JPH01167912A - Sheathing material of superconducting material and manufacture thereof - Google Patents

Sheathing material of superconducting material and manufacture thereof

Info

Publication number
JPH01167912A
JPH01167912A JP62327949A JP32794987A JPH01167912A JP H01167912 A JPH01167912 A JP H01167912A JP 62327949 A JP62327949 A JP 62327949A JP 32794987 A JP32794987 A JP 32794987A JP H01167912 A JPH01167912 A JP H01167912A
Authority
JP
Japan
Prior art keywords
substrate
axis
plane
crystal
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327949A
Other languages
Japanese (ja)
Inventor
Masashi Yoshida
政司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62327949A priority Critical patent/JPH01167912A/en
Publication of JPH01167912A publication Critical patent/JPH01167912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase critical current density and enable manufacture with good repeatability by inclining the crystal direction of an MgO substrate from a perpendicular direction to some extent and depositing an oxide therein for growth. CONSTITUTION:In an MgO substrate, a plane inclined, for example, 0.2 to 2.0 deg. from a plane <100> about a <010> axis, is used, thereby introducing a step parallel to a <010> direction to the substrate. An oxide superconductor of RBa2Cu3O7-delta type is deposited on the substrate via sputtering and an amorphous state film is thereby formed. When the substrate is heated, an amorphous crystal growth progresses and the orientation thereof aligns in a constant direction, the (a) axis is oriented in parallel to the step and the (c) axis is oriented to a direction perpendicular to the plane. And even in the case of transformation from a tetoragonal system to a rhombic system appearing at the time of annealing by inclining the substrate to one direction by a micro angle, the step becomes a nucleus for the progress of the transformation, a crystal grain becomes large and a grain boundary is reduced. Consequently, superconducting critical current density becomes high. In the formula, R stands for any one of Y, Eu, Gd, Tb, Dy, Er and Yb.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、R−Ba−Cu−0系の酸化物超電導物質
の被覆材であって、例えばジョセフソン素子、或いはこ
れを応用した5QtlIDやコンピュータ素子などに利
用される超電導物質被覆材およびその製造方法に関する
Detailed Description of the Invention (Industrial Field of Application) The present invention is a coating material of an R-Ba-Cu-0 based oxide superconducting material, which can be used, for example, in a Josephson device, or a 5QtlID or The present invention relates to a superconducting material covering material used in computer devices and the like, and a method for manufacturing the same.

(従来の技術とその問題点) 現在実用化が期待されている超電導物質の代表的なもの
は、R−Ba−Cu−0系の酸化物超電導物質(例えば
、YBazCuzOl−/ )である。従来、これらの
酸化物超電導物質薄膜は、サファイアを基板としてスパ
ッタリング法によって作成されている。
(Prior art and its problems) A typical superconducting material that is currently expected to be put into practical use is an R-Ba-Cu-0-based oxide superconducting material (for example, YBazCuzOl-/). Conventionally, these oxide superconducting thin films have been created by sputtering using sapphire as a substrate.

例えば、580℃に加熱したサファイア基板の(110
2)面上に計+50%o2のガス中でY1BaaCu+
oO9−/の組成のターゲツトをスパンタして蒸着する
方法(Japanese  Journal  of 
 Applied  Physics、Vol、26(
1987)、L1199) 、或いは同し基板上にAr
+70%○2ガス中で基板温度550〜650℃として
Y + Ba 2Cu 30 ?−♂ターゲントとCu
ターゲットを同時にスパッタリングしてa軸が基板面に
垂直方向に優先配向したY 1Ba2Cu30.−/結
晶膜を作る方法(JapaneseJournal o
f Applied Physics、Vol、26(
1987)。
For example, a sapphire substrate heated to 580°C (110
2) Y1BaaCu+ in a total of +50% O2 gas on the surface
Spunter deposition method of a target with a composition of oO9-/ (Japanese Journal of
Applied Physics, Vol. 26 (
1987), L1199), or Ar on the same substrate.
Y + Ba 2 Cu 30 when the substrate temperature is 550 to 650°C in +70%○2 gas? −♂Targent and Cu
Y1Ba2Cu30.The target was simultaneously sputtered and the a-axis was preferentially oriented perpendicular to the substrate surface. -/How to make crystalline films (Japanese Journal o
f Applied Physics, Vol. 26 (
1987).

LL221)である。LL221).

上記のような従来の方法では、スパッタされるターゲッ
トと成長する薄膜の組成にずれが生じやすく、所望の組
成比をもつ薄膜を再現性よく得ることが困難である。ま
た、酸化物超電導体は500〜600℃で正方晶(高温
和)から斜方晶(低温和)に相変態を起こすが、この時
に斜方晶のa軸の向きに2通りの方向があるため一つの
正方晶結晶から多数の斜方晶結晶ができ、そのために超
電導特性が悪くなる。
In the conventional method as described above, a difference in composition between the sputtered target and the growing thin film tends to occur, making it difficult to obtain a thin film having a desired composition ratio with good reproducibility. In addition, oxide superconductors undergo a phase transformation from tetragonal (high sum) to orthorhombic (low sum) at 500 to 600°C, but at this time, there are two orientations of the orthorhombic a-axis. Therefore, many orthorhombic crystals are formed from one tetragonal crystal, which deteriorates superconducting properties.

本発明は、一定の組成比R+BazCu30t−/と望
ましい結晶方位を持ち、臨界電流密度の高い超電導物質
被覆材を提供すること、およびこれを再現性よく製造す
る方法を提供すること、を目的とする。
An object of the present invention is to provide a superconducting material coating material having a certain composition ratio R+BazCu30t-/, a desirable crystal orientation, and a high critical current density, and to provide a method for manufacturing the same with good reproducibility. .

(問題点を解決するための手段) 本発明者は、?IgOを基板として、その結晶の< 1
00 >方向を垂直方向に対しである程度傾けておき、
ここにRBatCu30t−/型酸化物を蒸着成長させ
れば再現性よく、かつR1BazCu307−/の望ま
しい結晶軸方向が一定方向にそろった超電導薄膜が得ら
れることを確認した。
(Means for solving the problem) Who is the inventor? Using IgO as a substrate, the crystal < 1
00 > direction is tilted to some extent with respect to the vertical direction,
It was confirmed that if RBatCu30t-/ type oxide is grown by vapor deposition here, a superconducting thin film can be obtained with good reproducibility and in which the desired crystal axis direction of R1BazCu307-/ is aligned in a certain direction.

ここに本発明は次の超電導被覆材とその製造方法を要旨
とする。
The gist of the present invention is the following superconducting coating material and method for manufacturing the same.

(1)  <100>方向が基板面の垂直方向に対して
傾斜しているMgO結晶の基板と、この基板上にa軸が
前記基板MgO結晶の< 100 >方向に優先成長し
たR Ba2Cus O?−/型酸化物超Tj、導物質
被覆層とから成る超電導物質被覆材。
(1) A substrate of MgO crystal whose <100> direction is inclined with respect to the vertical direction of the substrate surface, and R Ba2CusO? whose a-axis is grown preferentially in the <100> direction of the substrate MgO crystal on this substrate. A superconducting material covering material comprising a -/type oxide super Tj and a conducting material covering layer.

(2)  <100>方向が基板面の垂直方向に対して
傾斜しているMgO結晶の基板を、不活性ガスまたは酸
素を含む不活性ガス中で500℃以下の温度で加熱し、
前記基板上にRBa2Cus Oq−を型酸化物超電導
物質を蒸着してアモルファス状の化合物膜を形成させ、
次いで800〜950℃の温度に加熱して結晶化し、さ
らに400〜550℃の温度に加熱して超電導物質とす
ることを特徴とする超電導物質被覆材の製造方法。
(2) heating a MgO crystal substrate whose <100> direction is inclined with respect to the direction perpendicular to the substrate surface at a temperature of 500° C. or less in an inert gas or an inert gas containing oxygen;
depositing an RBa2CusOq-type oxide superconducting material on the substrate to form an amorphous compound film;
1. A method for producing a superconducting material coating material, characterized in that the superconducting material is then heated to a temperature of 800 to 950° C. to crystallize, and further heated to a temperature of 400 to 550° C. to form a superconducting material.

上記のRBa2Cus 07− を中のRはY、 Eu
、 Gd、 Tb、DyいEr、 Ybのいずれかを意
味する。
R in the above RBa2Cus 07- is Y, Eu
, Gd, Tb, DyEr, or Yb.

第1図は、本発明を説明するための基板MgOの表面の
概念図である。図示のように、MgOの(100)面よ
り<010>軸を中心として例えば0.2〜2.0”傾
いた面を用いることによって、基板に< 010 >方
向に平行なステップを導入する。この基板を500℃以
下の低温に保ち酸化物超電導体をスパッタリングによっ
て蒸着し、アモルファス状の膜を形成させる。
FIG. 1 is a conceptual diagram of the surface of a substrate MgO for explaining the present invention. As shown in the figure, a step parallel to the <010> direction is introduced into the substrate by using a plane that is inclined, for example, 0.2 to 2.0'' with respect to the <010> axis from the (100) plane of MgO. This substrate is kept at a low temperature of 500° C. or less and an oxide superconductor is deposited by sputtering to form an amorphous film.

上記によって表面に酸化物超電導体の膜が形成された基
板を800〜950℃の温度に加熱する。この加熱によ
って前記の基板のステップを核としてアモルファスの結
晶成長が進行し、その方位が一定方向にそろう。即ち、
ステップに平行にa軸が配向し、a軸が面に垂直の方向
を向く。しかも、基板を一方向に微小角傾斜させること
によって、400〜550℃での焼鈍時に生じる正方晶
から斜方    晶への変態の際にもステップが変態進
行の核となるために結晶粒が大きくなり、粒界が減少す
る。
The substrate on which the oxide superconductor film is formed as described above is heated to a temperature of 800 to 950°C. By this heating, amorphous crystal growth progresses using the step of the substrate as a core, and the orientation thereof is aligned in a certain direction. That is,
The a-axis is oriented parallel to the step, and the a-axis is oriented perpendicular to the plane. Moreover, by tilting the substrate at a small angle in one direction, the steps become the nucleus for the transformation from tetragonal to orthorhombic crystals that occur during annealing at 400 to 550°C, resulting in larger crystal grains. As a result, grain boundaries are reduced.

このため超電導H界電流密度が著しく大きくなる。Therefore, the superconducting H field current density becomes significantly large.

以下、実施例によって本発明をその作用効果とともに詳
しく説明する。
Hereinafter, the present invention will be explained in detail along with its effects using examples.

(実施例) 下記の条件でMgO基板の(100)面、および(10
0)面から<010>軸を中心として1,0°傾いた面
上にYBazCu*○1.、tをスパッタ蒸着した試料
を作成し、第1表に示すようにX線散乱強度を測定した
(Example) The (100) plane and (10) plane of the MgO substrate were prepared under the following conditions.
YBazCu*○1. , t were sputter-deposited, and the X-ray scattering intensity was measured as shown in Table 1.

(試料作成条件) スパッタリングの条件 Arガス圧は1×10弓Torr、電橿面積は20cm
”、電極間距離は5cm、印加電圧はDCIKVである
(Sample preparation conditions) Sputtering conditions Ar gas pressure is 1 x 10 Torr, electric rod area is 20 cm
”, the distance between the electrodes was 5 cm, and the applied voltage was DCIKV.

基板には門go単結晶を(100)面より1°傾斜させ
て研磨後、希硫酸で表面を薄くエンチングしたちのを用
いた。蒸着膜の厚さは5000人である。
The substrate used was a monocrystalline Go single crystal that had been polished at an angle of 1° from the (100) plane, and the surface was thinly etched with dilute sulfuric acid. The thickness of the deposited film is 5000.

焼鈍の条件 スパッタ蒸着後大気中で900℃で10時間焼鈍、更に
450℃で2時間焼鈍。
Annealing conditions After sputter deposition, annealing was performed at 900°C for 10 hours in the air, and further annealing at 450°C for 2 hours.

第1表 第1表には、(103)面の散乱強度を100としたと
きの他の幾つかの面の散乱強度を示した。この結果から
明らかなように、MgO結晶の(100)面より傾けて
研磨した面上に酸化物超電導体を蒸着して焼鈍した場合
には、C軸に垂直な面からの散乱強度が増大しており、
このことはC軸が基板表面に垂直な方向に配向している
ことを示している。
Table 1 Table 1 shows the scattering intensities of several other planes when the scattering intensity of the (103) plane is taken as 100. As is clear from this result, when an oxide superconductor is deposited on a polished surface tilted from the (100) plane of the MgO crystal and annealed, the scattering intensity from the plane perpendicular to the C-axis increases. and
This indicates that the C axis is oriented in a direction perpendicular to the substrate surface.

次に、?IgO基板の(100)面からの傾き角を変え
たときのRBa2Cu30.J蒸着膜の超電導臨界電流
密度の変化を測定した。試料の作成条件は前記と同じで
ある。
next,? RBa2Cu30 when changing the inclination angle from the (100) plane of the IgO substrate. Changes in the superconducting critical current density of the J-deposited film were measured. The sample preparation conditions were the same as above.

第2図にRBazCux○、Jの種類別に測定結果を示
す。図示のとおり、どの酸化物でもMgO基板の(10
0)面からの傾きが0.2〜2.0 ”の範囲にあると
き、臨界電流密度が傾き角O°のときより大きくなって
いる。
FIG. 2 shows the measurement results for each type of RBazCux○ and J. As shown in the figure, any oxide (10
0) When the inclination from the plane is in the range of 0.2 to 2.0'', the critical current density is larger than when the inclination angle is 0°.

上記の結果から、RBazCu30 q−(型酸化物超
電導物質の結晶のC軸が、基板であるMgO結晶の<1
00>方向が基板面の垂直方向に対して僅かに(好まし
くは0.26から2.0’ ) 傾斜してなる前記基板
上で、前記<100>方向に優先成長してなる超電導物
質被覆材が、従来のものに比較して極めて優れた特性を
持つことが明らかである。
From the above results, it can be seen that the C axis of the crystal of the RBazCu30 q-(type oxide superconducting material is <1
A superconducting material coating material grown preferentially in the <100> direction on the substrate, the 00> direction being slightly inclined (preferably 0.26 to 2.0') with respect to the direction perpendicular to the substrate surface. However, it is clear that it has extremely superior characteristics compared to conventional ones.

かかる本発明の超電導物質被覆材の製造条件としては、
スパッタリングによる蒸着時の基板温度と蒸着膜の焼鈍
温度が重要である。
The manufacturing conditions for the superconducting material coating material of the present invention are as follows:
The substrate temperature during deposition by sputtering and the annealing temperature of the deposited film are important.

まず、蒸着時の基板温度が500℃を超えると、蒸着膜
の組成がターゲットの組成から大きくずれ、特にCuが
抜けやすく、そのため所望のペロプスカイト構造が得ら
れない。基板加熱を行わないで(室温のままで)蒸着を
行った場合にも、特に特性の劣化は見られない。従って
基板温度の下限を室温とする。
First, when the substrate temperature during vapor deposition exceeds 500° C., the composition of the vapor deposited film deviates significantly from the composition of the target, and Cu in particular tends to escape, making it impossible to obtain the desired perovskite structure. Even when vapor deposition is performed without heating the substrate (at room temperature), no particular deterioration in characteristics is observed. Therefore, the lower limit of the substrate temperature is set to room temperature.

また、スパッタリングの雰囲気としては、Arのような
不活性ガスまたはこれに適量の酸素を加えたものを用い
る。
Further, as the atmosphere for sputtering, an inert gas such as Ar or a gas containing an appropriate amount of oxygen is used.

次に、得られた蒸着膜を800〜950℃の温度域で焼
鈍する。この焼鈍はアモルファス状の蒸着膜を結晶化す
るのが目的であって、800 ’C未満ではその相転移
の進行が遅く、また950℃を超える温度では蒸着膜が
融解してしまい、再び固化するときに構成物が分解して
しまう。
Next, the obtained vapor deposited film is annealed in a temperature range of 800 to 950°C. The purpose of this annealing is to crystallize the amorphous deposited film, and at temperatures below 800°C, the phase transition progresses slowly, and at temperatures above 950°C, the deposited film melts and solidifies again. Sometimes the components break down.

上記の焼鈍によって結晶(正方晶)化した蒸着膜を、さ
らに、400〜550℃の温度域で焼鈍して正方晶から
斜方晶へ転移させる。この転移温度は概ね550℃であ
るから550℃以下に適当な時間保持すればよい。しか
し、この温度が400’C未満の低温になると転移の進
行が極端に遅くなり実際的な条件とは言い難い。
The deposited film crystallized (tetragonal) by the above annealing is further annealed in a temperature range of 400 to 550°C to transform from tetragonal to orthorhombic. Since this transition temperature is approximately 550°C, it is sufficient to maintain the temperature below 550°C for an appropriate period of time. However, if this temperature is lower than 400'C, the progress of the transition will be extremely slow and this cannot be said to be a practical condition.

(発明の効果) 上述した条件で製造された本発明の超電導酸化物被覆材
は、その組成が所定どおりであるとともに、結晶軸のC
軸が基板に垂直方向に優先配向しているために高い臨界
電流密度を持ち、前記各種の用途に実用化が期待できる
(Effect of the invention) The superconducting oxide coating material of the present invention manufactured under the above-mentioned conditions has the prescribed composition and the crystal axis C
Since the axis is preferentially oriented perpendicular to the substrate, it has a high critical current density, and is expected to be put to practical use in the various applications mentioned above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を説明するための基板表面の概念図、 第2図は、本発明の実施例を含む各種酸化物超電導物質
の臨界電流密度の測定結果を示す図、である。
FIG. 1 is a conceptual diagram of a substrate surface for explaining the present invention, and FIG. 2 is a diagram showing measurement results of critical current densities of various oxide superconducting materials including examples of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)<100>方向が基板面の垂直方向に対して傾斜
しているMgO結晶の基板と、この基板上にC軸が前記
基板MgO結晶の<100>方向に優先成長したRBa
_2Cu_3O_7_−_δ型酸化物超電導物質被覆層
とから成る超電導物質被覆材。 ただし、RはY、Eu、Gd,Tb、Dy、Er、Yb
のいずれかである。
(1) A substrate of MgO crystal whose <100> direction is inclined with respect to the perpendicular direction of the substrate surface, and an RBa whose C axis is preferentially grown in the <100> direction of the substrate MgO crystal on this substrate.
A superconducting material coating material comprising a _2Cu_3O_7_-_δ type oxide superconducting material coating layer. However, R is Y, Eu, Gd, Tb, Dy, Er, Yb
Either.
(2)<100>方向が基板面の垂直方向に対して傾斜
しているMgO結晶の基板を、不活性ガスまたは酸素を
含む不活性ガス中で500℃以下の温度に加熱し、前記
基板上にRBa_2Cu_3O_7_−_δ型酸化物超
電導物質を蒸着してアモルファス状の化合物膜を形成さ
せ、次いで800〜950℃の温度に加熱して結晶化し
、さらに400〜550℃の温度に加熱して超電導物質
とすることを特徴とする超電導物質被覆材の製造方法。 ただし、RはY、Eu、Gd、Tb、Dy、Er、Yb
のいずれかである。
(2) A substrate of MgO crystal whose <100> direction is inclined with respect to the perpendicular direction of the substrate surface is heated to a temperature of 500°C or less in an inert gas or an inert gas containing oxygen, and the RBa_2Cu_3O_7_-_δ type oxide superconducting material is vapor-deposited to form an amorphous compound film, then heated to a temperature of 800 to 950°C to crystallize, and further heated to a temperature of 400 to 550°C to form a superconducting material. A method for manufacturing a superconducting material coating material, characterized by: However, R is Y, Eu, Gd, Tb, Dy, Er, Yb
Either.
JP62327949A 1987-12-24 1987-12-24 Sheathing material of superconducting material and manufacture thereof Pending JPH01167912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327949A JPH01167912A (en) 1987-12-24 1987-12-24 Sheathing material of superconducting material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327949A JPH01167912A (en) 1987-12-24 1987-12-24 Sheathing material of superconducting material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01167912A true JPH01167912A (en) 1989-07-03

Family

ID=18204812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327949A Pending JPH01167912A (en) 1987-12-24 1987-12-24 Sheathing material of superconducting material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01167912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059100A (en) * 1991-06-28 1993-01-19 Nec Corp Synthesis of oxide superconducting thin film
US5276010A (en) * 1990-02-20 1994-01-04 Fujitsu Limited Process for producing bismuth-based oxide superconducting films
JP2008207642A (en) * 2007-02-26 2008-09-11 Toyoda Gosei Co Ltd Glass run

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276010A (en) * 1990-02-20 1994-01-04 Fujitsu Limited Process for producing bismuth-based oxide superconducting films
JPH059100A (en) * 1991-06-28 1993-01-19 Nec Corp Synthesis of oxide superconducting thin film
JP2008207642A (en) * 2007-02-26 2008-09-11 Toyoda Gosei Co Ltd Glass run

Similar Documents

Publication Publication Date Title
JPH05508610A (en) Growth method of perovskite thin film along a and b axes
JPH0733590A (en) Oxide crystal film having y123 type crystal structure
US5030613A (en) Epitaxial Ba--Y--Cu--O ceramic superconductor film on perovskite structure substrate
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
US5314869A (en) Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy
US5145832A (en) Superconducting film on a flexible two-layer zirconia substrate
JPH01167221A (en) Production of superconducting thin film
JP2530492B2 (en) Method for producing oxide superconducting thin film and substrate used therefor
JPS63225599A (en) Preparation of oxide superconductive thin film
JP2963604B2 (en) Method for producing ReBa2Cu3Oy crystal from melt
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
JPH02252697A (en) Production of superconducting ceramic thin film
JP3015393B2 (en) Method for producing oxide superconductor thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH02196006A (en) Formation of superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JP3041529B2 (en) Bi-based oxide superconducting thin film
JPH08208229A (en) Bismuth superconductor element
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH02275789A (en) Formation of oxide super conductor thin film
JPH0474798A (en) Production of oxide superconductor thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JP2004207482A (en) Oxide superconductive thin film
Gómez et al. Preparation and Properties of High-T c Superconducting Bi (Pb)-Sr-Ca-Cu-O Thick Films by a Melting-Quenching-Annealing Method