JP5448514B2 - Thin film superconducting wire and manufacturing method thereof - Google Patents

Thin film superconducting wire and manufacturing method thereof Download PDF

Info

Publication number
JP5448514B2
JP5448514B2 JP2009072469A JP2009072469A JP5448514B2 JP 5448514 B2 JP5448514 B2 JP 5448514B2 JP 2009072469 A JP2009072469 A JP 2009072469A JP 2009072469 A JP2009072469 A JP 2009072469A JP 5448514 B2 JP5448514 B2 JP 5448514B2
Authority
JP
Japan
Prior art keywords
oxide film
thin film
film
intermediate layer
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009072469A
Other languages
Japanese (ja)
Other versions
JP2010225458A (en
Inventor
正靖 笠原
竜介 中崎
正和 松井
潔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
International Superconductivity Technology Center
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., International Superconductivity Technology Center filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009072469A priority Critical patent/JP5448514B2/en
Publication of JP2010225458A publication Critical patent/JP2010225458A/en
Application granted granted Critical
Publication of JP5448514B2 publication Critical patent/JP5448514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、薄膜超電導線材及びその製造方法に係り、特に、基材上に酸化物超電導薄膜を形成する際の、中間層としての酸化物薄膜の製造に関する。   The present invention relates to a thin film superconducting wire and a method for producing the same, and more particularly to the production of an oxide thin film as an intermediate layer when an oxide superconducting thin film is formed on a substrate.

酸化物超電導体は、その導体としての特性が結晶方位に大きく依存するので、高い臨界電流密度(Jc)を有する超電導導体を製造するためには、超電導体の結晶配向性を向上させることが必要である。また、酸化物超電導体を導体として用いるためには、金属テープを基材として、結晶配向性の優れた超電導体の多結晶薄膜を作製する技術が必要である。   Oxide superconductors have a characteristic that their properties as a conductor greatly depend on the crystal orientation, so it is necessary to improve the crystal orientation of the superconductor in order to produce a superconductor having a high critical current density (Jc). It is. Further, in order to use an oxide superconductor as a conductor, a technique for producing a polycrystalline thin film of a superconductor excellent in crystal orientation using a metal tape as a base material is necessary.

また、酸化物超電導薄膜のJを向上させるためには、超電導薄膜の製造後に酸素ガスを含む雰囲気中で加熱処理を行い、酸化物超電導薄膜層に酸素を取り込むことが有効である。 In order to improve the J c of the oxide superconducting thin film is subjected to heat treatment in an atmosphere containing oxygen gas after production of the superconducting thin film, it is effective to incorporate oxygen to the oxide superconducting thin film layer.

しかし、金属製の基材を用いる場合、加熱処理中に金属元素が超電導薄膜中へ拡散し、超電導特性を低下させるという問題がある。このため、加熱処理中の超電導薄膜中への金属元素の拡散を防ぐために、金属テープと酸化物超電導薄膜の間に金属元素の拡散係数が小さい材料からなる層を介在させた積層構造とする方法がある。   However, when a metal substrate is used, there is a problem that the metal element diffuses into the superconducting thin film during the heat treatment, thereby degrading the superconducting characteristics. Therefore, in order to prevent diffusion of the metal element into the superconducting thin film during the heat treatment, a method of forming a laminated structure in which a layer made of a material having a small diffusion coefficient of the metal element is interposed between the metal tape and the oxide superconducting thin film There is.

上記のような金属テープと、金属元素の拡散防止層を含む中間層と、超電導層の積層構造において、超電導層の結晶配向性を向上させる方法として、薄膜作成中のイオンビームアシストを利用して、中間層薄膜の結晶配向性を向上させる方法(例えば、特許文献1参照)や、結晶配向性に優れた金属基材上に配向金属基板法によって薄膜を成長させることで、2軸配向した超電導薄膜を得る方法(例えば、特許文献1参照)がある。   As a method for improving the crystal orientation of the superconducting layer in the laminated structure of the metal tape, the intermediate layer including the metal element diffusion preventing layer, and the superconducting layer, ion beam assist during thin film formation is used. Biaxially oriented superconductivity by improving the crystal orientation of the intermediate layer thin film (see, for example, Patent Document 1) or by growing the thin film on a metal substrate having excellent crystal orientation by the oriented metal substrate method There is a method for obtaining a thin film (for example, see Patent Document 1).

これらの2つの技術は共に、超電導層と中間層の薄膜積層構造を作成する必要があるが、積層薄膜の作製時に成長させる薄膜の結晶配向性は、テンプレートとする基材もしくは下層薄膜層の結晶配向性を引き継ぐホモエピタキシャル成長となるため、超電導層の結晶配向性を向上させるためには、そのテンプレートとなる中間層薄膜の結晶配向性を向上させる必要がある。   Both of these two technologies require the creation of a thin film stack structure of a superconducting layer and an intermediate layer, but the crystal orientation of the thin film grown during the preparation of the stacked thin film depends on the crystal of the substrate or lower layer thin film layer used as a template. Since the homoepitaxial growth takes over the orientation, in order to improve the crystal orientation of the superconducting layer, it is necessary to improve the crystal orientation of the intermediate layer thin film serving as the template.

特開2005−292240号公報JP 2005-292240 A 特開2005−1935号公報JP 2005-1935 A

本発明は、以上のような事情の下になされ、中間層薄膜の結晶配向性を向上させた薄膜超電導線材及びその製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and an object thereof is to provide a thin film superconducting wire having improved crystal orientation of an intermediate layer thin film and a method for producing the same.

上記課題を解決するため、本発明の第1の態様は、金属基板と、前記金属基板上に形成された、Ce、Zr、Y、Gd、Mg、Sr、及びTiからなる群から選ばれた少なくとも1種の元素を含む複数種類の成分構成を有する複数層の金属酸化物膜を有する中間層と、前記中間層上に形成された超電導膜を有する通電層とを備える薄膜超電導線材であって、前記中間層は、CeO からなる第1の酸化物膜と、前記第1の酸化物膜上に形成された第2の酸化物膜を有し、前記第2の酸化物膜の形成後の前記第1の酸化物膜の格子定数は、前記第2の酸化物膜の形成前の格子定数よりも大きいことを特徴とする薄膜超電導線材を提供する。 In order to solve the above problems, the first aspect of the present invention is selected from the group consisting of a metal substrate and Ce, Zr, Y, Gd, Mg, Sr, and Ti formed on the metal substrate. A thin film superconducting wire comprising: an intermediate layer having a plurality of layers of metal oxide films having a plurality of types of components including at least one element; and an energization layer having a superconducting film formed on the intermediate layer. The intermediate layer has a first oxide film made of CeO 2 and a second oxide film formed on the first oxide film, and after the formation of the second oxide film The thin film superconducting wire is characterized in that the lattice constant of the first oxide film is larger than the lattice constant before the formation of the second oxide film.

本発明の第2の態様は、金属基板と、前記金属基板上に形成された、Ce、Zr、Y、Gd、Mg、Sr、及びTiからなる群から選ばれた少なくとも1種の元素を含む複数種類の成分構成を有する複数層の金属酸化物膜を有する中間層と、前記中間層上に形成された超電導膜を有する通電層とを備える薄膜超電導線材の製造方法であって、(a)前記金属基板上にエレクトロンビーム蒸着法またはスパッタリング法によってCeO からなる第1の酸化物膜を成膜する工程と、(b)前記第1の酸化物膜の酸素量を減少させる条件で第2の酸化物膜を成膜する工程とを具備することを特徴とする薄膜超電導線材の製造方法を提供する。 The second aspect of the present invention includes a metal substrate and at least one element selected from the group consisting of Ce, Zr, Y, Gd, Mg, Sr, and Ti formed on the metal substrate. A method for producing a thin film superconducting wire comprising an intermediate layer having a plurality of layers of metal oxide films having a plurality of types of component structures, and an energizing layer having a superconducting film formed on the intermediate layer, comprising: a step of forming a first oxide film consisting of CeO 2 by electron beam evaporation or sputtering on the metal substrate, a second under a condition that reduces the amount of oxygen (b) the first oxide film A method for producing a thin film superconducting wire, comprising the step of:

このような本発明の第2の態様に係る薄膜超電導線材の製造方法において、前記工程(b)を、Ar雰囲気中またはArおよび酸素の混合ガス雰囲気中で、前記第1の酸化物膜上に、第2の酸化物膜を成膜することにより行うことが出来る。   In the method of manufacturing a thin film superconducting wire according to the second aspect of the present invention, the step (b) is performed on the first oxide film in an Ar atmosphere or a mixed gas atmosphere of Ar and oxygen. This can be done by forming a second oxide film.

或いは、前記工程(b)を、酸素を含む雰囲気中で前記第1の酸化物膜を加熱する条件で前記第2の酸化物膜を成膜することにより行うが出来る。   Alternatively, the step (b) can be performed by forming the second oxide film under a condition in which the first oxide film is heated in an atmosphere containing oxygen.

なお、前記第2の酸化物膜上に、第3の酸化物膜を形成することが出来る。   Note that a third oxide film can be formed over the second oxide film.

本発明によると、第1の酸化物膜を成膜した後、第1の酸化物膜中の酸素量を減少させる条件で第2の酸化物膜を形成することにより、第1の酸化物膜の格子定数を、第2の酸化物膜の形成後において、第2の酸化物膜の形成前よりも大きくすることが出来、それによって結晶配向性に優れた中間層薄膜、ひいては結晶配向性に優れた超電導膜を得ることが出来る。   According to the present invention, after the first oxide film is formed, the first oxide film is formed by forming the second oxide film under a condition that reduces the amount of oxygen in the first oxide film. The lattice constant of the intermediate layer film can be made larger after the second oxide film is formed than before the second oxide film is formed. An excellent superconducting film can be obtained.

本発明の一実施形態に係る酸化物薄膜の形成方法により成膜された酸化物薄膜上On an oxide thin film formed by the method for forming an oxide thin film according to one embodiment of the present invention

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の一実施形態に係る薄膜超電導線材を示す断面図である。図1において、金属基板1上に中間層2及び通電層3が形成されることにより、薄膜超電導線材が構成されている。   FIG. 1 is a cross-sectional view showing a thin film superconducting wire according to an embodiment of the present invention. In FIG. 1, a thin film superconducting wire is formed by forming an intermediate layer 2 and a conductive layer 3 on a metal substrate 1.

中間層2は、Ce、Zr、Y、Gd、Mg、Sr、及びTiからなる群から選ばれた少なくとも1種の元素を含む複数層の金属酸化物膜を有するものであり、金属基板1上に形成された第1の酸化物膜と、この第1の酸化物膜上に形成された第2の酸化物膜とを有している。この場合、第2の酸化物膜の形成後の第1の酸化物膜の格子定数は、第2の酸化物膜の形成前の格子定数よりも大きい。   The intermediate layer 2 has a plurality of metal oxide films containing at least one element selected from the group consisting of Ce, Zr, Y, Gd, Mg, Sr, and Ti. A first oxide film formed on the first oxide film, and a second oxide film formed on the first oxide film. In this case, the lattice constant of the first oxide film after the formation of the second oxide film is larger than the lattice constant before the formation of the second oxide film.

金属基板は、Ni合金からなることが望ましい。Ni合金としては、W、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi合金を挙げることが出来る。これらの添加元素の添加量は、1〜80原子%であることが望ましい。具体的なNi合金としては、ハステロイ、インコネル、ステンレスを挙げることが出来る。   The metal substrate is preferably made of a Ni alloy. Examples of the Ni alloy include an Ni alloy containing at least one selected from the group consisting of W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Si, Al, B, and C. I can do it. The addition amount of these additive elements is desirably 1 to 80 atomic%. Specific examples of the Ni alloy include Hastelloy, Inconel, and stainless steel.

中間層を構成する金属酸化物膜の具体例としては、CeO、Y、イットリア安定化ジルコニア(YSZ)、ZrRe(Reは、Y、Gd、Ce、LaおよびNdからなる群から選ばれた1種)、SrTiO、SrRuOが挙げられる。 Specific examples of the metal oxide film constituting the intermediate layer include CeO 2 , Y 2 O 3 , yttria-stabilized zirconia (YSZ), Zr 2 Re 2 O 7 (Re is Y, Gd, Ce, La, and Nd). 1 type selected from the group consisting of: SrTiO 3 , SrRuO 3 .

金属酸化物膜の膜厚は特に限定されないが、通常50〜200nmであり、中間層全体の膜厚は、通常150〜600nmである。   Although the film thickness of a metal oxide film is not specifically limited, Usually, it is 50-200 nm, and the film thickness of the whole intermediate | middle layer is 150-600 nm normally.

なお、複数の酸化物膜のうち、下地の第1の酸化物膜の格子定数を、第2の酸化物膜の形成前よりも形成後で大きくするには、金属基板上に第1の酸化物膜を成膜した後、この第1の酸化物膜の酸素量を減少させる条件で第2の酸化物膜を成膜すればよい。そのための方法として、以下の2つを挙げることが出来る。   In order to increase the lattice constant of the first oxide film as a base after the formation of the second oxide film among the plurality of oxide films, the first oxidation film is formed on the metal substrate. After the physical film is formed, the second oxide film may be formed under a condition that reduces the amount of oxygen in the first oxide film. The following two methods can be cited as methods for that purpose.

1.第1の酸化物膜上に第2の酸化物膜を成膜するに際し、Ar雰囲気または、Arと酸素の混合ガス雰囲気で行うこと。   1. The second oxide film is formed over the first oxide film in an Ar atmosphere or a mixed gas atmosphere of Ar and oxygen.

Arと酸素の混合ガス雰囲気の場合の酸素の分圧は、5.0×10-3Pa以下が望ましく、好ましくは、6.6×10-6Pa以上かつ5.0×10-3Pa以下である。 The partial pressure of oxygen in the mixed gas atmosphere of Ar and oxygen is desirably 5.0 × 10 −3 Pa or less, preferably 6.6 × 10 −6 Pa or more and 5.0 × 10 −3 Pa or less. It is.

第1の酸化物膜上に、Arと酸素の混合ガス雰囲気で第2の酸化物膜を成膜することにより、第1の酸化物膜の格子定数を増加することが出来る。   By forming the second oxide film on the first oxide film in a mixed gas atmosphere of Ar and oxygen, the lattice constant of the first oxide film can be increased.

2.酸素を含む雰囲気で第1の酸化物膜を加熱する条件で前記第2の酸化物膜を成膜すること。   2. The second oxide film is formed under a condition in which the first oxide film is heated in an atmosphere containing oxygen.

酸素を含む雰囲気中の酸素の分圧は、5.0×10-3Pa以下が望ましく、好ましくは、6.6×10-6Pa以上かつ5.0×10-3Pa以下である。また、加熱温度は、300〜700℃が望ましく、より好ましくは、400〜650℃である。 The partial pressure of oxygen in the atmosphere containing oxygen is desirably 5.0 × 10 −3 Pa or less, preferably 6.6 × 10 −6 Pa or more and 5.0 × 10 −3 Pa or less. Moreover, 300-700 degreeC is desirable for heating temperature, More preferably, it is 400-650 degreeC.

酸素を含む雰囲気で第1の酸化物膜を加熱する条件で前記第2の酸化物膜を成膜することにより、第1の酸化物膜の格子定数を増加することが出来る。   By forming the second oxide film under conditions in which the first oxide film is heated in an atmosphere containing oxygen, the lattice constant of the first oxide film can be increased.

なお、第1及び第2の酸化物膜の成膜法としては、エレクトロンビーム蒸着法、スパッタリング法等を用いることが出来る。これらの方法において、ターゲットとして、上述した酸化物を用いることが出来る。   Note that an electron beam evaporation method, a sputtering method, or the like can be used as a method for forming the first and second oxide films. In these methods, the above-described oxide can be used as a target.

以上のようにして第1及び第2の酸化物膜を成膜すると、第1の酸化物膜中の酸素量は減少し、それによって、第1の酸化物の格子定数は、第2の酸化物膜の成膜前よりも成膜後において増加し、その結果、結晶配向性に優れた中間層を形成することが出来る。   When the first and second oxide films are formed as described above, the amount of oxygen in the first oxide film is reduced, whereby the lattice constant of the first oxide is changed to the second oxidation film. It increases after film formation rather than before film formation, and as a result, an intermediate layer having excellent crystal orientation can be formed.

このような中間層2を形成した後、中間層2上には超電導薄膜3が形成され、図1に示すような超電導薄膜線材が得られる。この超電導薄膜線材は、結晶配向性に優れた中間層上に形成されるため、結晶配向性に優れており、高い臨界電流密度を得ることが出来る。   After such an intermediate layer 2 is formed, a superconducting thin film 3 is formed on the intermediate layer 2 to obtain a superconducting thin film wire as shown in FIG. Since this superconducting thin film wire is formed on an intermediate layer excellent in crystal orientation, it is excellent in crystal orientation and a high critical current density can be obtained.

以下、本発明の実施例を示し、本発明について具体的に説明するが、これら実施例は、本発明を限定するものではない。   EXAMPLES Hereinafter, examples of the present invention will be shown and the present invention will be described in detail, but these examples do not limit the present invention.

実施例
配向金属基板法により2軸配向組織を形成したNiWテープ基板上に、EB蒸着法により厚さ120nmのCeO薄膜を成膜した。このときのCeO薄膜の単位格子サイズをX線回折法により評価したところ、0.54nmであった。
Example On a NiW tape substrate on which a biaxially oriented structure was formed by the oriented metal substrate method, a CeO 2 thin film having a thickness of 120 nm was formed by the EB vapor deposition method. When the unit cell size of the CeO 2 thin film at this time was evaluated by an X-ray diffraction method, it was 0.54 nm.

このCeO薄膜上に、イットリア安定化ジルコニア(YSZ)焼結体をターゲットとして、スパッタリング法により、到達真空度6.4×10−4Pa、酸素分圧が1.3×10-4PaであるArと酸素の混合ガス雰囲気下で、基板温度650℃、投入RFパワー500Wの条件で、膜厚120nmのYSZ薄膜を成膜した。 On this CeO 2 thin film, with an yttria-stabilized zirconia (YSZ) sintered body as a target, the ultimate vacuum is 6.4 × 10 −4 Pa and the oxygen partial pressure is 1.3 × 10 −4 Pa by sputtering. A YSZ thin film having a thickness of 120 nm was formed under a condition of a mixed gas of Ar and oxygen under conditions of a substrate temperature of 650 ° C. and an input RF power of 500 W.

このYSZ薄膜の結晶配向性をX線回折法によりピーク半価幅にて評価したところ、面内(a軸、b軸)配向度は5.7°、YSZ結晶のC軸方向への傾きは1.35°であった。また、YSZ薄膜形成後のCeO薄膜の単位格子サイズは0.57nmであった。 When the crystal orientation of this YSZ thin film was evaluated by the X-ray diffraction method at the peak half-value width, the in-plane (a axis, b axis) orientation degree was 5.7 °, and the inclination of the YSZ crystal in the C axis direction was 1.35 °. The unit cell size of the CeO 2 thin film after forming the YSZ thin film was 0.57 nm.

以上のように、本実施例では、EB蒸着法により厚さ120nmのCeO薄膜を成膜した後、Arガス雰囲気でYSZ薄膜を成膜することにより、CeO薄膜の単位格子サイズは、YSZ薄膜の成膜前が0.54nmであったところ、YSZ薄膜の成膜後には0.57nmと増加した。これにより、結晶配向性の優れた中間層を得ることが出来た。 As described above, in this example, after forming a 120 nm thick CeO 2 thin film by EB vapor deposition, the YSZ thin film is formed in an Ar gas atmosphere, whereby the unit cell size of the CeO 2 thin film is YSZ. When it was 0.54 nm before forming the thin film, it increased to 0.57 nm after forming the YSZ thin film. As a result, an intermediate layer having excellent crystal orientation could be obtained.

比較例
配向金属基板法により2軸配向組織を形成したNiWテープ基板上に、EB蒸着法により厚さ120nmのCeO薄膜を成膜した。このときのCeO薄膜の単位格子サイズをX線回折法により評価したところ、0.54nmであった。
Comparative Example A 120 nm thick CeO 2 thin film was formed by EB vapor deposition on a NiW tape substrate on which a biaxially oriented structure was formed by the oriented metal substrate method. When the unit cell size of the CeO 2 thin film at this time was evaluated by an X-ray diffraction method, it was 0.54 nm.

このCeO薄膜上に、イットリア安定化ジルコニア(YSZ)焼結体をターゲットとして、スパッタリング法により、到達真空度6.4×10−4Pa、酸素分圧が4.5×10-1PaであるArと酸素の混合ガス雰囲気下で、基板温度650℃(、投入RFパワー500Wの条件で、膜厚120nmのYSZ薄膜を成膜した。 On this CeO 2 thin film, with a yttria-stabilized zirconia (YSZ) sintered body as a target, the ultimate vacuum is 6.4 × 10 −4 Pa and the oxygen partial pressure is 4.5 × 10 −1 Pa by sputtering. A YSZ thin film having a thickness of 120 nm was formed under a condition of a substrate temperature of 650 ° C. (input RF power of 500 W) in a mixed gas atmosphere of Ar and oxygen.

このYSZ薄膜の結晶配向性をX線回折法によりピーク半価幅にて評価したところ、面内(a軸、b軸)配向度は6.0°、YSZ結晶のC軸方向への傾きは1.7°であった。また、YSZ薄膜形成後のCeO薄膜の単位格子サイズは0.54nmであった。 When the crystal orientation of this YSZ thin film was evaluated by the X-ray diffraction method at the peak half-value width, the in-plane (a axis, b axis) orientation degree was 6.0 °, and the inclination of the YSZ crystal in the C axis direction was It was 1.7 °. The unit cell size of the CeO 2 thin film after forming the YSZ thin film was 0.54 nm.

1・・・基板、2…中間層、3…超電導薄膜。   DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Intermediate layer, 3 ... Superconducting thin film.

Claims (5)

金属基板と、前記金属基板上に形成された、Ce、Zr、Y、Gd、Mg、Sr、及びTiからなる群から選ばれた少なくとも1種の元素を含む複数種類の成分構成を有する複数層の金属酸化物膜を有する中間層と、前記中間層上に形成された超電導膜を有する通電層とを備える薄膜超電導線材であって、
前記中間層は、CeO からなる第1の酸化物膜と、前記第1の酸化物膜上に形成された第2の酸化物膜を有し、前記第2の酸化物膜の形成後の前記第1の酸化物膜の格子定数は、前記第2の酸化物膜の形成前の格子定数よりも大きいことを特徴とする薄膜超電導線材。
A multi-layer having a metal substrate and a plurality of types of component structures formed on the metal substrate and containing at least one element selected from the group consisting of Ce, Zr, Y, Gd, Mg, Sr, and Ti A thin film superconducting wire comprising: an intermediate layer having a metal oxide film; and an energization layer having a superconducting film formed on the intermediate layer,
The intermediate layer has a first oxide film made of CeO 2 and a second oxide film formed on the first oxide film, and the intermediate layer is formed after the formation of the second oxide film. A thin film superconducting wire, wherein a lattice constant of the first oxide film is larger than a lattice constant before the formation of the second oxide film.
金属基板と、前記金属基板上に形成された、Ce、Zr、Y、Gd、Mg、Sr、及びTiからなる群から選ばれた少なくとも1種の元素を含む複数種類の成分構成を有する複数層の金属酸化物膜を有する中間層と、前記中間層上に形成された超電導膜を有する通電層とを備える薄膜超電導線材の製造方法であって、
(a)前記金属基板上にエレクトロンビーム蒸着法またはスパッタリング法によってCeO からなる第1の酸化物膜を成膜する工程と、
(b)前記第1の酸化物膜の酸素量を減少させる条件で第2の酸化物膜を成膜する工程と
を具備することを特徴とする薄膜超電導線材の製造方法。
A multi-layer having a metal substrate and a plurality of types of component structures formed on the metal substrate and containing at least one element selected from the group consisting of Ce, Zr, Y, Gd, Mg, Sr, and Ti A method for producing a thin film superconducting wire comprising: an intermediate layer having a metal oxide film; and an energization layer having a superconducting film formed on the intermediate layer,
A step of forming a first oxide film consisting of CeO 2 (a) to the metal substrate by electron beam evaporation or sputtering,
(B) forming a second oxide film under a condition for reducing the amount of oxygen in the first oxide film, and a method for manufacturing a thin film superconducting wire.
前記工程(b)は、Ar雰囲気中または酸素分圧が5.0×10-3Pa以下のArおよび酸素の混合ガス雰囲気中で、前記第1の酸化物膜上に、前記第2の酸化物膜を成膜することを特徴とする請求項2に記載の薄膜超電導線材の製造方法。 In the step (b), the second oxidation is performed on the first oxide film in an Ar atmosphere or in a mixed gas atmosphere of Ar and oxygen having an oxygen partial pressure of 5.0 × 10 −3 Pa or less. A method for producing a thin film superconducting wire according to claim 2, wherein a physical film is formed. 前記工程(b)は、酸素を含む雰囲気中で前記第1の酸化物膜を300〜700℃に加熱する条件で前記第2の酸化物膜を成膜することを特徴とする請求項2に記載の薄膜超電導線材の製造方法。 3. The step (b) is characterized in that the second oxide film is formed under a condition in which the first oxide film is heated to 300 to 700 ° C. in an oxygen-containing atmosphere. A manufacturing method of the thin film superconducting wire described. 前記第2の酸化物膜上に、第3の酸化物膜を形成することを特徴とする請求項2〜4のいずれかに記載の薄膜超電導線材の製造方法。   The method for producing a thin film superconducting wire according to any one of claims 2 to 4, wherein a third oxide film is formed on the second oxide film.
JP2009072469A 2009-03-24 2009-03-24 Thin film superconducting wire and manufacturing method thereof Active JP5448514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072469A JP5448514B2 (en) 2009-03-24 2009-03-24 Thin film superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072469A JP5448514B2 (en) 2009-03-24 2009-03-24 Thin film superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010225458A JP2010225458A (en) 2010-10-07
JP5448514B2 true JP5448514B2 (en) 2014-03-19

Family

ID=43042430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072469A Active JP5448514B2 (en) 2009-03-24 2009-03-24 Thin film superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5448514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622755B2 (en) * 2012-01-23 2014-11-12 株式会社東芝 Superconducting wire manufacturing apparatus and manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634078B2 (en) * 1995-08-18 2005-03-30 株式会社フジクラ Oxide superconducting conductor
KR20050118294A (en) * 2003-03-31 2005-12-16 후루까와덴끼고오교 가부시끼가이샤 Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JP4619697B2 (en) * 2004-03-11 2011-01-26 株式会社フジクラ Oxide superconducting conductor and manufacturing method thereof
WO2005088653A1 (en) * 2004-03-12 2005-09-22 International Superconductivity Technology Center, The Juridical Foundation Rare earth oxide superconductor and process for producing the same
JP4519540B2 (en) * 2004-03-31 2010-08-04 株式会社フジクラ Method for manufacturing oxide superconductor and oxide superconductor

Also Published As

Publication number Publication date
JP2010225458A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
US6451450B1 (en) Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
US20030211948A1 (en) Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
CN104737243B (en) Superconducting oxide film
KR101069080B1 (en) Superconductive thin film material and method of manufacturing the same
EP1990809B1 (en) Process for producing superconducting thin-film material
US7432229B2 (en) Superconductors on iridium substrates and buffer layers
CN105684103B (en) The manufacture method of oxide superconducting wire rod and oxide superconducting wire rod
JP5448514B2 (en) Thin film superconducting wire and manufacturing method thereof
US20040157747A1 (en) Biaxially textured single buffer layer for superconductive articles
RU2481673C1 (en) Method to manufacture thin-film high-temperature superconductive material
JP5739726B2 (en) Superconducting thin film substrate manufacturing method, superconducting thin film substrate, and superconducting thin film
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP2008130255A (en) Superconducting wire and manufacturing method therefor
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP2005116408A (en) Oxide superconductive thin film and its manufacturing method
JP5306723B2 (en) Method for forming oxide thin film
KR100721901B1 (en) Superconducting article and its manufacturing method
JP2012212571A (en) Oxide superconductor
JP5764421B2 (en) Oxide superconducting conductor
JP5981346B2 (en) Superconducting wire base material, superconducting wire, and superconducting wire manufacturing method
US20090203529A1 (en) Superconducting material
JP6167443B2 (en) Superconducting wire and manufacturing method thereof
JPH08157213A (en) Oxide superconductive film and its production
JP6262304B2 (en) Manufacturing method of oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R151 Written notification of patent or utility model registration

Ref document number: 5448514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350