JP2005116408A - Oxide superconductive thin film and its manufacturing method - Google Patents

Oxide superconductive thin film and its manufacturing method Download PDF

Info

Publication number
JP2005116408A
JP2005116408A JP2003351165A JP2003351165A JP2005116408A JP 2005116408 A JP2005116408 A JP 2005116408A JP 2003351165 A JP2003351165 A JP 2003351165A JP 2003351165 A JP2003351165 A JP 2003351165A JP 2005116408 A JP2005116408 A JP 2005116408A
Authority
JP
Japan
Prior art keywords
superconductor layer
superconducting
thin film
substrate
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003351165A
Other languages
Japanese (ja)
Other versions
JP4559720B2 (en
Inventor
Takashi Yoshida
吉田  隆
Kaname Matsumoto
要 松本
Masashi Mukoda
昌志 向田
Ataru Ichinose
中 一瀬
Shigeru Horii
堀井  滋
Yoshiaki Takai
吉明 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Japan Science and Technology Agency
Original Assignee
Central Research Institute of Electric Power Industry
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Japan Science and Technology Agency filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003351165A priority Critical patent/JP4559720B2/en
Publication of JP2005116408A publication Critical patent/JP2005116408A/en
Application granted granted Critical
Publication of JP4559720B2 publication Critical patent/JP4559720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide superconductive thin film preventing the deterioration of critical current density characteristic even if a film thickness is increased, while having a larger critical current value per unit width in a magnetic field. <P>SOLUTION: A superconductive layer 1 on which superconductive materials are directly developed is prepared with a condition of a high temperature substrate, by controlling a substitution amount of superconductive materials of RE and Ba, a substrate temperature during deposition, and oxygen distribution pressure during deposition. A superconductive layer 2 to be developed on the superconductive layer 1 is prepared with a condition of a low temperature substrate. By controlling the amount of lamination defects caused in the layers during developing thin films in the superconductive layer having more than two layers, fine pinning points are implemented in the superconductive lamination body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超伝導線材や超伝導フィルタ等に利用される酸化物系超伝導薄膜およびその製造方法に関する。   The present invention relates to an oxide-based superconducting thin film used for a superconducting wire or a superconducting filter, and a method for producing the same.

Y−Ba−Cu−O系に代表される酸化物系超伝導体は、液体窒素温度(77K)よりも高い臨界温度Tを示すため、超伝導線材や超伝導フィルタへの応用が期待されている。このような酸化物系超伝導体を超伝導線材や超伝導フィルタに応用する際には、臨界電流密度Jを向上させる必要がある。また、磁場中における臨界電流密度の低下を防ぐためには、超伝導体中にピンニング点を導入する必要がある。 Oxide superconductors as represented by Y-Ba-Cu-O system, in order to show a high critical temperature T C than the liquid nitrogen temperature (77K), its application to superconducting wire and the superconducting filter is expected ing. When such an oxide-based superconductor is applied to a superconducting wire or a superconducting filter, it is necessary to improve the critical current density JC . In addition, in order to prevent a decrease in critical current density in a magnetic field, it is necessary to introduce a pinning point in the superconductor.

このような状況の中で、Y−Ba−Cu−O系酸化物系超伝導薄膜では、Cu−Oの析出物をピンニング点とする方法が考えられている(非特許文献1参照)。しかしながら、このようなピンニング点を超伝導体中に均一に分散させるのは困難である。   Under such circumstances, in the Y—Ba—Cu—O-based oxide superconducting thin film, a method using a Cu—O precipitate as a pinning point is considered (see Non-Patent Document 1). However, it is difficult to uniformly distribute such pinning points in the superconductor.

また、基板上の酸化物超伝導薄膜の結晶のc軸面が、基板の薄膜形成面と平行に配列した相の中に、結晶のc軸面が基板の薄膜形成面と垂直に配列した板状の相をピンニング点として用いる方法もある(非特許文献2参照)。しかし、この方法では、膜厚を厚くすると、ピンニング点が電流パスを遮断してしまうため、臨界電流密度Jが低下すると考えられる。 In addition, a plate in which the c-axis plane of the crystal of the oxide superconducting thin film on the substrate is arranged in parallel with the thin-film formation surface of the substrate and the c-axis plane of the crystal is arranged perpendicular to the thin-film formation surface of the substrate There is also a method of using a phase as a pinning point (see Non-Patent Document 2). However, in this method, when the film thickness is increased, the pinning point interrupts the current path, so that the critical current density JC is considered to decrease.

H. Yamane, et al., J. Appl. Phys., Vol.69, No.11, 1991, pp.7948-7950H. Yamane, et al., J. Appl. Phys., Vol. 69, No. 11, 1991, pp. 7948-7950 H. Fuke et al., Appl. Phys. Lett., Vol.60, No.21, 1992, pp.2686-2688H. Fuke et al., Appl. Phys. Lett., Vol.60, No.21, 1992, pp.2686-2688

上述したように、酸化物系超伝導薄膜の臨界電流密度を向上させる例が報告されているが、酸化物系超伝導薄膜を超伝導線材や超伝導フィルタに応用する際には、臨界電流値に加えて薄膜の単位幅当たりの臨界電流値(超伝導線材の評価には、1cm幅当たりの臨界電流値を表す単位A/1cm−widthがよく用いられる)も大きくする必要がある。このためには、臨界電流密度を低下させずに、薄膜の厚さを厚くする必要がある。   As described above, examples of improving the critical current density of oxide-based superconducting thin films have been reported, but when applying oxide-based superconducting thin films to superconducting wires and superconducting filters, the critical current value is reported. In addition, the critical current value per unit width of the thin film (unit A / 1 cm-width representing the critical current value per 1 cm width is often used for superconducting wire evaluation) needs to be increased. For this purpose, it is necessary to increase the thickness of the thin film without reducing the critical current density.

本発明は、このような課題を解決するために、酸化物系超伝導薄膜において膜厚を厚くしても臨界電流密度特性が劣化せず、磁場中における単位幅当たりの臨界電流値の大きい酸化物系超伝導薄膜を提供することを目的とするものである。   In order to solve such problems, the present invention does not deteriorate the critical current density characteristics even when the oxide-based superconducting thin film is thickened. The object is to provide a physical superconducting thin film.

本発明の第1の態様である超伝導薄膜は、基板と、該基板上に形成され、複数の超伝導体層から構成される超伝導積層体を含み、該複数の超伝導体層はそれぞれ異なる欠陥密度を有することを特徴とする。前記複数の超伝導体層のそれぞれは、結晶のc軸が基板面に垂直であり、かつRE1+xBa2−xCu6+y(式中、REはLa、Nd、Sm、Eu、Gd、YおよびYbからなる群から選択され、xは0〜0.2であり、yは0〜2である)の一般式を有する酸化物で構成されていてもよい。また、前記超伝導積層体は、第1超伝導体層と第2超伝導体層から形成され、前記第1超伝導体層の欠陥密度は、前記第2超伝導体層の欠陥密度よりも小さくすることが望ましい。さらに、前記超伝導積層体は、第1超伝導体層と第2超伝導体層から形成され、前記第1超伝導体層は、前記第2超伝導体層を形成する際の基板温度よりも少なくとも50℃以上高い基板温度において形成されていてもよい。 The superconducting thin film according to the first aspect of the present invention includes a substrate and a superconducting laminate formed on the substrate and composed of a plurality of superconductor layers, and each of the plurality of superconductor layers includes It is characterized by having different defect densities. Each of the plurality of superconductor layers has a crystal c-axis perpendicular to the substrate surface, and RE 1 + x Ba 2−x Cu 3 O 6 + y (wherein RE is La, Nd, Sm, Eu, Gd, It is selected from the group consisting of Y and Yb, and x may be 0 to 0.2, and y may be 0 to 2). The superconducting laminate is formed of a first superconductor layer and a second superconductor layer, and the defect density of the first superconductor layer is higher than the defect density of the second superconductor layer. It is desirable to make it smaller. Further, the superconducting laminate is formed of a first superconductor layer and a second superconductor layer, and the first superconductor layer is formed from a substrate temperature at the time of forming the second superconductor layer. Alternatively, it may be formed at a substrate temperature that is at least 50 ° C. or higher.

本発明の第2の態様である超伝導薄膜の製造方法は、基板上に、複数の超伝導体層から構成される超伝導積層体を積層して超伝導薄膜を製造する方法であって、基板上に第1超伝導体層を形成する工程と、該第1超伝導体層の上に第2超伝導体層を形成する工程とを少なくとも備え、前記第1超伝導体層を形成する際の基板温度は、該第2超伝導体層を形成する際の基板温度よりも少なくとも50℃以上高いことを特徴とする。ここで、前記第1超伝導体層の欠陥密度が、前記第2超伝導体層の欠陥密度よりも小さくすることが望ましい。また、前記第1超伝導体層を形成する工程および前記第2超伝導体層を形成する工程は、0.1Torr(13.3Pa)以上の酸素分圧を有する雰囲気下,680℃以上の基板温度における物理気相成長法または化学気相成長法を用いて実施されてもよい。   The method for producing a superconducting thin film according to the second aspect of the present invention is a method for producing a superconducting thin film by laminating a superconducting laminate composed of a plurality of superconductor layers on a substrate, Forming at least a first superconductor layer on the substrate and forming a second superconductor layer on the first superconductor layer; and forming the first superconductor layer. The substrate temperature at that time is at least 50 ° C. higher than the substrate temperature at the time of forming the second superconductor layer. Here, it is preferable that the defect density of the first superconductor layer is smaller than the defect density of the second superconductor layer. In addition, the step of forming the first superconductor layer and the step of forming the second superconductor layer include a substrate at 680 ° C. or higher in an atmosphere having an oxygen partial pressure of 0.1 Torr (13.3 Pa) or higher. It may be performed using physical vapor deposition or chemical vapor deposition at temperature.

本発明の別の態様は、第1の態様の超伝導薄膜を用いた超伝導超伝導線材または超伝導デバイスである。本発明のさらに別の態様は、第2の態様の超伝導薄膜の製造方法を用いた超伝導線材または超伝導デバイスの製造方法である。   Another embodiment of the present invention is a superconducting superconducting wire or a superconducting device using the superconducting thin film of the first embodiment. Yet another aspect of the present invention is a method for manufacturing a superconducting wire or a superconducting device using the method for manufacturing a superconducting thin film of the second aspect.

本発明によれば、酸化物系超伝導薄膜の臨界電流特性が磁場中での劣化を抑制することができ、磁場中で単位幅当たりの臨界電流値の大きな酸化物超伝導薄膜、超伝導線材、超伝導システム、超伝導デバイスの提供が可能である。   According to the present invention, the critical current characteristics of the oxide-based superconducting thin film can suppress deterioration in a magnetic field, and the oxide superconducting thin film and the superconducting wire having a large critical current value per unit width in the magnetic field. It is possible to provide a superconducting system and a superconducting device.

本発明の超伝導薄膜の例示的構成を図1に示す。図1の超伝導薄膜は、基板1上に超伝導積層体が形成された構造を有し、該超伝導積層体は第1超伝導体層2と第2超伝導体層3から形成されている。   An exemplary configuration of the superconducting thin film of the present invention is shown in FIG. The superconducting thin film of FIG. 1 has a structure in which a superconducting laminate is formed on a substrate 1, and the superconducting laminate is formed of a first superconductor layer 2 and a second superconductor layer 3. Yes.

本発明の基板1として、SrTiO、LaAlOなどのペロブスカイト型結晶;MgO、NiOなどの岩塩型結晶;MgAlなどのスピネル型結晶;イットリウム安定化ジルコニア、CeOなどの蛍石型結晶;希土類C型結晶;パイクロア型結晶などの酸化物;ならびに金属基板(純Ni、Ni−Cr、Ni−WなどのNi基合金基板、純Cu、Cu−NiなどのCu基合金基板、またはFe−Si、ステンレスなどのFe基合金基板)を用いることができる。また、前述の酸化物基板、前述の金属基板、窒化物基板、半導体基板の表面に前述の酸化物または硼化物(MgBなど)からなるバッファー層を形成したものを基板1として用いてもよい。より好ましい基板は、MgO基板、金属基板、酸化物で被覆された金属基板を含む。特に、酸化物で被覆された長尺状の金属基板を用いることは、超伝導線材を形成する際に有利である。基板1を形成するための材料は特に限定されるものではないが、超伝導体層を形成する酸化物系超伝導材料の格子定数に近い格子定数を有することが望ましい。 As the substrate 1 of the present invention, perovskite crystals such as SrTiO 3 and LaAlO 3 ; rock salt crystals such as MgO and NiO; spinel crystals such as MgAl 2 O 4 ; fluorite crystals such as yttrium-stabilized zirconia and CeO 2 A rare earth C-type crystal; an oxide such as a Pikuroa-type crystal; and a metal substrate (a Ni-based alloy substrate such as pure Ni, Ni-Cr and Ni-W, a Cu-based alloy substrate such as pure Cu and Cu-Ni, or Fe) -Fe-based alloy substrates such as Si and stainless steel) can be used. Alternatively, the substrate 1 may be the above-described oxide substrate, the above-described metal substrate, nitride substrate, or semiconductor substrate on which a buffer layer made of the above-described oxide or boride (such as MgB 2 ) is formed. . More preferred substrates include MgO substrates, metal substrates, and metal substrates coated with oxides. In particular, it is advantageous to use a long metal substrate covered with an oxide when forming a superconducting wire. The material for forming the substrate 1 is not particularly limited, but desirably has a lattice constant close to that of the oxide-based superconductive material forming the superconductor layer.

本発明の超伝導積層体を構成するそれぞれの超伝導体層は、酸化物系超伝導材料から形成され、該材料は化学式RE1+xBa2−xCu6+y(式中、REはLa,Nd,Sm,Eu,Gd,YまたはYbであり、xは0〜0.2であり、yは0〜2である)で示される、希土類(RE)を含む酸化物系超伝導材料である。 Each superconductor layer constituting the superconducting laminate of the present invention is formed from an oxide-based superconducting material, which has the chemical formula RE 1 + x Ba 2−x Cu 3 O 6 + y (where RE is La, Nd, Sm, Eu, Gd, Y or Yb, x is 0 to 0.2, and y is 0 to 2), and is an oxide-based superconducting material containing rare earth (RE). .

本発明の超伝導積層体は、基板1と接触して設けられ、より小さい欠陥密度を有する第1超伝導体層2と、第1超伝導体層の上に設けられ、より大きい欠陥密度を有する第2の超伝導体層3とを少なくとも含む。本発明の超伝導積層体は、基板と接触して設けられる第1層の欠陥密度がその上に設けられる第2層の欠陥密度より小さいことを条件として、3つ以上の層から構成されていてもよい。また、本発明の超伝導体層を構成するそれぞれの超伝導体層は、それぞれ異なる欠陥密度を有する。それら超伝導体層は、同一の酸化物系超伝導材料から形成されていてもよいし、異種の酸化物系超伝導材料で形成されていてもよい。以下に、2つの層から形成される超伝導積層体について詳述する。   The superconducting laminate of the present invention is provided in contact with the substrate 1 and is provided on the first superconductor layer 2 having a lower defect density and the first superconductor layer, and has a higher defect density. And at least a second superconductor layer 3. The superconducting laminate of the present invention is composed of three or more layers, provided that the defect density of the first layer provided in contact with the substrate is smaller than the defect density of the second layer provided thereon. May be. In addition, each superconductor layer constituting the superconductor layer of the present invention has a different defect density. These superconductor layers may be formed of the same oxide-based superconductive material or may be formed of different oxide-based superconductive materials. The superconducting laminate formed from two layers will be described in detail below.

第1超伝導体層2は、基板1と接触して設けられ、より小さい欠陥密度を有する酸化物系超伝導材料の層である。また、第1超伝導体層2を形成する超伝導材料がc軸配向(基板面に対してc軸が垂直である)していることによって、超伝導面であるab面が基板と平行になり、基板と平行方向に大きな電流を流すことが可能になる。加えて、その上に形成される層(第2超伝導体層3または2つ以上の超伝導体層のそれぞれ)をc軸配向させるためにも、第1超伝導体層2がc軸配向していることが重要である。   The first superconductor layer 2 is a layer of an oxide-based superconducting material provided in contact with the substrate 1 and having a smaller defect density. In addition, since the superconducting material forming the first superconductor layer 2 is c-axis oriented (the c-axis is perpendicular to the substrate surface), the ab surface which is the superconducting surface is parallel to the substrate. Thus, a large current can flow in a direction parallel to the substrate. In addition, the first superconductor layer 2 is also c-axis oriented so that the layers formed thereon (the second superconductor layer 3 or each of the two or more superconductor layers) are c-axis oriented. It is important that

第1超伝導体層2は、レーザ蒸着法またはスパッタ蒸着法のような物理気相成長法、または有機化学蒸着法などの化学気相成長法、好ましくはパルスレーザ蒸着法(PLD)、有機金属化学蒸着法(MOCVD)を用いて形成することができる。PLDは、ターゲットの組成比が形成される薄膜の組成比に反映されるので、REとBaとの平均組成(置換量の値x)を制御する点において望ましい形成方法である。なお、本発明における「平均組成」とは、層の一部において組成のゆらぎがあってもよいが、層全体としては指定の組成を有することを意味する。本発明の超伝導積層体を構成するそれぞれの超伝導体層をPLD法によって積層する場合、超伝導体層を形成する金属の酸化物を所望の比率において混合し焼結させたものをターゲットとして用いることができる。ターゲットに照射するレーザとしては、当該技術において知られている任意のもの、たとえばAr−Fエキシマーレーザなどを用いることができる。   The first superconductor layer 2 is formed by physical vapor deposition such as laser vapor deposition or sputtering vapor deposition, or chemical vapor deposition such as organic chemical vapor deposition, preferably pulsed laser vapor deposition (PLD), organometallic. It can be formed using chemical vapor deposition (MOCVD). PLD is a desirable formation method in that the average composition (replacement amount value x) of RE and Ba is controlled because the composition ratio of the target is reflected in the composition ratio of the thin film to be formed. The “average composition” in the present invention means that a part of the layer may have a composition fluctuation, but the whole layer has a designated composition. When each superconductor layer constituting the superconducting laminate of the present invention is laminated by the PLD method, a target obtained by mixing and sintering a metal oxide forming the superconductor layer in a desired ratio Can be used. As the laser for irradiating the target, any laser known in the art, such as an Ar—F excimer laser, can be used.

また、MOCVDは、原料ガスの流量を制御することによって形成される薄膜の組成を制御することができるので、PLDと同様にREとBaとの平均組成(置換量の値x)を制御する点において望ましい形成方法である。本発明の超伝導積層体を構成するそれぞれの超伝導体層をMOCVD法によって積層する場合、原料ガスとしては超伝導体層を構成する金属の錯体、アルコキシド、アルキル化物など当該技術において知られている任意の材料を用いることができる。この際に、原料ガスの保持(気化)温度を制御して、各原料ガスの流量(分圧)を所望の組成の超伝導体層を形成するように設定することができる。第1超伝導体層2を形成する際には、より小さい欠陥密度を有し、c軸配向(基板面に対してc軸が垂直である)した超伝導体薄膜を得るために、高い基板温度(800〜900℃)を用いることが望ましい。好ましくは、PLDの場合には800〜850℃、MOCVDの場合には800〜900℃の基板温度が用いられる。また、超伝導体材料中の酸素の組成比を所望の範囲内とするために、PLDおよびMOCVDは酸素雰囲気下で実施される。酸素分圧を0.1Torr(13.3Pa)以上とすることが望ましい。   In addition, since MOCVD can control the composition of the thin film formed by controlling the flow rate of the source gas, it controls the average composition (replacement value x) of RE and Ba in the same manner as PLD. Is a desirable formation method. When each superconductor layer constituting the superconducting laminate of the present invention is laminated by MOCVD, the source gas is known in the art, such as a metal complex, alkoxide, or alkylated substance constituting the superconductor layer. Any material can be used. At this time, the holding (vaporization) temperature of the source gas can be controlled, and the flow rate (partial pressure) of each source gas can be set to form a superconductor layer having a desired composition. When the first superconductor layer 2 is formed, a high substrate is used to obtain a superconductor thin film having a smaller defect density and c-axis orientation (c-axis is perpendicular to the substrate surface). It is desirable to use temperature (800-900 degreeC). Preferably, a substrate temperature of 800-850 ° C. for PLD and 800-900 ° C. for MOCVD is used. In order to keep the composition ratio of oxygen in the superconductor material within a desired range, PLD and MOCVD are performed in an oxygen atmosphere. It is desirable that the oxygen partial pressure be 0.1 Torr (13.3 Pa) or more.

本明細書における「欠陥」とは、超伝導体材料を積層したままの状態では認識されないが、層の表面をエッチャント(Br−MeOHなど)でエッチングした際に、孔(ピット)が形成される部位を意味する。欠陥の存在および単位面積当たりの密度は、原子間力顕微鏡(AFM)、透過型電子顕微法(TEM)などの検出手段を用いて確認ないし測定することが可能である。超伝導体層中の欠陥は、磁界が印加される際に超伝導体積層体中に侵入する量子化磁束のピンニング点として機能する。前述の方法で形成される第1超伝導体層2中の欠陥は、nmオーダーの微細な大きさを有するために層中を基板に平行に流れる電流を阻害することがない。したがって、本発明の超伝導薄膜は、超伝導線材あるいは超伝導フィルターなどの超伝導体デバイスとして用いる際に有用である。第1超伝導体層2中の欠陥の密度は、超伝導体層の材料、基板1の材料、成膜時の基板温度および酸素分圧によって制御される。望ましい欠陥の密度は意図される用途に依存するが、たとえば、1μm平方の領域において約10個程度とすることができる。 The term “defect” in this specification is not recognized in the state in which the superconductor material is laminated, but holes (pits) are formed when the surface of the layer is etched with an etchant (such as Br 2 -MeOH). It means the part. The existence of defects and the density per unit area can be confirmed or measured using a detection means such as an atomic force microscope (AFM) or a transmission electron microscope (TEM). Defects in the superconductor layer function as pinning points for the quantized magnetic flux that penetrates into the superconductor stack when a magnetic field is applied. The defect in the first superconductor layer 2 formed by the above-described method has a fine size on the order of nm, and therefore does not inhibit the current flowing in the layer parallel to the substrate. Therefore, the superconducting thin film of the present invention is useful when used as a superconductor device such as a superconducting wire or a superconducting filter. The density of defects in the first superconductor layer 2 is controlled by the material of the superconductor layer, the material of the substrate 1, the substrate temperature during film formation, and the oxygen partial pressure. The desired defect density depends on the intended application, but can be, for example, on the order of about 10 in a 1 μm square area.

第1超伝導体層2は、前述のようにそれ自身がc軸配向し、かつその上に形成される超伝導体層をc軸配向させるのに充分な膜厚を有することが望ましい。第1超伝導体層2は、好ましくは100nm以下、より好ましくは30nm〜50nmの範囲内の膜厚を有することが適当である。   As described above, the first superconductor layer 2 desirably has a film thickness sufficient for the c-axis orientation of the first superconductor layer 2 and the c-axis orientation of the superconductor layer formed thereon. The first superconductor layer 2 preferably has a film thickness of preferably 100 nm or less, more preferably in the range of 30 nm to 50 nm.

第2超伝導体層3は、第1超伝導体層2の上に該層と接触して設けられ、より大きい欠陥密度を有する酸化物系超伝導材料の層である。また、第1超伝導体層2の作用により、第2超伝導体層3を形成する超伝導材料はc軸配向する。したがって、超伝導面であるab面が基板と平行になり、基板と平行方向に大きな電流を流すことが可能になる。   The second superconductor layer 3 is a layer of an oxide-based superconducting material provided on the first superconductor layer 2 in contact with the layer and having a higher defect density. Also, the superconducting material forming the second superconductor layer 3 is c-axis oriented by the action of the first superconductor layer 2. Therefore, the ab surface, which is a superconducting surface, is parallel to the substrate, and a large current can flow in the direction parallel to the substrate.

第2超伝導体層3は、第1超伝導体層2と同様に、レーザ蒸着法またはスパッタ蒸着法のような物理気相成長法、あるいは有機化学蒸着法などの化学気相成長法、好ましくはパルスレーザ蒸着法(PLD)、有機金属化学蒸着法(MOCVD)を用いて形成することができる。PLDに用いられるターゲットおよびレーザ、ならびにMOCVDに用いられる原料ガスは、第1超伝導体層2と同様のものを用いることができる。ただし、第2超伝導体層3を形成する際には、より大きい欠陥密度を有する超伝導体薄膜を得るために、第1超伝導体層2の形成温度よりも少なくとも50℃低い基板温度を用いることが望ましい。第2超伝導体層3は、通常680℃以上の基板温度、好ましくは730〜780℃の範囲内の基板温度、より好ましくはPLDの場合には730〜780℃の基板温度、MOCVDの場合には730〜780℃の基板温度において形成される。また、超伝導体材料中の酸素の組成比を所望の範囲内とするために、PLDおよびMOCVDは酸素雰囲気下で実施される。酸素分圧を0.1Torr(13.3Pa)以上とすることが望ましい。   As with the first superconductor layer 2, the second superconductor layer 3 is preferably a physical vapor deposition method such as laser vapor deposition or sputtering vapor deposition, or a chemical vapor deposition method such as organic chemical vapor deposition. Can be formed using pulsed laser deposition (PLD) or metal organic chemical vapor deposition (MOCVD). The target and laser used for PLD and the source gas used for MOCVD can be the same as those used for the first superconductor layer 2. However, when forming the second superconductor layer 3, in order to obtain a superconductor thin film having a larger defect density, a substrate temperature lower by at least 50 ° C. than the formation temperature of the first superconductor layer 2 is used. It is desirable to use it. The second superconductor layer 3 is usually at a substrate temperature of 680 ° C. or higher, preferably within a range of 730-780 ° C., more preferably at a substrate temperature of 730-780 ° C. in the case of PLD, in the case of MOCVD. Is formed at a substrate temperature of 730-780 ° C. In order to keep the composition ratio of oxygen in the superconductor material within a desired range, PLD and MOCVD are performed in an oxygen atmosphere. It is desirable that the oxygen partial pressure be 0.1 Torr (13.3 Pa) or more.

第1超伝導体層2の成膜時基板温度を830℃とした場合の、第2超伝導体層3の成膜時基板温度と第2超伝導体層3中の欠陥密度の関係を、図4に示す。図4から明らかなように、780℃以下の基板温度を用いた場合に、欠陥密度が著しく増大していることが分かる。したがって、欠陥の密度(量)を大幅に増大させるためには、少なくとも50℃の基板温度差が必要であることが確認された。   The relationship between the substrate temperature during film formation of the second superconductor layer 3 and the defect density in the second superconductor layer 3 when the substrate temperature during film formation of the first superconductor layer 2 is 830 ° C. As shown in FIG. As is apparent from FIG. 4, it is understood that the defect density is remarkably increased when a substrate temperature of 780 ° C. or lower is used. Therefore, it has been confirmed that a substrate temperature difference of at least 50 ° C. is necessary to greatly increase the density (amount) of defects.

前述のような基板温度で作製した該酸化物系超伝導層内部には、微細な積層欠陥が晶出し、該欠陥が量子化磁束のピンニング点として機能すると考えられる。第1超伝導体層2の場合と同様、前述の方法で形成される第2超伝導体層3中の欠陥は、nmオーダーの大きさを有するために層中を基板に平行に流れる電流を阻害することがなく、本発明の超伝導薄膜を超伝導線材あるいは超伝導フィルターなどの超伝導体デバイスとして用いる際に有用である。第2超伝導体層3中の欠陥の密度は、超伝導体層の材料、基板1の材料、成膜時の基板温度および酸素分圧によって制御される。望ましい欠陥の密度は意図される用途に依存するが、たとえば、1μm平方の領域において約30個程度とすることができる。   It is considered that fine stacking faults crystallize inside the oxide-based superconducting layer produced at the substrate temperature as described above, and that the defects function as a pinning point of the quantized magnetic flux. As in the case of the first superconductor layer 2, the defects in the second superconductor layer 3 formed by the above-described method have a size on the order of nm, so that a current flowing in the layer parallel to the substrate is generated. It is useful when the superconducting thin film of the present invention is used as a superconductor device such as a superconducting wire or a superconducting filter. The density of defects in the second superconductor layer 3 is controlled by the material of the superconductor layer, the material of the substrate 1, the substrate temperature during film formation, and the oxygen partial pressure. The desired defect density depends on the intended application, but can be, for example, about 30 in a 1 μm square area.

第2超伝導体層3は、所望される量の電流を流すのに充分な膜厚を有することが望ましい。第2超伝導体層3は、好ましくは300nm以上、より好ましくは300nm〜3.0μmの範囲内の膜厚を有することが適当である。   It is desirable that the second superconductor layer 3 has a film thickness sufficient to pass a desired amount of current. The second superconductor layer 3 preferably has a film thickness of preferably 300 nm or more, more preferably 300 nm to 3.0 μm.

超伝導積層体の全膜厚(第1超伝導体層2と第2超伝導体層との合計膜厚、あるいは3つ以上の超伝導体層を用いる場合にその全膜厚)は、一般的には0.7〜2.0μmであるが、特定の用途においては、全膜厚をより大きくしてもよい。   The total film thickness of the superconducting laminate (the total film thickness of the first superconductor layer 2 and the second superconductor layer, or the total film thickness when three or more superconductor layers are used) is generally Although it is 0.7-2.0 micrometers specifically, in a specific use, you may enlarge the whole film thickness.

(実施例1)
PLD法により、MgO基板上に、Sm−Ba−Cu−O系酸化物超伝導積層体を積層した超伝導薄膜を作製した。
(Example 1)
A superconducting thin film in which an Sm—Ba—Cu—O-based oxide superconducting laminate was laminated on an MgO substrate was produced by the PLD method.

最初に、Sm1+xBa2−xCu6+y(x=0,0.04,0.08,0.12)のターゲットにエキシマレーザを照射し、MgO基板上に、膜厚10nmの第1超伝導体層を積層した。このとき、基板温度を800〜850℃に、真空チャンバ内の酸素分圧を0.4Torr(53Pa)に設定した。 First, an excimer laser is irradiated to a target of Sm 1 + x Ba 2−x Cu 3 O 6 + y (x = 0, 0.04, 0.08, 0.12), and a first film having a thickness of 10 nm is formed on the MgO substrate. A superconductor layer was laminated. At this time, the substrate temperature was set to 800 to 850 ° C., and the oxygen partial pressure in the vacuum chamber was set to 0.4 Torr (53 Pa).

得られたSm−Ba−Cu−O系酸化物で形成される第1超伝導体層を調べたところ、該酸化物の結晶のc軸は、基板の成膜面に対して垂直であることが確認された。さらに得られた第1超伝導体層をBr−MeOH(0.166体積%)を用いてエッチングし、AFMで表面観察した結果、図2に示すような表面観察像が確認された。この結果から、第1超伝導体層が約10個/μmの欠陥密度を有することが確認された。また、TEMによる微細組織観察からも、これらの積層欠陥が晶出していることが確認される。 When the first superconductor layer formed of the obtained Sm—Ba—Cu—O-based oxide was examined, the c-axis of the oxide crystal was perpendicular to the film formation surface of the substrate. Was confirmed. Further, the obtained first superconductor layer was etched using Br 2 -MeOH (0.166 vol%), and the surface was observed with AFM. As a result, a surface observation image as shown in FIG. 2 was confirmed. From this result, it was confirmed that the first superconductor layer had a defect density of about 10 / μm 2 . Moreover, it is confirmed from the micro structure observation by TEM that these stacking faults are crystallized.

次に、Sm1+xBa2−xCu6+y(x=0,0.04,0.08,0.12)のターゲットにエキシマレーザを照射し、第1超伝導体層上に、膜厚500nmの第2超伝導体層を積層した。このとき、基板温度を700〜800℃に、真空チャンバ内の酸素分圧を0.4Torr(53Pa)に設定した。 Next, an excimer laser is irradiated to a target of Sm 1 + x Ba 2−x Cu 3 O 6 + y (x = 0, 0.04, 0.08, 0.12), and a film thickness is formed on the first superconductor layer. A second superconductor layer of 500 nm was laminated. At this time, the substrate temperature was set to 700 to 800 ° C., and the oxygen partial pressure in the vacuum chamber was set to 0.4 Torr (53 Pa).

第1超伝導体層の場合と同様に、得られたSm−Ba−Cu−O系酸化物で形成される第2超伝導体層を調べたところ、該酸化物の結晶のc軸は、第1超伝導体層の成膜面(すなわち、基板の成膜面)に対して垂直であることが確認された。さらに得られた第2超伝導体層をBr−MeOH(0.166体積%)を用いてエッチングし、AFMで表面観察した結果、図3に示すような表面観察像が確認された。この結果から、第2超伝導体層が約30個/μmの欠陥密度を有することが確認された。また、TEMによる微細組織観察からも、これらの欠陥が晶出していることが確認される。 As in the case of the first superconductor layer, when the second superconductor layer formed of the obtained Sm—Ba—Cu—O-based oxide was examined, the c-axis of the oxide crystal was It was confirmed that the first superconductor layer was perpendicular to the film formation surface (that is, the film formation surface of the substrate). The second superconductor layer is etched using the Br 2 -MeOH (0.166% by volume) still obtained, as a result of surface observation with AFM, the surface observation image as shown in FIG. 3 was confirmed. From this result, it was confirmed that the second superconductor layer had a defect density of about 30 / μm 2 . Moreover, it is confirmed from the micro structure observation by TEM that these defects are crystallized.

上記方法により得られた超伝導薄膜の超伝導臨界温度Tを調べたところ、90K以上であることが確認された。また、臨界電流密度Jは低下せず、温度77KにおいてJ=2〜4×10A/cm(x=0,0.04)が得られた。さらに、超伝導薄膜の磁場中でのJc測定を行った。磁場は、膜面に対して垂直に、すなわち結晶のc軸方向に平行に印加した。その結果、温度77Kにおいて5T(テスラ)の印可磁場中で、Jc=3×10A/cm(x=0.04の場合)という大きな臨界電流密度が得られ、本実施例の超伝導薄膜が優れた超伝導特性を有することが明らかとなった。 Examination of the superconducting critical temperature T C superconducting thin film obtained by the above method, it was confirmed that not less than 90K. Further, the critical current density J C did not decrease, and J C = 2 to 4 × 10 6 A / cm 2 (x = 0, 0.04) was obtained at a temperature of 77K. Furthermore, Jc measurement of the superconducting thin film in a magnetic field was performed. The magnetic field was applied perpendicular to the film surface, that is, parallel to the c-axis direction of the crystal. As a result, a large critical current density of Jc = 3 × 10 5 A / cm 2 (when x = 0.04) was obtained in an applied magnetic field of 5 T (Tesla) at a temperature of 77 K. It was revealed that the thin film has excellent superconducting properties.

さらに、ターゲットの組成比のxを大きくした膜においては、膜厚を厚くしても、臨界電流密度Jが低下しないことが明らかとなった。前述と同様に形成した第1超伝導体層の上に、ターゲットとしてSm1+xBa2−xCu6+y(x=0.08,0.12)を用い、膜厚1.1μmの第2超伝導体層3を形成した。得られた超伝導薄膜における、超伝導線材の評価に用いられる1cm幅当たりの臨界電流値Iは、温度77Kにおいて、400〜483A/1cm−widthであった。Iの最大値は、x=0.08の組成のターゲットを用いた場合に、I=483A/1cm−widthという高い臨界電流値が得られた。 Further, it has been clarified that the critical current density JC does not decrease even when the film thickness is increased in the film in which the target composition ratio x is increased. On the first superconductor layer formed in the same manner as described above, Sm 1 + x Ba 2−x Cu 3 O 6 + y (x = 0.08, 0.12) was used as a target, and a second film with a thickness of 1.1 μm was used. A superconductor layer 3 was formed. Of superconducting thin films obtained, the critical current value I C per 1cm width used in the evaluation of a superconducting material at a temperature 77K, was 400~483A / 1cm-width. As for the maximum value of I C , when a target having a composition of x = 0.08 was used, a high critical current value of I C = 483 A / 1 cm-width was obtained.

(比較例1)
PLD法により、MgO基板上に、単一層のSm−Ba−Cu−O系酸化物超伝導体層を積層した超伝導薄膜を作製した。
(Comparative Example 1)
A superconducting thin film in which a single-layer Sm—Ba—Cu—O-based oxide superconductor layer was laminated on an MgO substrate by the PLD method was produced.

Sm1+xBa2−xCu6+y(x=0,0.04,0.08,0.12)のターゲットにエキシマレーザを照射し、MgO基板上に、膜厚500nmの超伝導体層を積層した。このとき、基板温度を790〜850℃に、真空チャンバ内の酸素分圧を0.4Torr(53Pa)に設定した。 A target of Sm 1 + x Ba 2−x Cu 3 O 6 + y (x = 0, 0.04, 0.08, 0.12) is irradiated with an excimer laser, and a superconductor layer having a thickness of 500 nm is formed on the MgO substrate. Laminated. At this time, the substrate temperature was set to 790 to 850 ° C., and the oxygen partial pressure in the vacuum chamber was set to 0.4 Torr (53 Pa).

得られたSm−Ba−Cu−O系酸化物で形成される超伝導体層を調べたところ、該酸化物の結晶のc軸は、基板の成膜面に対して垂直であることが確認された。さらに得られた超伝導体層をBr−MeOH(0.166体積%)を用いてエッチングして、AFMで表面観察した結果、超伝導体層が約10個/μmの欠陥密度を有することが確認された。また、TEMによる微細組織観察からも、これらの積層欠陥が晶出していることが確認される。 When the superconductor layer formed of the obtained Sm—Ba—Cu—O-based oxide was examined, it was confirmed that the c-axis of the oxide crystal was perpendicular to the film formation surface of the substrate. It was done. Further, the obtained superconductor layer was etched using Br 2 -MeOH (0.166 vol%), and the surface was observed with AFM. As a result, the superconductor layer had a defect density of about 10 / μm 2. It was confirmed. Moreover, it is confirmed from the micro structure observation by TEM that these stacking faults are crystallized.

上記方法により得られた超伝導薄膜の超伝導臨界温度Tを調べたところ、90K以上であることが確認された。また、臨界電流密度Jは低下せず、温度77KにおいてJ=2〜4×10A/cm(x=0,0.04)が得られた。さらに、超伝導薄膜の磁場中でのJc測定を行った。磁場は、膜面に対して垂直に、すなわち結晶のc軸方向に平行に印加した。その結果、温度77Kにおいて5Tの印可磁場中では、臨界電流密度がJc=4×10A/cm(x=0.04の場合)まで低下することが明らかとなった。 Examination of the superconducting critical temperature T C superconducting thin film obtained by the above method, it was confirmed that not less than 90K. Further, the critical current density J C did not decrease, and J C = 2 to 4 × 10 6 A / cm 2 (x = 0, 0.04) was obtained at a temperature of 77K. Furthermore, Jc measurement of the superconducting thin film in a magnetic field was performed. The magnetic field was applied perpendicular to the film surface, that is, parallel to the c-axis direction of the crystal. As a result, it became clear that the critical current density decreased to Jc = 4 × 10 4 A / cm 2 (when x = 0.04) in a 5 T applied magnetic field at a temperature of 77 K.

以上のように、比較例1の超伝導薄膜は、無磁界の場合には実施例1の超伝導薄膜と同等の臨界電流密度を示すが、磁界を印加した場合に臨界電流密度が著しく低下することが分かる。この結果は、単一層で構成された本比較例1の超伝導薄膜中には、充分な量のピンニング点が導入されていないことによると考えている。   As described above, the superconducting thin film of Comparative Example 1 shows a critical current density equivalent to that of the superconducting thin film of Example 1 when no magnetic field is applied, but the critical current density is significantly reduced when a magnetic field is applied. I understand that. This result is considered to be due to the fact that a sufficient amount of pinning points are not introduced in the superconducting thin film of Comparative Example 1 composed of a single layer.

(実施例2)
MOCVD法により、SrTiO基板上に、Nd−Ba−Cu−O系酸化物超伝導積層体を積層した超伝導薄膜を作製した。
(Example 2)
A superconducting thin film in which an Nd—Ba—Cu—O-based oxide superconducting laminate was laminated on an SrTiO 3 substrate was produced by MOCVD.

最初に、有機金属(MO)原料としてNd(DPM)、Ba(DPM)及びCu(DPM)(ここで、DPMは、ジピバロイルメタンである)を用い、SrTiO基板上に、約10nmの膜厚を有する第1超伝導体層を積層した。このとき、それぞれのMO原料の保持温度を125℃,240℃および120℃とした。また、基板温度を800〜850℃に、真空チャンバ内の酸素分圧を3Torr(0.40kPa)に設定した。 First, Nd (DPM) 3 , Ba (DPM) 2 and Cu (DPM) 2 (where DPM is dipivaloylmethane) are used on the SrTiO 3 substrate as the organic metal (MO) raw material. The 1st superconductor layer which has a film thickness of about 10 nm was laminated | stacked. At this time, the holding temperatures of the respective MO raw materials were 125 ° C., 240 ° C. and 120 ° C. The substrate temperature was set to 800 to 850 ° C., and the oxygen partial pressure in the vacuum chamber was set to 3 Torr (0.40 kPa).

得られたNd−Ba−Cu−O系酸化物で形成される第1超伝導体層を調べたところ、該酸化物の結晶のc軸は、基板の成膜面に対して垂直であることが確認された。さらに得られた第1超伝導体層をBr−MeOH(0.166体積%)を用いてエッチングし、AFMで表面観察した結果、第1超伝導体層が約7個/μmの欠陥密度を有することが確認された。また、TEMによる微細組織観察からも、これらの積層欠陥が晶出していることが確認される。 When the first superconductor layer formed of the obtained Nd—Ba—Cu—O-based oxide was examined, the c-axis of the oxide crystal was perpendicular to the film formation surface of the substrate. Was confirmed. Further, the obtained first superconductor layer was etched using Br 2 -MeOH (0.166% by volume), and the surface was observed with AFM. As a result, the number of first superconductor layers was about 7 / μm 2 . It was confirmed to have a density. Moreover, it is confirmed from the micro structure observation by TEM that these stacking faults are crystallized.

次に、有機金属(MO)原料としてNd(DPM)、Ba(DPM)及びCu(DPM)を用い、第1超伝導体層上に、約500nmの膜厚を有する第2超伝導体層を積層した。このとき、それぞれのMO原料の保持温度を125℃,240℃および120℃とした。また、基板温度を700〜800℃に、真空チャンバ内の酸素分圧を0.4Torr(53Pa)に設定した。この基板温度は、積層欠陥の多い酸化物系超伝導層の基板温度に比べ少なくとも100℃低い条件で行った。 Next, Nd (DPM) 3 , Ba (DPM) 2 and Cu (DPM) 2 are used as the organic metal (MO) raw material, and the second superconductor having a thickness of about 500 nm is formed on the first superconductor layer. The body layer was laminated. At this time, the holding temperatures of the respective MO raw materials were 125 ° C., 240 ° C. and 120 ° C. The substrate temperature was set to 700 to 800 ° C., and the oxygen partial pressure in the vacuum chamber was set to 0.4 Torr (53 Pa). This substrate temperature was set at a temperature lower by at least 100 ° C. than the substrate temperature of the oxide-based superconducting layer with many stacking faults.

第1超伝導体層の場合と同様に、得られたNd−Ba−Cu−O系酸化物で形成される第2超伝導体層を調べたところ、該酸化物の結晶のc軸は、第1超伝導体層の成膜面(すなわち、基板の成膜面)に対して垂直であることが確認された。さらに得られた第2超伝導体層をBr−MeOH(0.166体積%)を用いてエッチングし、AFMで表面観察した結果、第2超伝導体層が約20個/μmの欠陥密度を有することが確認された。また、TEMによる微細組織観察からも、これらの積層欠陥が晶出していることが確認される。 As in the case of the first superconductor layer, when the second superconductor layer formed of the obtained Nd—Ba—Cu—O-based oxide was examined, the c-axis of the oxide crystal was It was confirmed that the first superconductor layer was perpendicular to the film formation surface (that is, the film formation surface of the substrate). Further, the obtained second superconductor layer was etched using Br 2 -MeOH (0.166% by volume), and the surface was observed with AFM. As a result, the number of second superconductor layers was about 20 / μm 2 . It was confirmed to have a density. Moreover, it is confirmed from the micro structure observation by TEM that these stacking faults are crystallized.

上記方法により得られた超伝導薄膜の超伝導臨界温度Tを調べたところ、90K以上であることが確認された。また、臨界電流密度Jは低下せず、温度77KにおいてJ=1×10A/cmが得られた。さらに、超伝導薄膜の磁場中でのJc測定を行った。磁場は、膜面に対して垂直に、すなわち結晶のc軸方向に平行に印加した。その結果、温度77Kにおいて5T(テスラ)の印可磁場中で、Jc=1.2×10A/cmという大きな臨界電流密度が得られ、本実施例の超伝導薄膜が優れた超伝導特性を有することが明らかとなった。 Examination of the superconducting critical temperature T C superconducting thin film obtained by the above method, it was confirmed that not less than 90K. Further, the critical current density J C did not decrease, and J C = 1 × 10 6 A / cm 2 was obtained at a temperature of 77K. Furthermore, Jc measurement of the superconducting thin film in a magnetic field was performed. The magnetic field was applied perpendicular to the film surface, that is, parallel to the c-axis direction of the crystal. As a result, a large critical current density of Jc = 1.2 × 10 5 A / cm 2 was obtained in an applied magnetic field of 5 T (Tesla) at a temperature of 77 K, and the superconducting thin film of this example had excellent superconducting properties. It became clear to have.

本発明の超伝導薄膜の例示的構成を示す断面図である。It is sectional drawing which shows the exemplary structure of the superconducting thin film of this invention. 実施例1で得られた第1超伝導体層のAFMによる表面観察像(1μm×1μm)を示す図である。FIG. 4 is a view showing a surface observation image (1 μm × 1 μm) by AFM of the first superconductor layer obtained in Example 1. 実施例1で得られた第2超伝導体層のAFMによる表面観察像(1μm×1μm)を示す図である。It is a figure which shows the surface observation image (1 micrometer x 1 micrometer) by AFM of the 2nd superconductor layer obtained in Example 1. FIG. 第1超伝導体層の成膜基板温度を830℃と一定にしたときの、第2超伝導体層の成膜基板温度と第2超伝導体層中の欠陥密度の関係を示すグラフである。It is a graph which shows the relationship between the film formation substrate temperature of a 2nd superconductor layer, and the defect density in a 2nd superconductor layer when the film formation substrate temperature of a 1st superconductor layer is made constant at 830 degreeC. .

符号の説明Explanation of symbols

1 基板
2 第1超伝導体層
3 第2超伝導体層
4 欠陥
5 エッチングによって確認される欠陥
1 Substrate 2 First Superconductor Layer 3 Second Superconductor Layer 4 Defect 5 Defect Confirmed by Etching

Claims (12)

基板と、該基板上に形成され、複数の超伝導体層から構成される超伝導積層体を含み、該複数の超伝導体層はそれぞれ異なる欠陥密度を有することを特徴とする超伝導薄膜。   A superconducting thin film comprising a substrate and a superconducting laminate formed on the substrate and composed of a plurality of superconductor layers, wherein each of the plurality of superconductor layers has a different defect density. 前記複数の超伝導体層のそれぞれは、結晶のc軸が基板面に垂直であり、かつRE1+xBa2−xCu6+y(式中、REはLa、Nd、Sm、Eu、Gd、YおよびYbからなる群から選択され、xは0〜0.2であり、yは0〜2である)の一般式を有する酸化物で構成されていることを特徴とする請求項1に記載の超伝導薄膜。 Each of the plurality of superconductor layers has a crystal c-axis perpendicular to the substrate surface, and RE 1 + x Ba 2−x Cu 3 O 6 + y (wherein RE is La, Nd, Sm, Eu, Gd, 2. It is selected from the group consisting of Y and Yb, x is 0 to 0.2, and y is 0 to 2). Superconducting thin film. 前記超伝導積層体は、第1超伝導体層と第2超伝導体層から形成され、前記第1超伝導体層の欠陥密度は、前記第2超伝導体層の欠陥密度よりも小さいことを特徴とする請求項1または2に記載の超伝導薄膜。   The superconducting laminate is formed of a first superconductor layer and a second superconductor layer, and the defect density of the first superconductor layer is smaller than the defect density of the second superconductor layer. The superconducting thin film according to claim 1 or 2. 前記超伝導積層体は、第1超伝導体層と第2超伝導体層から形成され、前記第1超伝導体層は、前記第2超伝導体層を形成する際の基板温度よりも少なくとも50℃以上高い基板温度において形成されていることを特徴とする請求項1から3のいずれかに記載の超伝導薄膜。   The superconducting laminate is formed of a first superconductor layer and a second superconductor layer, and the first superconductor layer is at least a substrate temperature at the time of forming the second superconductor layer. 4. The superconducting thin film according to claim 1, wherein the superconducting thin film is formed at a substrate temperature higher by 50 [deg.] C. or more. 基板上に、複数の超伝導体層から構成される超伝導積層体を積層して超伝導薄膜を製造する方法であって、
基板上に第1超伝導体層を形成する工程と、
該第1超伝導体層の上に第2超伝導体層を形成する工程と
を少なくとも備え、前記第1超伝導体層を形成する際の基板温度は、該第2超伝導体層を形成する際の基板温度よりも少なくとも50℃以上高いことを特徴とする超伝導薄膜の製造方法。
A method of manufacturing a superconducting thin film by laminating a superconducting laminate composed of a plurality of superconductor layers on a substrate,
Forming a first superconductor layer on the substrate;
And a step of forming a second superconductor layer on the first superconductor layer, and the substrate temperature when forming the first superconductor layer is such that the second superconductor layer is formed. A method for producing a superconducting thin film, characterized by being at least 50 ° C. higher than the substrate temperature at the time of performing.
前記第1超伝導体層の欠陥密度が、前記第2超伝導体層の欠陥密度よりも小さいことを特徴とする請求項5に記載の超伝導薄膜の製造方法。   6. The method of manufacturing a superconducting thin film according to claim 5, wherein the defect density of the first superconductor layer is smaller than the defect density of the second superconductor layer. 前記第1超伝導体層を形成する工程および前記第2超伝導体層を形成する工程は、0.1Torr(13.3Pa)以上の酸素分圧を有する雰囲気下,680℃以上の基板温度における物理気相成長法を用いて実施されることを特徴とする請求項5または6に記載の超伝導薄膜の製造方法。   The step of forming the first superconductor layer and the step of forming the second superconductor layer are performed at a substrate temperature of 680 ° C. or higher in an atmosphere having an oxygen partial pressure of 0.1 Torr (13.3 Pa) or higher. The method for producing a superconducting thin film according to claim 5 or 6, wherein the method is carried out using physical vapor deposition. 前記第1超伝導体層を形成する工程および前記第2超伝導体層を形成する工程は、0.1Torr(13.3Pa)以上の酸素分圧を有する雰囲気下,680℃以上の基板温度における化学気相成長法を用いて実施されることを特徴とする請求項5または6に記載の超伝導薄膜の製造方法。   The step of forming the first superconductor layer and the step of forming the second superconductor layer are performed at a substrate temperature of 680 ° C. or higher in an atmosphere having an oxygen partial pressure of 0.1 Torr (13.3 Pa) or higher. The method for producing a superconducting thin film according to claim 5 or 6, wherein the method is carried out using chemical vapor deposition. 請求項1から4のいずれかに記載の超伝導薄膜を用いたことを特徴とする超伝導線材。   A superconducting wire comprising the superconducting thin film according to any one of claims 1 to 4. 請求項1から4のいずれかに記載の超伝導薄膜を用いたことを特徴とする超伝導デバイス。   A superconducting device using the superconducting thin film according to claim 1. 請求項5から8のいずれかに記載の超伝導薄膜の製造方法を用いたことを特徴とする超伝導線材の製造方法。   A method for producing a superconducting wire, wherein the method for producing a superconducting thin film according to any one of claims 5 to 8 is used. 請求項5から8のいずれかに記載の酸化物系超伝導薄膜の製造方法を用いたことを特徴とする超伝導デバイスの製造方法。   A method for producing a superconducting device, wherein the method for producing an oxide-based superconducting thin film according to claim 5 is used.
JP2003351165A 2003-10-09 2003-10-09 Oxide superconducting thin film and manufacturing method thereof Expired - Fee Related JP4559720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351165A JP4559720B2 (en) 2003-10-09 2003-10-09 Oxide superconducting thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351165A JP4559720B2 (en) 2003-10-09 2003-10-09 Oxide superconducting thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005116408A true JP2005116408A (en) 2005-04-28
JP4559720B2 JP4559720B2 (en) 2010-10-13

Family

ID=34542514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351165A Expired - Fee Related JP4559720B2 (en) 2003-10-09 2003-10-09 Oxide superconducting thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4559720B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238500A (en) * 2008-03-26 2009-10-15 Chubu Electric Power Co Inc Oxide superconductive wire rod and method of manufacturing the same
WO2011132731A1 (en) 2010-04-21 2011-10-27 株式会社フジクラ Oxide superconductor and production method for same
WO2011136117A1 (en) 2010-04-26 2011-11-03 株式会社フジクラ Oxide superconducting conductor and production method therefor
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
KR101610789B1 (en) 2014-11-20 2016-04-08 한국전기연구원 Superconducting multilayer thin film and method of manufacturing the same
US20170287598A1 (en) * 2014-11-05 2017-10-05 Fujikura Ltd. Oxide superconductor, superconducting wire, and a method of manufacturing the same
CN108963067A (en) * 2018-07-27 2018-12-07 武汉工程大学 A kind of ReBa2Cu3O7The method of pinning layer is prepared on-x superconducting thin film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009004337, 伊藤正和ら, "c軸配向シード層上に作製したSm1+xBa2−xCu3O6+δ薄膜の配向性及び超伝導特性", 応用物理学関係連合講演会講演予稿集, 20030327, vol.50、no.1, 282頁 *
JPN6009004338, 吉田隆ら, "低温成膜プロセスによるSm1+xBa2−xCu3O6+δ薄膜の高特性化", 低温工学・超電導学会講演概要集, 20030521, vol.68, 224頁 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238500A (en) * 2008-03-26 2009-10-15 Chubu Electric Power Co Inc Oxide superconductive wire rod and method of manufacturing the same
WO2011132731A1 (en) 2010-04-21 2011-10-27 株式会社フジクラ Oxide superconductor and production method for same
WO2011136117A1 (en) 2010-04-26 2011-11-03 株式会社フジクラ Oxide superconducting conductor and production method therefor
CN102834879A (en) * 2010-04-26 2012-12-19 株式会社藤仓 Oxide superconducting conductor and production method therefor
US8772201B2 (en) 2010-04-26 2014-07-08 Fujikura Ltd. Oxide superconducting conductor and method of manufacturing the same
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
US20170287598A1 (en) * 2014-11-05 2017-10-05 Fujikura Ltd. Oxide superconductor, superconducting wire, and a method of manufacturing the same
EP3176793A4 (en) * 2014-11-05 2018-04-11 Fujikura Ltd. Oxide superconductor, superconducting wire, and manufacturing method therefor
KR101610789B1 (en) 2014-11-20 2016-04-08 한국전기연구원 Superconducting multilayer thin film and method of manufacturing the same
CN108963067A (en) * 2018-07-27 2018-12-07 武汉工程大学 A kind of ReBa2Cu3O7The method of pinning layer is prepared on-x superconducting thin film
CN108963067B (en) * 2018-07-27 2022-04-29 武汉工程大学 ReBa2Cu3O7-xMethod for preparing pinning layer on superconducting film

Also Published As

Publication number Publication date
JP4559720B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5101779B2 (en) Structure for high critical current superconducting tape
JP4495426B2 (en) Superconducting film and manufacturing method thereof
US8055318B1 (en) Superconducting integrated circuit technology using iron-arsenic compounds
US7737085B2 (en) Coated conductors
RU2395860C1 (en) Superconducting thin film material and procedure for its production
JP2009507357A5 (en)
KR101289999B1 (en) Process for producing superconducting thin-film material and superconducting equipment
JP4559720B2 (en) Oxide superconducting thin film and manufacturing method thereof
JP2002184252A (en) Buffer layer structure based on doped ceria presenting optimum lattice alignment with ybco layer in conductor, and method of manufacturing the structure
Qi et al. Liquid-phase epitaxial growth of REBa2Cu3O7− δ (RE= Y, Yb, Er) thick films at reduced temperatures
US10158061B2 (en) Integrated superconductor device and method of fabrication
US7371586B2 (en) Superconductor and process for producing the same
RU2481673C1 (en) Method to manufacture thin-film high-temperature superconductive material
JP2015198057A (en) Application method of superconductive film and superconductive film
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
US9136046B2 (en) Superconducting wire rod and method for manufacturing superconducting wire rod
JP2005276465A (en) Superconducting wire rod
US20040142824A1 (en) Method for the manufacture of a high temperature superconducting layer
JP2012212571A (en) Oxide superconductor
US20090036313A1 (en) Coated superconducting materials
JPWO2006025252A1 (en) Superconducting thin film, method for producing the same, superconducting wire using the same, and superconducting device
JP5054463B2 (en) Josephson junction element, formation method thereof, and superconducting junction circuit
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor
JP6167443B2 (en) Superconducting wire and manufacturing method thereof
JP2010225458A (en) Thin-film superconducting wire and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees