Bは酸化物超電導導体、7は第三の多結晶薄膜をそれぞれ示している。   FIG. 4 is a schematic view showing a second embodiment of the oxide superconducting conductor of the present invention. In FIG. 4, the same components as those of the oxide superconducting conductor 2A according to the first embodiment described above are denoted by the same reference numerals. In FIG. 4, reference numeral 1B denotes a polycrystalline oriented intermediate thin film, 2B denotes an oxide superconducting conductor, and 7 denotes a third polycrystalline thin film.

本実施形態の酸化物超電導導体2Bは、金属製の基材3上に設けられた多結晶配向中間薄膜1Bと、この多結晶配向中間薄膜1B上に設けられた酸化物超電導薄膜6とから構成されている。この多結晶配向中間薄膜2Bは、基材3上に形成された第一の多結晶薄膜4と、該第一の多結晶薄膜4上に形成された第二の多結晶薄膜5と、該第二の多結晶薄膜5上に形成された反応抑止膜としての第三の多結晶薄膜7とから構成されている。基材3、第一の多結晶薄膜4、第二の多結晶薄膜5及び酸化物超電導薄膜6の各層は、前述した第1実施形態において記載したそれぞれの層と同様である。   The oxide superconducting conductor 2B of the present embodiment is composed of a polycrystalline oriented intermediate thin film 1B provided on a metal substrate 3, and an oxide superconducting thin film 6 provided on the polycrystalline oriented intermediate thin film 1B. Has been. The polycrystalline oriented intermediate thin film 2B includes a first polycrystalline thin film 4 formed on the substrate 3, a second polycrystalline thin film 5 formed on the first polycrystalline thin film 4, and the first The third polycrystalline thin film 7 is formed on the second polycrystalline thin film 5 as a reaction inhibiting film. Each layer of the base material 3, the first polycrystalline thin film 4, the second polycrystalline thin film 5, and the oxide superconducting thin film 6 is the same as the respective layers described in the first embodiment.

前記第三の多結晶薄膜7は、特開平11−86647号公報にて開示された拡散防止膜(反応抑止膜)であり、第二の多結晶薄膜5上に、第二の多結晶薄膜5と同様にエピタキシャル成長されてなるものである。
前記反応抑止膜、すなわち第三の多結晶薄膜7を構成する酸化物としては、Y、CeOなどが挙げられる。
第三の多結晶薄膜7は、第二の多結晶薄膜5上にエピタキシャル成長されて形成されるため、第二の多結晶薄膜5の結晶配向性と同等の結晶配向性を有することになる。
The third polycrystalline thin film 7 is a diffusion prevention film (reaction inhibiting film) disclosed in Japanese Patent Application Laid-Open No. 11-86647, and the second polycrystalline thin film 5 is formed on the second polycrystalline thin film 5. And is epitaxially grown in the same manner as described above.
Examples of the oxide constituting the reaction suppression film, that is, the third polycrystalline thin film 7, include Y 2 O 3 and CeO 2 .
Since the third polycrystalline thin film 7 is formed by epitaxial growth on the second polycrystalline thin film 5, it has a crystal orientation equivalent to the crystal orientation of the second polycrystalline thin film 5.

第三の多結晶薄膜7は、第二の多結晶薄膜5の形成に用いられる図3に示すパルスレーザ蒸着装置を用い、ターゲットをY、CeOなどの第三の多結晶薄膜7形成用の材料に切り替えて、PLD法によって形成することが好ましい。第二の多結晶薄膜5の形成と同じく、レーザ発光装置35から発生させたレーザビームを、ウィンドウ36を通して蒸着処理室31に導入し、該室内の第三の多結晶薄膜形成用のターゲットに集光照射する。これにより、ターゲットの構成粒子がえぐり出されるか蒸発されて、その粒子が第二の多結晶薄膜5上に堆積し、第三の多結晶薄膜7が形成される。 The third polycrystalline thin film 7 is a pulse laser vapor deposition apparatus shown in FIG. 3 used for forming the second polycrystalline thin film 5, and the target is a third polycrystalline thin film 7 such as Y 2 O 3 or CeO 2. It is preferable to use the PLD method by switching to the forming material. Similar to the formation of the second polycrystalline thin film 5, the laser beam generated from the laser light emitting device 35 is introduced into the vapor deposition processing chamber 31 through the window 36, and collected in the target for forming the third polycrystalline thin film in the chamber. Irradiate with light. As a result, the constituent particles of the target are extracted or evaporated, and the particles are deposited on the second polycrystalline thin film 5 to form the third polycrystalline thin film 7.

前記第三の多結晶薄膜7の膜厚は、第二の多結晶薄膜5の膜厚と同等かそれ以下であることが好ましい。第二の多結晶薄膜5の結晶配向性は、第三の多結晶薄膜7の結晶配向性に比べて、膜厚依存性が大きいため、多結晶薄膜の全体の膜厚に対して、第二の多結晶薄膜5の膜厚の比率を第三の多結晶薄膜7の膜厚の比率と同等かそれ以上とすることによって、効率良く結晶配向性を高めることができる。
前記第三の多結晶薄膜7の膜厚は、具体的には0.1μm〜0.3μmが好ましく、これにより第二の多結晶薄膜5の結晶配向性と同等の結晶配向性を有する第三の多結晶薄膜7が実現できる。
第三の多結晶薄膜7の膜厚が0.1μm未満の場合、結晶がほとんど成長せず、良好な結晶配向性が得られず、好ましくない。第三の多結晶薄膜7の膜厚が0.3μmよりも厚い場合、成膜に長時間を要するため非効率的であり、結果として製造コストが嵩むため、好ましくない。
The thickness of the third polycrystalline thin film 7 is preferably equal to or less than the thickness of the second polycrystalline thin film 5. The crystal orientation of the second polycrystalline thin film 5 is more dependent on the film thickness than the crystal orientation of the third polycrystalline thin film 7, so By making the ratio of the thickness of the polycrystalline thin film 5 equal to or greater than the ratio of the thickness of the third polycrystalline thin film 7, the crystal orientation can be improved efficiently.
Specifically, the film thickness of the third polycrystalline thin film 7 is preferably 0.1 μm to 0.3 μm, whereby the third polycrystalline thin film 7 has a crystal orientation equivalent to the crystal orientation of the second polycrystalline thin film 5. The polycrystalline thin film 7 can be realized.
When the film thickness of the third polycrystalline thin film 7 is less than 0.1 μm, the crystal hardly grows and good crystal orientation cannot be obtained, which is not preferable. If the thickness of the third polycrystalline thin film 7 is thicker than 0.3 μm, it takes a long time to form the film, which is inefficient, and as a result, the manufacturing cost increases.

本実施形態の酸化物超電導導体2Bは、前述した第1実施形態と同様に、図3に示すパルスレーザ蒸着装置を用い、ターゲットを変更し、PLD法によって前記多結晶配向中間薄膜1B上に酸化物超電導薄膜6を形成することにより製造される。
酸化物超電導薄膜6の形成においては、ターゲットとして、酸化物超電導薄膜6を構成する酸化物超電導体と同一組成あるいは近似組成の酸化物超電導体が用いられる。
As in the first embodiment described above, the oxide superconducting conductor 2B of this embodiment is oxidized on the polycrystalline oriented intermediate thin film 1B by the PLD method using the pulse laser deposition apparatus shown in FIG. 3 and changing the target. It is manufactured by forming the superconducting thin film 6.
In the formation of the oxide superconducting thin film 6, an oxide superconductor having the same composition as that of the oxide superconductor constituting the oxide superconducting thin film 6 or an approximate composition is used as a target.

酸化物超電導薄膜6を形成するには、まず、前記多結晶配向中間薄膜1Bが形成された基材3を、このパルスレーザ蒸着装置の基台33上に設置する。
次いで、蒸着処理室31を一旦減圧排気した後、酸素ガス又は酸素ガスと窒素ガスの混合ガスを導入し、蒸着処理室31を適当な圧力の酸素ガス雰囲気とする。また、基台33に設けられた加熱ヒータを作動させて基材3を所定の温度に加熱する。
In order to form the oxide superconducting thin film 6, first, the base material 3 on which the polycrystalline oriented intermediate thin film 1B is formed is placed on the base 33 of the pulse laser deposition apparatus.
Next, after evacuating the vapor deposition chamber 31 once, oxygen gas or a mixed gas of oxygen gas and nitrogen gas is introduced to make the vapor deposition chamber 31 an oxygen gas atmosphere at an appropriate pressure. Further, the heater 3 provided on the base 33 is operated to heat the substrate 3 to a predetermined temperature.

次いで、レーザ発光装置35から発生させたレーザビームを、蒸着処理室31のターゲットに集光照射する。これにより、ターゲットの構成粒子がえぐり出されるか蒸発されて、その粒子が第三の多結晶薄膜7上に堆積し、酸化物超電導薄膜6が形成されて、酸化物超電導導体2Bが得られる。ここで、第三の多結晶薄膜7は、第二の多結晶薄膜5上にエピタキシャル成長されて形成されるため、第二の多結晶薄膜5の結晶配向性と同等の結晶配向性を有することから、酸化物超電導体の構成粒子が前記多結晶配向中間薄膜1B上に堆積する際、第三の多結晶薄膜7上に形成される酸化物超電導薄膜6の結晶のc軸とa軸とb軸も、第三の多結晶薄膜7に整合するようにエピタキシャル成長して結晶化する。   Next, the laser beam generated from the laser light emitting device 35 is focused and applied to the target in the vapor deposition chamber 31. Thereby, the constituent particles of the target are extracted or evaporated, and the particles are deposited on the third polycrystalline thin film 7 to form the oxide superconducting thin film 6 to obtain the oxide superconducting conductor 2B. Here, since the third polycrystalline thin film 7 is formed by being epitaxially grown on the second polycrystalline thin film 5, it has a crystal orientation equivalent to the crystal orientation of the second polycrystalline thin film 5. The c-axis, a-axis, and b-axis of the crystal of the oxide superconducting thin film 6 formed on the third polycrystalline thin film 7 when the oxide superconductor constituent particles are deposited on the polycrystalline oriented intermediate thin film 1B. Is also epitaxially grown and crystallized to match the third polycrystalline thin film 7.

本実施形態の酸化物超電導導体2Bは、前記多結晶配向中間薄膜1B上に、YBaCu系等の酸化物超電導薄膜6が設けられた構造なので、優れた結晶配向性を有する酸化物超電導薄膜6が形成可能となり、これにより、この酸化物超電導導体2Bは優れた超電導特性が得られ、強磁場発生用のコイルなど種々の超電導応用機器に適用することで、それらの性能向上を図ることができる。
また、第三の多結晶薄膜7が反応抑止膜として作用し、多結晶配向中間薄膜1B上に形成される酸化物超電導薄膜6の臨界電流密度などの超電導特性を向上させることができる。
The oxide superconducting conductor 2B of this embodiment has a structure in which an oxide superconducting thin film 6 such as Y 1 Ba 2 Cu 3 O x is provided on the polycrystalline oriented intermediate thin film 1B. The oxide superconducting thin film 6 can be formed, whereby the oxide superconducting conductor 2B has excellent superconducting characteristics, and can be applied to various superconducting applications such as a coil for generating a strong magnetic field. Improvements can be made.
In addition, the third polycrystalline thin film 7 acts as a reaction inhibiting film, and the superconducting characteristics such as the critical current density of the oxide superconducting thin film 6 formed on the polycrystalline oriented intermediate thin film 1B can be improved.

図5は、本発明の酸化物超電導導体の第3実施形態を示す模式図である。図5において、前述した第1、第2実施形態による酸化物超電導導体2A、2Bと同一の構成要素には同一符号を付してある。図5中、符号1Cは多結晶配向中間薄膜、2Cは酸化物超電導導体をそれぞれ示している。   FIG. 5 is a schematic view showing a third embodiment of the oxide superconducting conductor of the present invention. In FIG. 5, the same components as those in the oxide superconductors 2A and 2B according to the first and second embodiments described above are denoted by the same reference numerals. In FIG. 5, reference numeral 1C denotes a polycrystalline oriented intermediate thin film, and 2C denotes an oxide superconductor.

本実施形態の酸化物超電導導体2Cは、金属製の基材3上に設けられた多結晶配向中間薄膜1Cと、この多結晶配向中間薄膜1C上に設けられた酸化物超電導薄膜6とから構成されている。この多結晶配向中間薄膜1Cは、基材3上に形成された第一の多結晶薄膜4上に、PLD法により第二の多結晶薄膜5と第三の多結晶薄膜7を交互に、それぞれ2層以上積層した構成になっている。基材3、第一の多結晶薄膜4、第二の多結晶薄膜5及び酸化物超電導薄膜6の各層の材料は、前述した第1、第2実施形態において記載したそれぞれの層と同様である。   The oxide superconducting conductor 2C of the present embodiment is composed of a polycrystalline oriented intermediate thin film 1C provided on a metal substrate 3, and an oxide superconducting thin film 6 provided on the polycrystalline oriented intermediate thin film 1C. Has been. In this polycrystalline oriented intermediate thin film 1C, the second polycrystalline thin film 5 and the third polycrystalline thin film 7 are alternately formed on the first polycrystalline thin film 4 formed on the substrate 3 by the PLD method. Two or more layers are stacked. The material of each layer of the base material 3, the first polycrystalline thin film 4, the second polycrystalline thin film 5, and the oxide superconducting thin film 6 is the same as the respective layers described in the first and second embodiments. .

本実施形態の酸化物超電導導体2Cは、例えば次のような工程によって製造される。
(1)ハステロイテープなどの金属テープからなる基材3上に、図2に示す装置を用い、IBAD法によって結晶配向性に優れたGdZrなどからなるターゲットから蒸発する粒子を成膜速度数nm/minで堆積させ、基材3上に第一の多結晶薄膜4を成膜する。
The oxide superconducting conductor 2C of the present embodiment is manufactured, for example, by the following process.
(1) On a substrate 3 made of a metal tape such as hastelloy tape, particles that evaporate from a target made of Gd 2 Zr 2 O 7 and the like having excellent crystal orientation are formed by the IBAD method using the apparatus shown in FIG. The first polycrystalline thin film 4 is deposited on the substrate 3 by depositing at a film speed of several nm / min.

(2)次に、第一の多結晶薄膜4を形成した基材3を、図3に示すパルスレーザ蒸着装置の基台33上に設置し、GdZrなどからなるターゲットにパルスレーザ光を照射し、窒素ガス+酸素ガス雰囲気中、第一の多結晶薄膜4上に第二の多結晶薄膜5を堆積させる。この第二の多結晶薄膜5の成膜条件は、レーザエネルギー100〜300mJ、周波数10〜250Hz、基材加熱温度500〜1000℃、窒素ガス+酸素ガスの雰囲気圧力10〜50mTorr、基材線速1〜10m/h程度とするのが好ましい。この第二の多結晶薄膜5の膜厚0.3〜1μm程度が好ましい。この第二の多結晶薄膜5の成膜において、窒素ガス+酸素ガス雰囲気中で成膜を行うことで、酸素雰囲気の場合よりも雰囲気圧力が高いため、ウィンドウ36が汚れにくくなり、長時間成膜を行っても成膜速度が低下し難くなる。 (2) Next, the base material 3 on which the first polycrystalline thin film 4 is formed is placed on the base 33 of the pulse laser deposition apparatus shown in FIG. 3, and a pulse is applied to a target made of Gd 2 Zr 2 O 7 or the like. The second polycrystalline thin film 5 is deposited on the first polycrystalline thin film 4 in a nitrogen gas + oxygen gas atmosphere by irradiation with laser light. The film formation conditions of the second polycrystalline thin film 5 are as follows: laser energy 100 to 300 mJ, frequency 10 to 250 Hz, substrate heating temperature 500 to 1000 ° C., nitrogen gas + oxygen gas atmosphere pressure 10 to 50 mTorr, substrate linear velocity It is preferably about 1 to 10 m / h. The thickness of the second polycrystalline thin film 5 is preferably about 0.3 to 1 μm. When the second polycrystalline thin film 5 is formed, the film is formed in a nitrogen gas + oxygen gas atmosphere, so that the atmospheric pressure is higher than that in the oxygen atmosphere. Even if the film is formed, the film formation speed is hardly lowered.

(3)次に、パルスレーザ蒸着装置内のターゲットを第三の多結晶薄膜7形成用の材料に切り替え、PLD法によって第二の多結晶薄膜5と格子定数の近いY、CeOなどのターゲットから蒸発する粒子を酸素ガス雰囲気中で堆積させ、第二の多結晶薄膜5上に第三の多結晶薄膜7を成膜する。この時の酸素ガス雰囲気圧力は10〜50mTorrの範囲が好ましい。この第三の多結晶薄膜7の膜厚は0.1〜0.3μm程度とするのが好ましい。 (3) Next, the target in the pulse laser deposition apparatus is switched to the material for forming the third polycrystalline thin film 7, and Y 2 O 3 and CeO 2 having a lattice constant close to that of the second polycrystalline thin film 5 by the PLD method. The third polycrystalline thin film 7 is formed on the second polycrystalline thin film 5 by depositing particles evaporating from the target in an oxygen gas atmosphere. At this time, the oxygen gas atmosphere pressure is preferably in the range of 10 to 50 mTorr. The thickness of the third polycrystalline thin film 7 is preferably about 0.1 to 0.3 μm.

(4)前記(2)と(3)の薄膜形成を少なくとも2回以上繰り返し行い第二の多結晶薄膜5と第三の多結晶薄膜7とを交互に多数積層し、多結晶配向中間薄膜1Cを形成する。この多結晶配向中間薄膜1Cは、格子定数の近い材料からなる第二の多結晶薄膜5と第三の多結晶薄膜7とを交互に多数積層していくことにより、薄膜を構成する結晶が大きく成長し、結晶配向性が改善される。したがって、結晶配向性の良好な多結晶配向中間薄膜1Cを形成することができる。また、IBAD法とPLD法それぞれの成膜速度を比較すると、PLD法は数十倍成膜速度が速い。そのため、IBAD法のみで同様の多結晶配向中間薄膜を形成するよりも、IBAD法とPLD法とを組み合わせる前記方法では、短時間で結晶配向性の良好な多結晶配向中間薄膜1Cを形成することができる。 (4) The thin film formation of the above (2) and (3) is repeated at least twice, and a plurality of second polycrystalline thin films 5 and third polycrystalline thin films 7 are alternately laminated to obtain a polycrystalline oriented intermediate thin film 1C. Form. In this polycrystalline oriented intermediate thin film 1C, a large number of crystals constituting the thin film are obtained by alternately laminating a plurality of second polycrystalline thin films 5 and third polycrystalline thin films 7 made of a material having a close lattice constant. Grows and improves crystal orientation. Therefore, the polycrystalline oriented intermediate thin film 1C having a good crystal orientation can be formed. Further, when the film formation rates of the IBAD method and the PLD method are compared, the film formation rate of the PLD method is several tens of times faster. Therefore, rather than forming the same polycrystalline oriented intermediate thin film only by the IBAD method, the method combining the IBAD method and the PLD method can form the polycrystalline oriented intermediate thin film 1C having good crystalline orientation in a short time. Can do.

(5)次に、前記(4)で形成された多結晶配向中間薄膜1C上に、PLD法によってYBaCu系等の酸化物超電導薄膜6を成膜する。多結晶配向中間薄膜1C上に酸化物超電導薄膜6を成膜すると、各結晶軸(テープ面に垂直な方向のc軸、テープ面内のa軸及びb軸)が結晶配向性の良好な多結晶配向中間薄膜1Cの結晶に整合するようにエピタキシャル成長して結晶化し、結晶配向性が良好で超電導特性に優れた酸化物超電導導体2Cが製造できる。 (5) Next, an oxide superconducting thin film 6 such as Y 1 Ba 2 Cu 3 O x is formed on the polycrystalline oriented intermediate thin film 1C formed in (4) by the PLD method. When the oxide superconducting thin film 6 is formed on the polycrystalline oriented intermediate thin film 1C, each crystal axis (c-axis perpendicular to the tape surface, a-axis and b-axis in the tape surface) has many crystal orientations. Oxide superconducting conductor 2C having excellent crystal orientation and excellent superconducting characteristics can be manufactured by epitaxial growth and crystallization so as to match the crystal orientation intermediate thin film 1C.

[比較例]
ハステロイテープ基材上にIBAD法により膜厚1μm、面内配向性10度のGdZrからなる第一の多結晶薄膜を形成し、この第一の多結晶薄膜上に、低酸素雰囲気中、PLD法により膜厚1.5μmのGdZrからなる第二の多結晶薄膜を形成した。第二の多結晶薄膜の成膜に用いたPLD法の蒸着条件は、エキシマレーザパルス光の射出強度100〜300mJ、パルス周波数10〜250Hz、酸素雰囲気圧力2mTorr、基材加熱温度600〜1000℃、テープ基材の線速4m/hとし、この条件で20m長の基材上に第二の多結晶薄膜を形成した。
この条件で蒸着を行った場合、蒸着処理室のウィンドウに多結晶薄膜の材料が次第に付着し、ウィンドウが曇ったために、30時間後に成膜速度が2割低下した。そのため膜厚を1.5μmとするための積層回数が10回となった。この時の第二の多結晶薄膜の面内配向性は約5度であった。
第二の多結晶薄膜の形成後、蒸着処理室内のターゲットを変更し、第二の多結晶薄膜上に、PLD法によってYBaCuからなる酸化物超電導薄膜を形成し酸化物超電導導体を形成した。その結果、酸化物超電導薄膜の膜厚が0.4μmで臨界電流密度(Jc)値が1.5MA/cmの酸化物超電導導体が得られた。
なお、前記「面内配向性」とは、X線回折法により各多結晶薄膜の極点計測により極図形を測定し、その半値幅[単位:度]である。
[Comparative example]
A first polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of 1 μm and an in-plane orientation of 10 degrees is formed on a Hastelloy tape base material by an IBAD method, and a low oxygen content is formed on the first polycrystalline thin film. In the atmosphere, a second polycrystalline thin film made of Gd 2 Zr 2 O 7 having a thickness of 1.5 μm was formed by the PLD method. The deposition conditions of the PLD method used for the formation of the second polycrystalline thin film are: Excimer laser pulse light emission intensity of 100 to 300 mJ, pulse frequency of 10 to 250 Hz, oxygen atmosphere pressure of 2 mTorr, substrate heating temperature of 600 to 1000 ° C., The second polycrystalline thin film was formed on a 20 m long base material under a linear velocity of 4 m / h of the tape base material.
When vapor deposition was performed under these conditions, the material of the polycrystalline thin film gradually adhered to the window of the vapor deposition treatment chamber, and the window became cloudy, so that the film formation rate decreased by 20% after 30 hours. For this reason, the number of laminations for setting the film thickness to 1.5 μm was 10. The in-plane orientation of the second polycrystalline thin film at this time was about 5 degrees.
After the formation of the second polycrystalline thin film, the target in the vapor deposition chamber is changed, and an oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x is formed on the second polycrystalline thin film by the PLD method. A superconducting conductor was formed. As a result, an oxide superconducting conductor having a thickness of 0.4 μm and a critical current density (Jc) value of 1.5 MA / cm 2 was obtained.
The “in-plane orientation” is a half width [unit: degree] obtained by measuring a polar figure by pole measurement of each polycrystalline thin film by X-ray diffraction.

[実施例1]
ハステロイテープ基材上にIBAD法により膜厚1μm、面内配向性10度のGdZrからなる第一の多結晶薄膜を形成し、この第一の多結晶薄膜上に、窒素ガス+酸素ガス(N:Oのガス流量比5:1)雰囲気中、PLD法により膜厚1.5μmのGdZrからなる第二の多結晶薄膜を形成した。第二の多結晶薄膜の成膜に用いたPLD法の蒸着条件は、エキシマレーザパルス光の射出強度100〜300mJ、パルス周波数10〜250Hz、ガス雰囲気圧力20mTorr、基材加熱温度600〜1000℃、テープ基材の線速4m/hとし、この条件で20m長の基材上に第二の多結晶薄膜を形成した。
この条件で蒸着を行った場合、15時間後の成膜速度は成膜開始時より1割低下した。そのため、第二の多結晶薄膜の膜厚を1.5μmとするための積層回数は8回であった。この時の第二の多結晶薄膜の面内配向性は約5度であった。
第二の多結晶薄膜の形成後、蒸着処理室内のターゲットを変更し、第二の多結晶薄膜上に、PLD法によってYBaCuからなる酸化物超電導薄膜を形成し酸化物超電導導体を形成した。その結果、酸化物超電導薄膜の膜厚が0.4μmで臨界電流密度(Jc)値が1.5MA/cmの酸化物超電導導体が得られた。
[Example 1]
A first polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of 1 μm and an in-plane orientation of 10 degrees is formed on a Hastelloy tape base material by IBAD, and nitrogen gas is formed on the first polycrystalline thin film. A second polycrystalline thin film made of Gd 2 Zr 2 O 7 having a thickness of 1.5 μm was formed by PLD method in an atmosphere of + oxygen gas (N 2 : O 2 gas flow ratio 5: 1). The deposition conditions of the PLD method used for forming the second polycrystalline thin film are: Excimer laser pulse light emission intensity of 100 to 300 mJ, pulse frequency of 10 to 250 Hz, gas atmosphere pressure of 20 mTorr, substrate heating temperature of 600 to 1000 ° C., The second polycrystalline thin film was formed on a 20 m long base material under a linear velocity of 4 m / h of the tape base material.
When vapor deposition was performed under these conditions, the film formation rate after 15 hours decreased by 10% from the start of film formation. Therefore, the number of laminations for setting the thickness of the second polycrystalline thin film to 1.5 μm was eight. The in-plane orientation of the second polycrystalline thin film at this time was about 5 degrees.
After the formation of the second polycrystalline thin film, the target in the vapor deposition chamber is changed, and an oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x is formed on the second polycrystalline thin film by the PLD method. A superconducting conductor was formed. As a result, an oxide superconducting conductor having a thickness of 0.4 μm and a critical current density (Jc) value of 1.5 MA / cm 2 was obtained.

[実施例2]
ハステロイテープ基材上にIBAD法により膜厚1μm、面内配向性10度のGdZrからなる第一の多結晶薄膜を形成し、この第一の多結晶薄膜上に、窒素ガス雰囲気中、PLD法により膜厚1.5μmのGdZrからなる第二の多結晶薄膜を形成した。第二の多結晶薄膜の成膜に用いたPLD法の蒸着条件は、エキシマレーザパルス光の射出強度100〜300mJ、パルス周波数10〜250Hz、窒素ガス雰囲気圧力20mTorr、基材加熱温度600〜1000℃、テープ基材の線速4m/hとし、この条件で20m長の基材上に第二の多結晶薄膜を形成した。
この条件で蒸着を行った場合、15時間後の成膜速度は成膜開始時と同程度であった。そのため、膜厚を1.5μmとするための積層回数は6回であった。この時の第二の多結晶薄膜の面内配向性は約5度であった。
第二の多結晶薄膜の形成後、蒸着処理室内のターゲットを変更し、第二の多結晶薄膜上に、PLD法によってYBaCuからなる酸化物超電導薄膜を形成し酸化物超電導導体を形成した。その結果、酸化物超電導薄膜の膜厚が0.4μmで臨界電流密度(Jc)値が1.5MA/cmの酸化物超電導導体が得られた。
[Example 2]
A first polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of 1 μm and an in-plane orientation of 10 degrees is formed on a Hastelloy tape base material by IBAD, and nitrogen gas is formed on the first polycrystalline thin film. In the atmosphere, a second polycrystalline thin film made of Gd 2 Zr 2 O 7 having a thickness of 1.5 μm was formed by the PLD method. The deposition conditions of the PLD method used for forming the second polycrystalline thin film are: Excimer laser pulse light emission intensity of 100 to 300 mJ, pulse frequency of 10 to 250 Hz, nitrogen gas atmosphere pressure of 20 mTorr, substrate heating temperature of 600 to 1000 ° C. The second polycrystalline thin film was formed on a 20 m long substrate under the above conditions with the linear velocity of the tape substrate being 4 m / h.
When vapor deposition was performed under these conditions, the film formation rate after 15 hours was comparable to that at the start of film formation. For this reason, the number of laminations for setting the film thickness to 1.5 μm was six. The in-plane orientation of the second polycrystalline thin film at this time was about 5 degrees.
After the formation of the second polycrystalline thin film, the target in the vapor deposition chamber is changed, and an oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x is formed on the second polycrystalline thin film by the PLD method. A superconducting conductor was formed. As a result, an oxide superconducting conductor having a thickness of 0.4 μm and a critical current density (Jc) value of 1.5 MA / cm 2 was obtained.

[実施例3]
実施例1と同様の条件下、ハステロイテープ基材上にIBAD法により膜厚約1μm、面内配向性10度のGdZrからなる第一の多結晶薄膜を形成し、この第一の多結晶薄膜上にPLD法により膜厚約1μmのGdZrからなる第二の多結晶薄膜を形成した後、蒸着処理室内のターゲットを変更し、第二の多結晶薄膜上に、PLD法により膜厚約0.3μmのYからなる第三の多結晶薄膜を形成した。
第三の多結晶薄膜の形成後、蒸着処理室内のターゲットを変更し、第三の多結晶薄膜上に、PLD法によってYBaCuからなる酸化物超電導薄膜を実施例1の場合よりも厚く形成した。その結果、酸化物超電導薄膜の膜厚が約1μmで臨界電流密度(Jc)値が1.5MA/cmの酸化物超電導導体が得られた。
一方、前記第二の多結晶薄膜の形成後、第三の多結晶薄膜を形成せず、第二の多結晶薄膜上に直接YBaCuからなる膜厚約1μmの酸化物超電導薄膜を形成した。得られた酸化物超電導導体の臨界電流密度(Jc)値は1.2MA/cmであり、第二の多結晶薄膜上にYからなる第三の多結晶薄膜を設けることで、得られる酸化物超電導導体のJc値を向上できることが分かった。
[Example 3]
Under the same conditions as in Example 1, a first polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of about 1 μm and an in-plane orientation of 10 degrees is formed on a Hastelloy tape substrate by the IBAD method. After forming a second polycrystalline thin film made of Gd 2 Zr 2 O 7 having a thickness of about 1 μm on one polycrystalline thin film by the PLD method, the target in the vapor deposition chamber is changed to Then, a third polycrystalline thin film made of Y 2 O 3 having a thickness of about 0.3 μm was formed by the PLD method.
After the formation of the third polycrystalline thin film, the target in the vapor deposition processing chamber was changed, and an oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x was formed on the third polycrystalline thin film by the PLD method according to Example 1. It was formed thicker than the case. As a result, an oxide superconducting conductor having an oxide superconducting thin film thickness of about 1 μm and a critical current density (Jc) value of 1.5 MA / cm 2 was obtained.
On the other hand, after the formation of the second polycrystalline thin film, an oxide having a film thickness of about 1 μm made of Y 1 Ba 2 Cu 3 O x is directly formed on the second polycrystalline thin film without forming the third polycrystalline thin film. A superconducting thin film was formed. The obtained oxide superconducting conductor has a critical current density (Jc) value of 1.2 MA / cm 2 , and by providing a third polycrystalline thin film made of Y 2 O 3 on the second polycrystalline thin film, It was found that the Jc value of the resulting oxide superconductor can be improved.

[実施例4]
実施例1と同様の条件下、ハステロイテープ基材上にIBAD法により膜厚約1μm、面内配向性10度のGdZrからなる第一の多結晶薄膜を形成した。この第一の多結晶薄膜上に、PLD法により膜厚0.3μmのGdZrからなる第二の多結晶薄膜を、エキシマレーザパルス光の射出強度300mJ、パルス周波数250Hz、窒素ガス+酸素ガス雰囲気圧力10mTorr、窒素と酸素ガスの流量比3:2、温度800℃、線速4.5m/hの成膜条件で一回成膜し、さらにPLD法により膜厚0.3μmのYからなる第三の多結晶薄膜を、エキシマレーザパルス光の射出強度300mJ、パルス周波数250Hz、酸素雰囲気圧力26mTorr、温度800℃、線速4.5m/hの成膜条件で一回成膜した。さらに第二の多結晶薄膜と第三の多結晶薄膜を交互に積層し、全体の膜厚の和が2.2μmの多結晶配向中間薄膜を形成した。次に、この多結晶配向中間薄膜上にPLD法によってYBaCuからなる酸化物超電導薄膜を形成した場合、膜厚0.5μmの短尺試料でJc値が1.2MA/cmであった。
一方、基材上にIBAD法により膜厚2.2μmのGdZrからなる多結晶配向中間薄膜を形成し、その中間薄膜上にPLD法によって膜厚0.5μmのYBaCuからなる酸化物超電導薄膜を形成した場合、短尺試料でJc値が1.0MA/cmであった。
これらの酸化物超電導薄膜は、ほぼ同程度のJc値が得られるものの、多結晶配向中間薄膜の形成時間は、PLD法の成膜時間がIBAD法に比べ数十倍速いため、IBDA法のみで多結晶配向中間薄膜を形成するよりも、IBAD法とPLD法とを組み合わせた方が多結晶配向中間薄膜の形成時間が短く効率的であった。
[Example 4]
Under the same conditions as in Example 1, a first polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of about 1 μm and in-plane orientation of 10 degrees was formed on a Hastelloy tape substrate by the IBAD method. On this first polycrystalline thin film, a second polycrystalline thin film made of Gd 2 Zr 2 O 7 having a film thickness of 0.3 μm by a PLD method is applied to an excimer laser pulse light emission intensity of 300 mJ, a pulse frequency of 250 Hz, nitrogen gas. + Oxygen gas atmosphere pressure of 10 mTorr, nitrogen / oxygen gas flow ratio 3: 2, temperature of 800 ° C., linear velocity of 4.5 m / h. A third polycrystalline thin film made of Y 2 O 3 is formed once under the deposition conditions of an excimer laser pulsed light emission intensity of 300 mJ, a pulse frequency of 250 Hz, an oxygen atmosphere pressure of 26 mTorr, a temperature of 800 ° C., and a linear velocity of 4.5 m / h. A film was formed. Further, the second polycrystalline thin film and the third polycrystalline thin film were alternately laminated to form a polycrystalline oriented intermediate thin film having a total film thickness of 2.2 μm. Next, when an oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x is formed on this polycrystalline oriented intermediate thin film by the PLD method, the Jc value is 1.2 MA / cm for a short sample having a thickness of 0.5 μm. 2 .
On the other hand, a polycrystalline oriented intermediate thin film made of Gd 2 Zr 2 O 7 having a film thickness of 2.2 μm is formed on the base material by IBAD method, and Y 1 Ba 2 having a film thickness of 0.5 μm is formed on the intermediate thin film by PLD method. When an oxide superconducting thin film made of Cu 3 O x was formed, the Jc value of the short sample was 1.0 MA / cm 2 .
Although these oxide superconducting thin films can obtain approximately the same Jc value, the formation time of the polycrystalline alignment intermediate thin film is several tens of times faster than the IBAD method. The formation time of the polycrystalline oriented intermediate thin film was shorter and more efficient when the IBAD method and the PLD method were combined than when the crystalline oriented intermediate thin film was formed.

長時間成膜時において、IBAD法によりハステロイテープ基材上に形成した膜厚1μmのGdZrからなる第一の多結晶薄膜上に、PLD法によりGdZrからなる第二の多結晶薄膜を酸素雰囲気圧力2mTorr下で形成した場合、ウィンドウに蒸着粒子が付着することにより30時間後に成膜速度が2%低下した。
一方、第二の多結晶薄膜を窒素ガス+酸素ガス雰囲気圧力20mTorr下で形成した場合、30時間後の成膜速度の低下は0.5%程度に抑えることができた。
In long time of film formation, the first polycrystalline thin film consisting of Gd 2 Zr 2 O 7 having a thickness of 1μm formed on Hastelloy tape substrate by the IBAD method, consisting of Gd 2 Zr 2 O 7 by PLD When the second polycrystalline thin film was formed under an oxygen atmosphere pressure of 2 mTorr, the deposition rate decreased by 2% after 30 hours due to the deposition particles adhering to the window.
On the other hand, when the second polycrystalline thin film was formed under a nitrogen gas + oxygen gas atmosphere pressure of 20 mTorr, the decrease in the film formation rate after 30 hours could be suppressed to about 0.5%.

本発明に係る酸化物超電導導体の第1実施形態を示す断面図である。1 is a cross-sectional view showing a first embodiment of an oxide superconducting conductor according to the present invention. 本発明の方法において使用されるIBAD装置の一例を示す構成図である。It is a block diagram which shows an example of the IBAD apparatus used in the method of this invention. 本発明の方法において使用されるPLD装置の一例を示す構成図である。It is a block diagram which shows an example of the PLD apparatus used in the method of this invention. 本発明に係る酸化物超電導導体の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the oxide superconducting conductor which concerns on this invention. 本発明に係る酸化物超電導導体の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the oxide superconducting conductor which concerns on this invention.

符号の説明Explanation of symbols

1A,1B,1C…多結晶配向中間薄膜、2A,2B,2C…酸化物超電導導体、3…基材、4…第一の多結晶薄膜、5…第二の多結晶薄膜、6…酸化物超電導薄膜、7…第三の多結晶薄膜。
1A, 1B, 1C ... polycrystalline oriented intermediate thin film, 2A, 2B, 2C ... oxide superconducting conductor, 3 ... substrate, 4 ... first polycrystalline thin film, 5 ... second polycrystalline thin film, 6 ... oxide Superconducting thin film, 7 ... third polycrystalline thin film.

Claims (6)

金属製の基材上にイオンビームアシスト法により、A Zr あるいはA Hf のいずれかの組成式(ただし、前記組成式においてAは、Y、Yb、Tm、Er、Ho、Dy、Eu、Gd、Sm、Nd、Pr、Ce、Laの中から選択される1種を示す。)で示される複合酸化物あるいはイットリア安定化ジルコニアからなる第一の多結晶薄膜を形成し、該第一の多結晶薄膜上に、圧力を10〜30mTorrの範囲とした窒素ガス雰囲気又は窒素ガス+酸素ガス雰囲気中、パルスレーザ蒸着法により第一の多結晶薄膜と同じ材料からなる第二の多結晶薄膜を形成して多結晶配向中間薄膜を形成し、次いで該多結晶配向中間薄膜上に酸化物超電導薄膜を形成して酸化物超電導導体を製造することを特徴とする酸化物超電導導体の製造方法。 A composition formula of either A 2 Zr 2 O 7 or A 2 Hf 2 O 7 (where A is Y, Yb, Tm, Er, 1 type selected from Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La) is formed, and a first polycrystalline thin film made of yttria-stabilized zirconia is formed. The first polycrystalline thin film is made of the same material as the first polycrystalline thin film by pulsed laser deposition in a nitrogen gas atmosphere or a nitrogen gas + oxygen gas atmosphere with a pressure in the range of 10 to 30 mTorr. Forming an oxide superconducting conductor by forming a polycrystalline oriented intermediate thin film by forming a second polycrystalline thin film, and then forming an oxide superconducting thin film on the polycrystalline oriented intermediate thin film; Guidance Body manufacturing method. 前記第二の多結晶薄膜上に、反応抑止膜として第三の多結晶薄膜を形成して多結晶配向中間薄膜を形成することを特徴とする請求項1に記載の酸化物超電導導体の製造方法。   The method for producing an oxide superconducting conductor according to claim 1, wherein a third polycrystalline thin film is formed as a reaction inhibiting film on the second polycrystalline thin film to form a polycrystalline oriented intermediate thin film. . 前記第一の多結晶薄膜上に、パルスレーザ蒸着法により前記第二の多結晶薄膜と第三の多結晶薄膜を交互に、それぞれ2層以上積層して多結晶配向中間薄膜を形成することを特徴とする請求項1又は2に記載の酸化物超電導導体の製造方法。   On the first polycrystalline thin film, two or more layers of the second polycrystalline thin film and the third polycrystalline thin film are alternately laminated by a pulse laser deposition method to form a polycrystalline oriented intermediate thin film. The method for producing an oxide superconductor according to claim 1 or 2. 前記第二の多結晶薄膜を窒素ガス+酸素ガス雰囲気中、パルスレーザ蒸着法により形成し、前記第三の多結晶薄膜を酸素ガス雰囲気中、パルスレーザ蒸着法により形成することを特徴とする請求項2又は3に記載の酸化物超電導導体の製造方法。   The second polycrystalline thin film is formed by a pulse laser deposition method in a nitrogen gas + oxygen gas atmosphere, and the third polycrystalline thin film is formed by a pulse laser deposition method in an oxygen gas atmosphere. Item 4. A method for producing an oxide superconducting conductor according to Item 2 or 3. 前記窒素ガス+酸素ガス雰囲気の窒素と酸素ガスの流量比が5:1または3:2であることを特徴とする請求項1〜のいずれか1項に記載の酸化物超電導導体の製造方法。 The method for producing an oxide superconducting conductor according to any one of claims 1 to 4 , wherein a flow rate ratio of nitrogen and oxygen gas in the nitrogen gas + oxygen gas atmosphere is 5: 1 or 3: 2. . 請求項1乃至5のいずれか1項に記載の酸化物超電導導体の製造方法により製造された酸化物超電導導体。 The oxide superconductor manufactured by the manufacturing method of the oxide superconductor of any one of Claims 1 thru | or 5 .
JP2004178230A 2004-03-11 2004-06-16 Oxide superconducting conductor and manufacturing method thereof Expired - Fee Related JP4619697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178230A JP4619697B2 (en) 2004-03-11 2004-06-16 Oxide superconducting conductor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004068894 2004-03-11
JP2004178230A JP4619697B2 (en) 2004-03-11 2004-06-16 Oxide superconducting conductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005294240A JP2005294240A (en) 2005-10-20
JP4619697B2 true JP4619697B2 (en) 2011-01-26

Family

ID=35326904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178230A Expired - Fee Related JP4619697B2 (en) 2004-03-11 2004-06-16 Oxide superconducting conductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4619697B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519540B2 (en) * 2004-03-31 2010-08-04 株式会社フジクラ Method for manufacturing oxide superconductor and oxide superconductor
AU2007216116A1 (en) * 2006-02-16 2007-08-23 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting thin-film material, superconducting device and superconducting thin-film material
JP5448514B2 (en) * 2009-03-24 2014-03-19 古河電気工業株式会社 Thin film superconducting wire and manufacturing method thereof
JP5481135B2 (en) * 2009-09-04 2014-04-23 株式会社フジクラ Base material for oxide superconductor and oxide superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071359A (en) * 2002-08-06 2004-03-04 Internatl Superconductivity Technology Center Oxide superconductor wire material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071359A (en) * 2002-08-06 2004-03-04 Internatl Superconductivity Technology Center Oxide superconductor wire material

Also Published As

Publication number Publication date
JP2005294240A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4359649B2 (en) Polycrystalline thin film, method for producing the same, and oxide superconducting conductor
KR100545547B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
EP1178129B1 (en) Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
JP2007307904A (en) Coated conductor and polycrystal line film useful for manufacture of high-temperature superconductor layer
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JP2010287475A (en) Mgb2 superconductor and its manufacturing method
JP3634078B2 (en) Oxide superconducting conductor
JP5145109B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP5297770B2 (en) Manufacturing method of base material for oxide superconducting conductor, manufacturing method of oxide superconducting conductor, and apparatus for forming cap layer for oxide superconducting conductor
JP2011009106A (en) Substrate for oxide superconductor, and oxide superconductor
JP2005330533A (en) Polycrystal oriented intermediate thin film, its production method, oxide superconductor and its production method
JP2004362784A (en) Oxide superconductor and its manufacturing method
JP5452216B2 (en) Method for forming three-fold symmetric MgO film and four-fold symmetric MgO film
JP2004362785A (en) Oxide superconductor and its manufacturing method
JP5481135B2 (en) Base material for oxide superconductor and oxide superconductor
JP3732780B2 (en) Polycrystalline thin film and method for producing the same, and oxide superconducting conductor and method for producing the same
JP5481180B2 (en) Base material for oxide superconductor and oxide superconductor
JP4128557B2 (en) Oxide superconducting conductor
JP2004124255A (en) Production method for polycrystal thin film, and production method for oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees