JP3015393B2 - Method for producing oxide superconductor thin film - Google Patents

Method for producing oxide superconductor thin film

Info

Publication number
JP3015393B2
JP3015393B2 JP1313671A JP31367189A JP3015393B2 JP 3015393 B2 JP3015393 B2 JP 3015393B2 JP 1313671 A JP1313671 A JP 1313671A JP 31367189 A JP31367189 A JP 31367189A JP 3015393 B2 JP3015393 B2 JP 3015393B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
thin film
crystal
superconductor thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1313671A
Other languages
Japanese (ja)
Other versions
JPH03174394A (en
Inventor
正之 砂井
喜昭 寺島
忠男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1313671A priority Critical patent/JP3015393B2/en
Publication of JPH03174394A publication Critical patent/JPH03174394A/en
Application granted granted Critical
Publication of JP3015393B2 publication Critical patent/JP3015393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体薄膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for producing an oxide superconductor thin film.

(従来の技術) 最近注目を集めている臨界温度の高い酸化物超電導体
を電子デバイスに応用するためには、酸化物超電導体を
薄膜化することが不可欠である。このような酸化物超電
導体の薄膜は、スパッタリング法や蒸着法などによって
形成することが試みられている。
(Prior Art) In order to apply an oxide superconductor having a high critical temperature, which has recently attracted attention, to an electronic device, it is essential to make the oxide superconductor thinner. Attempts have been made to form such a thin film of oxide superconductor by a sputtering method, an evaporation method, or the like.

これらの方法によって酸化物超電導体薄膜を形成する
場合、600℃以上の高温に加熱した基板上に成膜するこ
とによって結晶化を促進するか、あるいは低温状態の基
板上に酸化物超電導体の構成成分を着膜させた後、900
℃程度の酸素雰囲気中で熱処理を行い、結晶化させるこ
とが一般的に行われている。
When forming an oxide superconductor thin film by these methods, the crystallization is promoted by forming the film on a substrate heated to a high temperature of 600 ° C. or higher, or the oxide superconductor is formed on a substrate in a low temperature state. After depositing the components, 900
Generally, heat treatment is performed in an oxygen atmosphere at about ° C to crystallize.

しかし、上述したような形成方法による酸化物超電導
体薄膜に対する高温での温度履歴は、酸化物超電導体の
無秩序な粒成長を招いて多結晶状態としてしまったり、
また薄膜と基板との反応層の成形を引起こし、超電導特
性の低下を招いてしまうなどの問題を生じさせてしま
う。
However, the temperature history of the oxide superconductor thin film at a high temperature by the formation method described above causes the oxide superconductor to be in a polycrystalline state by causing disordered grain growth,
In addition, the formation of a reaction layer between the thin film and the substrate is caused to cause problems such as deterioration of superconductivity.

(発明が解決しようとする課題) 上述したように、薄膜形成過程で酸化物超電導体が高
温状態を経験すると、酸化物超電導体の多結晶化や超電
導特性の低下を招いてしまう。また、基板温度を下げて
成膜したのでは、充分に結晶化することができず、超電
導特性は著しく劣化してしまう。一方、酸化物超電導体
を電子デバイスに応用するためには、超電導特性に優れ
る単結晶エピタキシャル成長膜が不可欠である。
(Problems to be Solved by the Invention) As described above, when the oxide superconductor experiences a high temperature state in the process of forming the thin film, polycrystallization of the oxide superconductor and deterioration of superconductivity are caused. In addition, if the film is formed at a reduced substrate temperature, the film cannot be sufficiently crystallized, and the superconductivity is significantly deteriorated. On the other hand, in order to apply an oxide superconductor to an electronic device, a single crystal epitaxially grown film having excellent superconductivity is indispensable.

このようなことから、低温プロセスで酸化物超電導体
薄膜を充分に結晶化させることが、酸化物超電導体薄膜
を素子に応用する上で重要な課題である。また、酸化物
超電導体薄膜を実際に電子デバイスに応用する際には、
半導体との共存が不可欠となり、このため低温プロセス
での結晶化がさらに重要となる。
For this reason, it is an important subject to sufficiently crystallize the oxide superconductor thin film by a low-temperature process in applying the oxide superconductor thin film to the device. Also, when actually applying an oxide superconductor thin film to an electronic device,
Coexistence with a semiconductor is indispensable, and therefore crystallization in a low-temperature process becomes even more important.

本発明は、このような課題に対処するためになされた
もので、低温プロセスにおける酸化物超電導体の結晶化
を促進し、素子への応用を可能にした薄膜状の酸化物超
電導体を提供することを目的とするものである。
The present invention has been made to address such a problem, and provides a thin-film oxide superconductor that promotes crystallization of an oxide superconductor in a low-temperature process and enables application to an element. The purpose is to do so.

[発明の構成] (課題を解決するための手段) すなわち、本発明の酸化物超電導体は、単結晶体から
なる被着基体上に形成された薄膜状の酸化物超電導体で
あって、前記酸化物超電導体薄膜は、前記単結晶体の
(100)結晶面、(110)結晶面および(111)結晶面よ
り選ばれたいずれかの結晶面から3度〜8度の範囲で傾
斜された面からなる前記被着基体の酸化物超電導体薄膜
形成面上に成膜されていることを特徴とするものであ
る。
[Constitution of the Invention] (Means for Solving the Problems) That is, the oxide superconductor of the present invention is a thin-film oxide superconductor formed on a single-crystal adherend substrate, The oxide superconductor thin film is inclined at an angle of 3 to 8 degrees from any one of the (100) crystal plane, the (110) crystal plane, and the (111) crystal plane of the single crystal body. The film is formed on the oxide superconductor thin film forming surface of the substrate to be formed.

酸化物超電導体としては、多数のものが知られている
が、本発明においては希土類元素含有のペロブスカイト
型構造を有する酸化物超電導体や、Bi系、Tl系、Pb系な
どの酸化物超電導体が適用されている。
Many oxide superconductors are known.In the present invention, oxide superconductors having a perovskite-type structure containing a rare earth element, and oxide superconductors such as Bi-based, Tl-based, and Pb-based Has been applied.

ここでいう希土類元素を含有しペロブスカイト型構造
を有する酸化物超電導体は、超電導状態を実現できるも
のであればよく、RE M2Cu3O7−δ系(REはY、La、S
c、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luなどの希
土類元素から選ばれた少なくとも1種の元素を、MはB
a、Sr、Caから選ばれた少なくとも1種の元素を、δは
酸素欠陥を表し通常1以下の数、Cuの一部はTi、V、C
r、Mn、Fe、Co、Ni、Znなどで置換可能。)の酸化物な
どが例示される。
The oxide superconductor containing a rare earth element and having a perovskite structure may be any material capable of realizing a superconducting state, and is a RE M 2 Cu 3 O 7-δ system (RE is Y, La, S
M is at least one element selected from rare earth elements such as c, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu;
a, Sr, at least one element selected from Ca, δ represents an oxygen vacancy, usually a number of 1 or less, and part of Cu is Ti, V, C
Replaceable with r, Mn, Fe, Co, Ni, Zn, etc. )) And the like.

また、Bi系の酸化物超電導体としては、 化学式:Bi2Sr2Ca2Cu3Ox ……(I) :Bi2(Sr,Ca)3Cu3Ox ……(II) などで表されるものが挙げられ、またTl系の酸化物超電
導体としては、 化学式:Tl2Ba2Ca2Cu3Ox ……(III) :Tl2(Ba,Ca)3Cu2Ox ……(IV) などで表されるものが挙げられる。
The Bi-based oxide superconductor is represented by a chemical formula: Bi 2 Sr 2 Ca 2 Cu 3 Ox (I): Bi 2 (Sr, Ca) 3 Cu 3 Ox (II) And the Tl-based oxide superconductor includes a chemical formula: Tl 2 Ba 2 Ca 2 Cu 3 Ox …… (III): Tl 2 (Ba, Ca) 3 Cu 2 Ox …… (IV) Are represented.

また、本発明における酸化物超電導体薄膜の形成方法
としては、たとえば電子ビーム蒸着法、レーザ蒸着法、
クラスターイオンビーム法、マグネトロンスパッタ法、
イオンビームスパッタ法、プラズマCVD法などの各種公
知の薄膜形成法を適用することが可能である。
Examples of the method for forming the oxide superconductor thin film in the present invention include an electron beam evaporation method, a laser evaporation method,
Cluster ion beam method, magnetron sputtering method,
Various known thin film forming methods such as an ion beam sputtering method and a plasma CVD method can be applied.

本発明において使用する被着基体は、単結晶体の(10
0)結晶面、(110)結晶面および(111)結晶面のいず
れかの結晶面から3度〜8度の範囲で傾斜させた面たと
えば研磨面を酸化物超電導体薄膜形成面として有するも
のである。このような被着基体の素材としては、MgO、S
rTiO3、Y安定化ZrO2、LiAlO3、LaAlO3などの酸化物の
単結晶体や、Si、GaAsなどの半導体の単結晶体などが例
示される。
The substrate to be used in the present invention is a single crystal (10
0) A plane inclined from 3 to 8 degrees from any one of the crystal plane, the (110) crystal plane and the (111) crystal plane, for example, a polished surface as a surface on which the oxide superconductor thin film is formed. is there. MgO, S
Examples thereof include a single crystal of an oxide such as rTiO 3 , Y-stabilized ZrO 2 , LiAlO 3 , and LaAlO 3, and a single crystal of a semiconductor such as Si and GaAs.

また、酸化物超電導体薄膜形成面となる研磨面は、上
述したいずれかの結晶面から3度〜8度の範囲で傾斜さ
せていれば研磨方向は特に限定されるものではない。な
お、指定結晶面としては、上記した素材の(100)結晶
面もしくは(110)結晶面を選択することがより好まし
い。これは、酸化物超電導体との格子定数のマッチング
に優れ、よりエピタキシャル成長させやすいためであ
る。
The polishing direction is not particularly limited as long as the polishing surface to be the oxide superconductor thin film forming surface is inclined within a range of 3 degrees to 8 degrees from any one of the crystal planes described above. It is more preferable to select the (100) crystal plane or the (110) crystal plane of the above-mentioned material as the designated crystal plane. This is because excellent lattice constant matching with the oxide superconductor is achieved, and epitaxial growth is easier.

ここで、研磨面の傾斜角度を上記範囲とした理由は以
下の通りである。研磨面の結晶面からの角度が3度未満
であると、低温での結晶化促進が充分に得られず、また
この角度が8度を超えると、膜表面の荒れが発生し多結
晶化してしまうためである。
Here, the reason why the inclination angle of the polished surface is set in the above range is as follows. If the angle of the polished surface from the crystal plane is less than 3 degrees, crystallization at low temperature cannot be sufficiently promoted, and if this angle exceeds 8 degrees, the film surface becomes rough and polycrystalline. This is because

本発明においては、酸化物超電導体薄膜の成膜時の基
体温度は特に限定されるものではないが、600℃以下に
設定することができる。これは、上記薄膜形成面を所定
の角度の研磨面とすることによって、酸化物超電導体の
結晶化温度を低温化することにより達成されるものであ
る。基体温度を600℃以下というように低温状態とする
ことによって、良好にエピタキシャル成長させた単結晶
膜を得ることができる。
In the present invention, the substrate temperature at the time of forming the oxide superconductor thin film is not particularly limited, but can be set to 600 ° C. or lower. This is achieved by lowering the crystallization temperature of the oxide superconductor by making the thin film formation surface a polished surface at a predetermined angle. By setting the substrate temperature at a low temperature of 600 ° C. or lower, a single crystal film that has been successfully epitaxially grown can be obtained.

(作 用) 本発明の酸化物超電導薄膜は、単結晶体の所定の結晶
面から3度〜8度の範囲で傾斜させた研磨面を酸化物超
電導体薄膜形成面とし、この研磨面上に成膜されたもの
である。ここで、上記研磨面を原子レベルで考えた場
合、原子層レベルの段差を有している。また、成膜の過
程がある種の欠陥、たとえばキンクを核として結晶成長
を始めることを考えると、上記研磨面は多数の結晶成長
の核を有していることになる。したがって、低温プロセ
スにおいても結晶成長が促進され、充分に結晶化させた
薄膜状の酸化物超電導体を得ることが可能となる。
(Operation) In the oxide superconducting thin film of the present invention, a polished surface inclined from 3 to 8 degrees from a predetermined crystal plane of the single crystal body is used as an oxide superconductor thin film forming surface, and the polished surface is formed on the polished surface. It is a film formed. Here, when the polished surface is considered at the atomic level, it has a step at the atomic layer level. Considering that the film formation process starts crystal growth with some kind of defect such as a kink as a nucleus, the polished surface has many crystal growth nuclei. Therefore, the crystal growth is promoted even in the low-temperature process, and it is possible to obtain a sufficiently crystallized thin-film oxide superconductor.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, an example of the present invention is described.

実施例1〜4 まず、被着基板としてSrTiO3の単結晶体を用い、第1
図に示すように、SrTiO3単結晶体1の(100)結晶面2
から3度、4度、7度、8度の各角度θで研磨を行い、
これら研磨面3をそれぞれ酸化物超電導体薄膜形成面と
した単結晶基板を作製した。なお、研磨面の法線ベクト
ルは、(100)面への射影ベクトルの方向が[010]方向
または[001]方向となるようにした。
Examples 1 to 4 First, a single crystal of SrTiO 3 was used
As shown in the figure, the (100) crystal plane 2 of the SrTiO 3 single crystal 1
3 degrees, 4 degrees, 7 degrees, polishing at each angle θ of 8 degrees,
A single-crystal substrate having the polished surface 3 as a surface on which an oxide superconductor thin film was formed was manufactured. The normal vector of the polished surface was such that the direction of the projection vector on the (100) plane was the [010] direction or the [001] direction.

次に、上記各単結晶基板に対して反応性スパッタ法に
より、以下の条件でY−Ba−Cu−O系酸化物超電導体薄
膜を成膜した。スパッタガスは50%の酸素ガスを含むア
ルゴン混合ガスを用い、スパッタ圧を0.65Paに設定し、
550℃に加熱した上記単結晶基板の研磨面3に対し、基
本組成Y:Ba:Cu=1:2:3の酸化物をスパッタすることによ
って膜厚0.3μmで成膜した。
Next, a Y-Ba-Cu-O-based oxide superconductor thin film was formed on each of the single crystal substrates by a reactive sputtering method under the following conditions. The sputtering gas used was an argon mixed gas containing 50% oxygen gas, the sputtering pressure was set to 0.65 Pa,
An oxide having a basic composition of Y: Ba: Cu = 1: 2: 3 was sputtered on the polished surface 3 of the single crystal substrate heated to 550 ° C. to form a film having a thickness of 0.3 μm.

このようにして成膜した後、それぞれの薄膜に対して
1気圧の酸素気流中において500℃で1時間アニールを
行った。
After film formation in this manner, each thin film was annealed at 500 ° C. for 1 hour in an oxygen gas stream of 1 atm.

このようにして得た各酸化物超電導体薄膜の組成は、
X線回折によってY1Ba2Cu3O7−δであることを確認し
た。また、各Y系酸化物超電導体薄膜の抵抗の温度変化
を測定し、転移温度(Tc)を求めた。また、表面状態の
観察を行った。これらの結果を第1表に示す。
The composition of each oxide superconductor thin film thus obtained is
It was confirmed by X-ray diffraction that it was Y 1 Ba 2 Cu 3 O 7-δ . Further, the temperature change of the resistance of each Y-based oxide superconductor thin film was measured to determine the transition temperature (Tc). In addition, the surface condition was observed. Table 1 shows the results.

また、本発明との比較として、上記実施例における研
磨面の傾斜角度θを0度、2度、9度、10度としたSrTi
O3単結晶基板をそれぞれ作製し、上記実施例と同一条件
下でY系酸化物超電導体薄膜を成膜し、これらについて
も転移温度の測定および表面状態の観察を行った。その
結果を併せて第1表を示す。
Further, as a comparison with the present invention, SrTi in which the inclination angle θ of the polished surface in the above embodiment was set to 0 °, 2 °, 9 °, and 10 °
O 3 single-crystal substrates were prepared, and a Y-based oxide superconductor thin film was formed under the same conditions as in the above examples. The transition temperature was measured and the surface state was observed for these films. Table 1 also shows the results.

第1表から明らかなように、上記実施例1〜4によっ
て得た各酸化物超電導体薄膜は、液体窒素温度以上の転
移温度を示し、かつ表面状態もなめらかで単結晶的であ
った。これに対して、比較例1および2による酸化物超
電導体薄膜は、超電導状態を示さないか、あるいは示し
ても極低温であった。また、比較例3および4による酸
化物超電導体薄膜は、転移温度の低下はそれほどではな
いものの、膜表面が荒れて多結晶化してしまい、電子デ
バイスなどして実用化できるものではなかった。これら
は、高速反射電子回折によって各実施例による酸化物超
電導体薄膜の回折像が鮮明なストリーク状であったのに
対し、比較例3、4のによる酸化物超電導体薄膜の回折
像がリング状を示したことからも確認した。
As is clear from Table 1, each oxide superconductor thin film obtained in each of Examples 1 to 4 exhibited a transition temperature equal to or higher than the temperature of liquid nitrogen, and had a smooth and single-crystal surface state. On the other hand, the oxide superconductor thin films according to Comparative Examples 1 and 2 did not show a superconducting state, or at a very low temperature. Further, the oxide superconductor thin films according to Comparative Examples 3 and 4 did not decrease the transition temperature so much, but the film surface was roughened and polycrystallized, and could not be put to practical use as an electronic device or the like. In these, the diffraction images of the oxide superconductor thin films according to the examples were sharp streak-like by high-speed reflection electron diffraction, whereas the diffraction images of the oxide superconductor thin films according to Comparative Examples 3 and 4 were ring-shaped. Was also confirmed.

なお、上記各実施例ではY系酸化物超電導体に本発明
の製造方法を適用した例について説明したが、上記実施
例の同様にして研磨面上に成膜を行うことによって、他
の希土類系やBi系など全ての酸化物超電導体薄膜の作製
に本発明方法を適用することが可能である。
In each of the above embodiments, the example in which the manufacturing method of the present invention is applied to the Y-based oxide superconductor has been described. However, by forming a film on a polished surface in the same manner as in the above-described embodiment, other rare earth-based The method of the present invention can be applied to the production of all oxide superconductor thin films such as and superconducting oxides.

[発明の効果] 以上説明したように、本発明によれば、成膜時の結晶
成長の核を多数含む研磨面上に成膜していることから、
結晶成長が大幅に促進されて低温状態の基体上にも、充
分に結晶化され超電導特性に優れた酸化物超電導体薄膜
を得ることが可能となる。
[Effects of the Invention] As described above, according to the present invention, since a film is formed on a polished surface including many nuclei for crystal growth during film formation,
Crystal growth is greatly promoted, and an oxide superconductor thin film which is sufficiently crystallized and has excellent superconductivity can be obtained even on a substrate in a low temperature state.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例で示した単結晶基板を模式的
に示す図である。 1……単結晶体、2……(100)結晶面、3……研磨
面。
FIG. 1 is a diagram schematically showing a single crystal substrate shown in one embodiment of the present invention. 1 ... single crystal, 2 ... (100) crystal face, 3 ... polished face.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−82576(JP,A) 特開 昭64−52323(JP,A) 特開 平1−95411(JP,A) 特開 平1−175115(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 23/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-82576 (JP, A) JP-A-64-52323 (JP, A) JP-A-1-95411 (JP, A) JP-A-1-95411 175115 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 1/00-23/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶体からなる被着基体の酸化物超電導
体薄膜形成面を前記単結晶体の(100)結晶面、(110)
結晶面および(111)結晶面より選ばれたいずれかの結
晶面から3度〜8度の範囲で傾斜させた面とし、前記被
着基体の温度を600℃以下に加熱して前記薄膜形成面上
に酸化物超電導体を成膜することを特徴とする酸化物超
電導体薄膜の製造方法。
1. An oxide superconductor thin film forming surface of a substrate to be formed of a single crystal body is formed by a (100) crystal plane and a (110) crystal plane of the single crystal body.
A plane inclined from 3 ° to 8 ° from any one of the crystal planes selected from the crystal plane and the (111) crystal plane; A method for producing an oxide superconductor thin film, comprising forming an oxide superconductor thereon.
JP1313671A 1989-11-30 1989-11-30 Method for producing oxide superconductor thin film Expired - Fee Related JP3015393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313671A JP3015393B2 (en) 1989-11-30 1989-11-30 Method for producing oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313671A JP3015393B2 (en) 1989-11-30 1989-11-30 Method for producing oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH03174394A JPH03174394A (en) 1991-07-29
JP3015393B2 true JP3015393B2 (en) 2000-03-06

Family

ID=18044109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313671A Expired - Fee Related JP3015393B2 (en) 1989-11-30 1989-11-30 Method for producing oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP3015393B2 (en)

Also Published As

Publication number Publication date
JPH03174394A (en) 1991-07-29

Similar Documents

Publication Publication Date Title
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
EP1735847B1 (en) Biaxially-textured film deposition for superconductor coated tapes
US6610632B2 (en) Tape-formed oxide superconductor
US7431868B2 (en) Method of manufacturing a metal substrate for an oxide superconducting wire
EP1388899A2 (en) Oxide superconducting wire
JP2007307904A (en) Coated conductor and polycrystal line film useful for manufacture of high-temperature superconductor layer
US4996187A (en) Epitaxial Ba-Y-Cu-O superconductor film
JPS63237313A (en) Superconductive structural body and manufacture thereof
EP0406126B1 (en) Substrate having a superconductor layer
US5030613A (en) Epitaxial Ba--Y--Cu--O ceramic superconductor film on perovskite structure substrate
JP3015393B2 (en) Method for producing oxide superconductor thin film
JP3135755B2 (en) Rare earth oxide superconductor single crystal film and method for producing the same
JP3020518B2 (en) Oxide superconductor thin film
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2813287B2 (en) Superconducting wire
JPH03275504A (en) Oxide superconductor thin film and its production
JP2844207B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPS63236794A (en) Production of superconductive thin film of oxide
JP2781331B2 (en) Manufacturing method of thin film superconductor
Abrutis¹ et al. MOCVD" Digital" Growth of High-Tc Superconductors, Related Heterostructures and Superlattices
JPH0244782A (en) Superconductive element and manufacture thereof
JPH08208229A (en) Bismuth superconductor element
JPH05163100A (en) Substrate for superconducting device and its production
JPH0818914B2 (en) Superconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees