JP3041529B2 - Bi-based oxide superconducting thin film - Google Patents

Bi-based oxide superconducting thin film

Info

Publication number
JP3041529B2
JP3041529B2 JP2098280A JP9828090A JP3041529B2 JP 3041529 B2 JP3041529 B2 JP 3041529B2 JP 2098280 A JP2098280 A JP 2098280A JP 9828090 A JP9828090 A JP 9828090A JP 3041529 B2 JP3041529 B2 JP 3041529B2
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
temperature
superconducting
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2098280A
Other languages
Japanese (ja)
Other versions
JPH03295811A (en
Inventor
浩正 下嶋
惠三 塚本
千丈 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2098280A priority Critical patent/JP3041529B2/en
Publication of JPH03295811A publication Critical patent/JPH03295811A/en
Application granted granted Critical
Publication of JP3041529B2 publication Critical patent/JP3041529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超伝導特性を有し、高い臨界電流密度を有
するBi系超伝導薄膜に関し、特にスパッタリング法、蒸
着法などの物理的手法により製造されたBi−Pb−Sr−Ca
−Cu−O系及びBi−Sr−Ca−Cu−O系のBi系酸化物超伝
導薄膜に関するものである。
Description: TECHNICAL FIELD The present invention relates to a Bi-based superconducting thin film having superconducting properties and a high critical current density, and particularly to a physical method such as a sputtering method and a vapor deposition method. Bi-Pb-Sr-Ca produced
The present invention relates to a Bi-based oxide superconducting thin film based on -Cu-O and Bi-Sr-Ca-Cu-O.

〔従来の技術〕[Conventional technology]

Bi系超伝導体は、臨界温度が100K以上の優れた材料で
あることは広く知られている。この材料を電子材料及び
デバイス等へ応用するために、各所で、薄膜化が行われ
ている。しかしながら、この材料には110K級、80K級及
び半導体相の三種類の多形が存在し、しかも110K級超伝
導体の生成温度領域が狭いため単相化が難しい。
It is widely known that Bi-based superconductors are excellent materials having a critical temperature of 100K or more. In order to apply this material to electronic materials and devices, thinning is performed in various places. However, this material has three types of polymorphs, 110K class, 80K class, and semiconductor phase, and it is difficult to form a single phase due to the narrow temperature range in which a 110K class superconductor is formed.

従来、単相110K超伝導薄膜を合成するには、Bi−Pb−
Sr−Ca−Cu−O系超伝導体では、熱処理前の組成として
Bi:Pb:Sr:Ca:Cu=1:1:1:1:1.5又はCaを過剰に加えた薄
膜を約850℃で熱処理していた(例えばJapanese Journa
l of Applied Physics,28(1989),L818〜822)。
Conventionally, Bi-Pb-
In Sr-Ca-Cu-O-based superconductor, the composition before heat treatment
Bi: Pb: Sr: Ca: Cu = 1: 1: 1: 1: 1.5 or a thin film containing excess Ca was heat-treated at about 850 ° C. (for example, Japanese Journa
l of Applied Physics, 28 (1989), L818-822).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の方法で薄膜を合成すると、X線回折では単相
で、配向性も良く、臨界温度も100Kを超える110K級超伝
導薄膜を得ることができる。
When a thin film is synthesized by the above method, a 110K class superconducting thin film having a single phase in X-ray diffraction, good orientation, and a critical temperature exceeding 100K can be obtained.

しかしながら、生成した板状の110K級超伝導粒子の配
向性がよくても、熱処理する際に生成した無定形相が熱
処理後も超伝導粒子間に残存して、絶縁相として働くた
めに、膜に流れる超伝導電流を妨害し、実用的に重要な
液体窒素温度での超伝導による電流密度(以下、これを
臨界電流密度として扱う。)を低下させるという問題点
があった。
However, even if the orientation of the resulting plate-like 110K-class superconducting particles is good, the amorphous phase generated during heat treatment remains between the superconducting particles after heat treatment and acts as an insulating phase. However, there is a problem that a superconducting current flowing through the liquid crystal is interrupted and a current density due to superconductivity at a liquid nitrogen temperature which is practically important (hereinafter, this is treated as a critical current density) is reduced.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、製造した薄膜を種々の条件で熱処理
し、得られた薄膜の配向性と臨界電流密度の関係を調べ
た結果、熱処理後の超伝導粒子のC軸の配向度が臨界電
流密度に大きく影響することを見出し、本発明を完成す
るに至った。
The inventors of the present invention heat-treated the manufactured thin film under various conditions, and examined the relationship between the orientation of the obtained thin film and the critical current density. The inventors have found that the present invention greatly affects the density, and have completed the present invention.

すなわち本発明は、スパッタリング法、蒸着法などの
物理的手法により製造された下記の組成の酸化物超伝導
体の薄膜であって、基板の垂直方向をC軸として、超伝
導粒子のC軸の配向度が1〜10゜の範囲であることを特
徴とするBi系酸化物超伝導薄膜である。
That is, the present invention is a thin film of an oxide superconductor having the following composition manufactured by a physical method such as a sputtering method or a vapor deposition method, and the C axis of the superconducting particles is defined as a C axis in a direction perpendicular to the substrate. A Bi-based oxide superconducting thin film having a degree of orientation in the range of 1 to 10 °.

BiaPbbSr1.00CacCudOx ここで、0.5≦a≦1.2 0 ≦b≦1.2 0.4≦c≦1.0 1.3≦d≦2.0 ここで配向度とは、X線回折法により測定したロッキ
ング曲線の半値幅を意味する。
Bi a Pb b Sr 1.00 Ca c Cu d O x where 0.5 ≦ a ≦ 1.20 ≦ b ≦ 1.2 0.4 ≦ c ≦ 1.0 1.3 ≦ d ≦ 2.0 Here, the degree of orientation is the rocking measured by the X-ray diffraction method. Means the half width of the curve.

ロッキング曲線: この曲線は、ある程度の配向性をもった薄膜やエピタ
キシャル膜の結晶性を評価するのに用いられるもので、
検出器をある結晶面間隔に対応した角度(2θ)に固定
し、試料の角度(θ)を変化させることにより得られた
回折強度を示す。薄膜が少しづつ方位の異なった小さな
結晶片からできているとき、回折ピーク上に、結晶方位
の広がりに対応した幅が生じる。この幅(ロッキング曲
線の半値幅)が狭いと結晶軸がそろっていることを意味
しており、幅が狭いほど配向性が高い。
Rocking curve: This curve is used to evaluate the crystallinity of thin films and epitaxial films with a certain degree of orientation.
The diffraction intensity obtained by fixing the detector at an angle (2θ) corresponding to a certain crystal plane interval and changing the angle (θ) of the sample is shown. When the thin film is gradually made up of small crystal pieces having different orientations, a width corresponding to the spread of the crystal orientation is generated on the diffraction peak. A smaller width (half-width of the rocking curve) means that the crystal axes are aligned, and a smaller width indicates higher orientation.

〔作用〕[Action]

熱処理によって得られた超伝導薄膜のC軸配向度が臨
界電流密度に及ぼす作用については、その理由は必ずし
も明確ではないが、スパッタリング法、蒸着法などの物
理的手法により製造された薄膜は、所定の温度で熱処理
されて結晶化する。このときの超伝導体のロッキング曲
線の半値幅、つまりC軸の配向度が1゜よりも小さく、
配向性良く積み重なると、超伝導粒子が独立し、熱処理
時に生成した無定形相が粒子間に介在して、かえって粒
子同志の結合が阻害されるものと推定される。
The effect of the degree of C-axis orientation of the superconducting thin film obtained by the heat treatment on the critical current density is not necessarily clear, but the thin film manufactured by a physical method such as a sputtering method or a vapor deposition method has a predetermined thickness. Is heat-treated at the temperature of and crystallized. At this time, the half width of the rocking curve of the superconductor, that is, the degree of orientation of the C axis is smaller than 1 °,
It is presumed that when the particles are stacked with good orientation, the superconducting particles become independent, the amorphous phase generated during the heat treatment is interposed between the particles, and the bonding between the particles is rather inhibited.

図−1は液体窒素温度で高い電流密度で示したBi系酸
化物超伝導薄膜の断面の粒子構造を示す走査型電子顕微
鏡(SEM)写真で、そのC軸配向度は3.8゜であり、粒子
間の接合が多く認められる。図−2は同じ液体窒素温度
で電流密度の低い同一組成のBi系酸化物超伝導薄膜の断
面の粒子構造を示し、そのC軸配向度は0.5゜で、粒子
が独立し、粒子間の接合が少ない。
Figure 1 is a scanning electron microscope (SEM) photograph showing the particle structure of a cross section of a Bi-based oxide superconducting thin film at a high current density at the temperature of liquid nitrogen. Many joints between them are observed. Figure 2 shows the grain structure of a cross section of a Bi-based oxide superconducting thin film of the same composition at the same liquid nitrogen temperature and low current density. The C-axis orientation is 0.5 °, the grains are independent, and the bonding between grains is achieved. Less is.

C軸配向度が10゜より大きくなると、配向性が著しく
低下し、その結果超伝導粒子間の結合が悪くなり、臨界
電流密度が小さくなる。
When the degree of C-axis orientation is larger than 10 °, the orientation is remarkably reduced, and as a result, the coupling between the superconducting particles is deteriorated, and the critical current density is reduced.

また、得られる超伝導薄膜のC軸配向を上記範囲内に
留める製造方法については、薄膜組成、特にCa/Sr原子
比、焼成温度、焼成時間等が相互に影響しているものと
思われる。
Further, regarding the manufacturing method for keeping the C-axis orientation of the obtained superconducting thin film within the above range, the thin film composition, particularly the Ca / Sr atomic ratio, the sintering temperature, the sintering time, and the like are considered to influence each other.

(Bi系酸化物超伝導体) 本発明でBi系酸化物超伝導薄膜を構成するBi系酸化物
超伝導体は、Bi−Pb−Sr−Ca−Cu−O系及びBi−Sr−Ca
−Cu−O系超伝導体であり、その組成はBiaPbbSr1.00Ca
cCudOxで示され、 ここで、0.5≦a≦1.2 0 ≦b≦1.2 0.4≦c≦1.0 1.3≦d≦2.0 である。
(Bi-based oxide superconductor) In the present invention, the Bi-based oxide superconductor constituting the Bi-based oxide superconducting thin film is a Bi-Pb-Sr-Ca-Cu-O-based and Bi-Sr-Ca
-Cu-O-based superconductor whose composition is Bi a Pb b Sr 1.00 Ca
c Cu d O x , where 0.5 ≦ a ≦ 1.20 ≦ b ≦ 1.2 0.4 ≦ c ≦ 1.0 1.3 ≦ d ≦ 2.0.

Biは0.5より少ないと超伝導体の合成が困難であり、
1.2を超えると超伝導特性に悪影響を及ぼす無定形相を
生成し易く、C軸配向度が1゜よりも小さくなる。Pbも
1.2を超えるとC軸配向度が1゜よりも小さくなる。
If Bi is less than 0.5, it is difficult to synthesize a superconductor,
If it exceeds 1.2, an amorphous phase which adversely affects the superconductivity is easily generated, and the degree of C-axis orientation is smaller than 1 °. Pb too
If it exceeds 1.2, the degree of C-axis orientation will be smaller than 1 °.

CaはSrより少ないことが好ましいが、0.4より少ない
と半導体を生成し易く、110K級超伝導体相の生成が少な
く、臨界電流密度も低下する。Caが1.0を超えると110K
級超伝導体相は生成するが、粒子間にCa化合物が析出し
て臨界電流密度を低下させる。
Ca is preferably less than Sr, but if it is less than 0.4, a semiconductor is easily formed, the generation of a 110K-class superconductor phase is small, and the critical current density is also reduced. 110K when Ca exceeds 1.0
Class superconductor phase is formed, but Ca compound precipitates between particles and lowers the critical current density.

Cuは1.3未満では110K相が生成されにくく、2.0を超え
るとC軸配向度が1゜よりも小さくなる。
If Cu is less than 1.3, a 110K phase is hardly generated, and if it exceeds 2.0, the degree of C-axis orientation is smaller than 1 °.

本発明のBi系酸化物超伝導体としては、上記組成の一
部を他の元素、例えばSrの一部をBaに、Caの一部をY
に、Cuの一部をCdにそれぞれ置換したものも含まれる。
As the Bi-based oxide superconductor of the present invention, a part of the above composition is replaced with another element, for example, a part of Sr is Ba and a part of Ca is Y.
And those in which a part of Cu is replaced by Cd, respectively.

(薄膜製造) 本発明における薄膜の製造は、スパッタリング法、蒸
着法等の物理的手法により行われる。
(Production of Thin Film) The production of a thin film in the present invention is performed by a physical method such as a sputtering method and a vapor deposition method.

スパッタリング法の場合、ターゲットの数は問わない
が、組成中にPbを含む場合、複数のターゲットを用い、
その一つのターゲットとして、BiとPbの混合物を用いる
ことが好ましく、他のターゲットにおけるBiとPb以外の
元素の組み合せ及びターゲット数は自由である。
In the case of the sputtering method, the number of targets does not matter, but when the composition contains Pb, a plurality of targets are used,
It is preferable to use a mixture of Bi and Pb as one of the targets, and the combination of elements other than Bi and Pb in other targets and the number of targets are free.

スパッタリングターゲットの原料としては、酸化物、
硝酸化物、硫酸化物、炭酸化物等の無機化合物又は金属
が用いられる。
As a raw material of the sputtering target, an oxide,
Inorganic compounds such as nitrates, sulfates, and carbonates or metals are used.

用いられる基板としては、熱処理中に薄膜中の元素と
反応しないMgO、SrTiO3、LaGaO3、LaAlO3等の酸化物単
結晶、Ag、Au、Pt、Cu等の多結晶金属、Si、GaAs等の半
導体、又はこれらを組み合わせたものなどが使用され
る。
Substrates used include oxide single crystals such as MgO, SrTiO 3 , LaGaO 3 and LaAlO 3 which do not react with elements in the thin film during heat treatment, polycrystalline metals such as Ag, Au, Pt, Cu, Si, GaAs, etc. Or a combination thereof.

薄膜製造の際、基板加熱は行ってもよいが、その場
合、基板温度は700℃以下であることが好ましい。基板
を700℃を超える温度に加熱して膜の堆積を行うと、堆
積と同時にC軸配向性の高い結晶化が起こるが、粒子間
に無定形相が残存し、この膜の抵抗曲線は裾を引き、臨
界温度が低くなる傾向があり、液体窒素温度での電流密
度は殆どゼロとなる。
In the production of the thin film, the substrate may be heated, but in that case, the substrate temperature is preferably 700 ° C. or less. When the substrate is heated to a temperature exceeding 700 ° C. to deposit a film, crystallization with a high C-axis orientation occurs at the same time as the deposition, but an amorphous phase remains between the particles, and the resistance curve of this film has a tail. , The critical temperature tends to decrease, and the current density at the temperature of liquid nitrogen becomes almost zero.

複数のターゲットを用いてスパッタリングにより基板
上に薄膜を形成させるには、ターゲットをAr、O2などの
ガスを用いてスパッタリングし、基板上にBi、Pbを含む
組成の膜と、その他の構成元素を含む組成の膜とを、目
標とする膜組成になるように堆積時間とRFパワーをコン
トロールしながら、順次積層する。
To form a thin film on a substrate by sputtering using a plurality of targets, a target using Ar, a gas such as O 2 by sputtering, the film of the composition comprising Bi on the substrate, the Pb, other constituent elements Are sequentially laminated while controlling the deposition time and the RF power so that the target film composition is obtained.

このように順次積層して、各組成を一巡したときの膜
の厚さは100Å以下、望ましくは50Å程度にするのが好
ましい。この厚さが100Åより厚い場合には、膜が溶融
しやすく、110K級超伝導体が生成しにくい。
It is preferable that the thickness of the film when the layers are sequentially laminated in this way and each composition is cycled is 100 mm or less, and preferably about 50 mm. When the thickness is more than 100 mm, the film is easily melted, and it is difficult to produce a 110K-class superconductor.

薄膜の厚さは使用目的に合わせて製造するが、好まし
くは0.1〜10μm程度である。薄膜の厚さが0.1μm以下
では、熱処理後、超伝導粒子間の結合が配向度に関係な
く弱くなり、膜厚が10μm以上では膜の配向性が著しく
低下するため臨界電流密度が小さくなる。
The thickness of the thin film is manufactured according to the purpose of use, but is preferably about 0.1 to 10 μm. When the thickness of the thin film is 0.1 μm or less, the bond between the superconducting particles becomes weak after heat treatment irrespective of the degree of orientation, and when the thickness is 10 μm or more, the orientation of the film is remarkably reduced, so that the critical current density becomes small.

(薄膜の熱処理) 本発明においては、上記により作製された薄膜の熱処
理は、好ましくは110K級Bi系系超伝導体の合成温度より
5〜40℃、特に好ましくは10〜20℃低い温度で行う。
(Heat Treatment of Thin Film) In the present invention, the heat treatment of the thin film produced as described above is preferably performed at a temperature of 5 to 40 ° C., particularly preferably 10 to 20 ° C. lower than the synthesis temperature of the 110 K class Bi-based superconductor. .

ここで合成温度とは、目的とする組成のBi系酸化物超
伝導体で110K相の成長速度が最大となる温度であり、Pb
を含有する場合には約850℃であり、Pbを含有しない系
では、約870℃である。
Here, the synthesis temperature is a temperature at which the growth rate of the 110K phase is maximum in a Bi-based oxide superconductor having a desired composition, and Pb
Is about 850 ° C. in the case of containing Pb, and about 870 ° C. in the system not containing Pb.

熱処理時間は温度にもよるが、合成温度より低い温度
であるので少なくとも10時間以上が必要である。また、
あまり長時間の熱処理は、かえって臨界温度及び臨界電
流密度の低下を生じるので、好ましい熱処理時間は、合
成温度より10〜20℃低い温度で50〜80時間である。
Although the heat treatment time depends on the temperature, at least 10 hours or more are necessary because the temperature is lower than the synthesis temperature. Also,
Since a heat treatment that is too long results in a decrease in critical temperature and critical current density, a preferable heat treatment time is 50 to 80 hours at a temperature 10 to 20 ° C. lower than the synthesis temperature.

上記の熱処理に際し、予め700〜800℃の温度で2〜10
時間一次熱処理を行うことは有効で、得られる超伝導薄
膜の特性が安定する。
For the above heat treatment, 2-10
It is effective to perform the primary heat treatment for a long time, and the characteristics of the obtained superconducting thin film are stabilized.

熱処理後は、炉内で徐冷する。 After the heat treatment, it is gradually cooled in the furnace.

以下、Bi−Pb−Sr−Ca−Cu−O系超伝導薄膜の二段熱
処理について説明する。
Hereinafter, the two-step heat treatment of the Bi-Pb-Sr-Ca-Cu-O-based superconducting thin film will be described.

一次熱処理 一次熱処理では、Bi−Pb−Sr−Ca−Cu−O系超伝導体
を生成させる最適熱処理温度より50〜150℃程度低い温
度、好ましくは、50〜100℃程度低い温度に1時間以上
保持する。具体的な温度として、700〜800℃程度で2〜
10時間加熱保持するのが好ましい。熱処理の雰囲気とし
ては空気中で十分であるが、好ましくはPbOの蒸気が存
在する雰囲気で行うことにより、熱処理中にPbOが揮発
するのを防ぐことができる。
Primary heat treatment In the primary heat treatment, the temperature is about 50 to 150 ° C lower than the optimum heat treatment temperature for generating the Bi-Pb-Sr-Ca-Cu-O-based superconductor, preferably, about 50 to 100 ° C lower for about 1 hour or more. Hold. As a specific temperature, about 700-800 ° C
It is preferable to heat and hold for 10 hours. Although the atmosphere for the heat treatment is sufficient in the air, preferably, the heat treatment is performed in an atmosphere in which PbO vapor is present, so that volatilization of PbO during the heat treatment can be prevented.

二次熱処理 二次熱処理では、Bi−Pb−Sr−Ca−Cu−O系超伝導体
の生成温度より5〜40℃、好ましくは10〜20℃低い温度
に保持し、15時間以上熱処理する。熱処理が長時間に及
ぶと膜質が悪化し特性を下げるので、熱処理温度にもよ
るが100時間を超えないことが望ましい。熱処理中の雰
囲気は一次熱処理の場合と同様でよく、空気中もしくは
PbO蒸気の存在下で行う。一次熱処理から二次熱処理へ
の昇温速度は速くても遅くても特に問題はなく、一次熱
処理後、室温に冷却した後に二次熱処理を行なってもよ
い。
Secondary heat treatment In the second heat treatment, the temperature is maintained at 5 to 40C, preferably 10 to 20C lower than the generation temperature of the Bi-Pb-Sr-Ca-Cu-O-based superconductor, and the heat treatment is performed for 15 hours or more. If the heat treatment is performed for a long time, the film quality is deteriorated and the characteristics are lowered. Therefore, it is preferable that the heat treatment temperature does not exceed 100 hours depending on the heat treatment temperature. The atmosphere during the heat treatment may be the same as in the case of the primary heat treatment, either in air or
Performed in the presence of PbO vapor. The rate of temperature rise from the primary heat treatment to the secondary heat treatment may be fast or slow without any particular problem. After the primary heat treatment, the secondary heat treatment may be performed after cooling to room temperature.

二次熱処理終了後は炉内でゆっくり放冷する。 After the completion of the second heat treatment, the mixture is slowly cooled in the furnace.

〔実施例〕〔Example〕

実施例1〜4 スパッタリングは、以下の3種類のターゲット及び堆
積時間で行った。
Examples 1-4 Sputtering was performed with the following three types of targets and deposition times.

第一のターゲットとしてBi2O3とPbOの粉末を、原子
比でBi:Pb=1:1となる様に配合し、メタノール中で24時
間混合したものを用いた。単位堆積時間10秒とした。
As a first target, a mixture of Bi 2 O 3 and PbO powder mixed at an atomic ratio of Bi: Pb = 1: 1 and mixed in methanol for 24 hours was used. The unit deposition time was 10 seconds.

第二のターゲットとして、CaCO3とCuOの粉末を、原
子比でCa:Cu=1:0.75に配合し、上記方法と同様に混合
した粉末を、950℃で10時間空気中で焼成し粉砕したも
のを用いた。単位堆積時間は50秒とした。
As a second target, a powder of CaCO 3 and CuO was blended in an atomic ratio of Ca: Cu = 1: 0.75, and the powder mixed in the same manner as in the above method was baked and crushed in air at 950 ° C. for 10 hours. Was used. The unit deposition time was 50 seconds.

第三のターゲットとして、SrCO3とCuOの粉末を、原
子比でSr:Cu=1:0.75となる様に配合し、上記方法と同
様に混合した粉末を、950℃で10時間空気中で焼成し粉
砕したものを用いた。単位堆積時間は40秒とした。
As a third target, a powder of SrCO 3 and CuO was blended in an atomic ratio of Sr: Cu = 1: 0.75, and the powder mixed in the same manner as above was fired at 950 ° C. for 10 hours in air. And pulverized. The unit deposition time was 40 seconds.

表−1の基板温度に加熱されたMgO単結晶基板上に、
上記3種類のターゲットを用い、RFパワーを100Wとし
て、Arガスでスパッタリングし、各ターゲットの堆積が
一巡したら、これを400回くり返して約2μmの薄膜を
得た。
On a MgO single crystal substrate heated to the substrate temperature in Table 1,
Using the above three types of targets, the RF power was set to 100 W, and sputtering was performed with Ar gas. When the deposition of each target completed one cycle, this was repeated 400 times to obtain a thin film of about 2 μm.

得られた薄膜の組成をEPMAにより分析した結果は、
(Bi+Pb)1.27Sr1.00Ca0.76Cu1.37Oxであった。
The result of analyzing the composition of the obtained thin film by EPMA,
(Bi + Pb) 1.27 Sr 1.00 Ca 0.76 Cu 1.37 O x .

これらを780℃で2時間一次熱処理した後、それぞれ
二次熱処理を835℃で表−1に示す時間行い、各種C軸
配向度の異なる試料を得た。
After these were subjected to primary heat treatment at 780 ° C. for 2 hours, they were each subjected to secondary heat treatment at 835 ° C. for the time shown in Table 1 to obtain samples having various degrees of C-axis orientation.

薄膜の配向度は、110K級超伝導体の(0014)回折線
(2θ CuKα=33.4゜)のロッキング曲線を用いた。
For the degree of orientation of the thin film, a rocking curve of a (0014) diffraction line (2θ CuKα = 33.4 °) of a 110K-class superconductor was used.

臨界電流密度は液体窒素中で四端子法によって測定し
た。
The critical current density was measured in liquid nitrogen by the four probe method.

また、生成超伝導体中の110K超伝導体相の割合(110K
相比率)は、X線回折装置を用い、薄膜中の110K級超伝
導体相及び80K級超伝導体相の(002)回折線強度の測定
結果より求めた。
In addition, the proportion of the 110K superconductor phase in the formed superconductor (110K
The phase ratio was determined from the measurement results of the (002) diffraction line intensity of the 110K-class superconductor phase and the 80K-class superconductor phase in the thin film using an X-ray diffractometer.

その結果を表−1に示す。 Table 1 shows the results.

比較例1 実施例1において、二次焼成を835℃で2時間行った
とした以外はすべて同様に行い、得られた焼成薄膜の超
伝導特性を測定した。
Comparative Example 1 The same procedure as in Example 1 was performed except that the secondary firing was performed at 835 ° C. for 2 hours, and the superconducting properties of the obtained fired thin film were measured.

結果は表−1に示す。 The results are shown in Table 1.

比較例2 基板温度を750℃に加熱し、実施例1と同様にスパッ
タリングを行って積層薄膜を作製した。
Comparative Example 2 The substrate temperature was heated to 750 ° C., and sputtering was performed in the same manner as in Example 1 to produce a laminated thin film.

得られた薄膜の超伝導特性を表−1に示す。 Table 1 shows the superconducting properties of the obtained thin films.

実施例5〜8、 実施例1における第一のターゲットをBi2O3のみの粉
末とし、第二及び第三のターゲットは同じものを用い、
単位堆積時間を、それぞれ 第一ターゲット 6秒 第二ターゲット 50秒 第三ターゲット 40秒 とした以外は実施例1と同様にスパッタリングを行っ
て、厚さ約2μmの薄膜を得た。
Examples 5-8, the first target in Example 1 into a powder of only Bi 2 O 3, the second and third targets using the same,
Sputtering was performed in the same manner as in Example 1 except that the unit deposition time was set to 6 seconds for the first target, 50 seconds for the second target, and 40 seconds for the third target, to obtain a thin film having a thickness of about 2 μm.

得られた薄膜の組成をEPMAにより分析した結果は、Bi
0.80Sr1.00Ca0.74Cu1.55Oxであった。
The result of EPMA analysis of the composition of the obtained thin film was Bi
0.80 Sr 1.00 Ca 0.74 Cu 1.55 O x .

これらを800℃で2時間一次熱処理した後、それぞれ
二次熱処理を856℃で表−2に示す時間行い、各種C軸
配向度の異なる試料を得た。
After these were subjected to primary heat treatment at 800 ° C. for 2 hours, each was subjected to secondary heat treatment at 856 ° C. for the time shown in Table 2 to obtain samples having various degrees of C-axis orientation.

得られた薄膜について、その臨界温度、液体窒素中で
の電流密度及び生成超伝導体中の110K級超伝導体相の割
合を測定した。
With respect to the obtained thin film, its critical temperature, current density in liquid nitrogen, and the ratio of the 110K class superconductor phase in the formed superconductor were measured.

その結果を表−2に示す。 Table 2 shows the results.

比較例3 実施例1において、二次焼成を856℃で1時間行った
以外はすべて同様に行い、得られた焼成薄膜の超伝導特
性を測定した。
Comparative Example 3 The procedure of Example 1 was repeated except that the secondary firing was performed at 856 ° C. for 1 hour, and the superconducting properties of the obtained fired thin film were measured.

結果は表−2に示す。 The results are shown in Table 2.

比較例4 基板温度を800℃に加熱し、実施例1と同様にスパッ
タリングを行い、積層薄膜を作製した。得られた薄膜の
超伝導特性を表−2に示す。
Comparative Example 4 A substrate was heated to 800 ° C., and sputtering was performed in the same manner as in Example 1 to produce a laminated thin film. Table 2 shows the superconducting properties of the obtained thin film.

〔発明の効果〕 上記実施例の結果に明らかなように、熱処理されたBi
系酸化物超伝導薄膜について、X線回折法により求めた
C軸配向度(ロッキング曲線の半値幅)が1〜10゜の範
囲内にあるものは、液体窒素温度における電流密度が数
千A/cm2以上の超伝導特性を示す優れた超伝導薄膜であ
る。従って、Bi系超伝導薄膜の製造の際、組成、熱処理
条件等の選択して、焼成によって得られる薄膜のC軸配
向度を上記範囲に収めることにより、液体窒素温度で数
千A/cm2以上の電流密度を有する超伝導薄膜を得ること
ができる。
[Effect of the Invention] As is clear from the results of the above examples, the heat-treated Bi
When the degree of C-axis orientation (half-width of the rocking curve) determined by the X-ray diffraction method is in the range of 1 to 10 °, the current density at the temperature of liquid nitrogen is several thousand A / It is an excellent superconducting thin film exhibiting superconductivity of not less than cm 2 . Therefore, when producing a Bi-based superconducting thin film, by selecting the composition, heat treatment conditions, and the like, and keeping the degree of C-axis orientation of the thin film obtained by firing within the above range, several thousand A / cm 2 at liquid nitrogen temperature. A superconducting thin film having the above current density can be obtained.

また、超伝導薄膜の超伝導特性を測定する前に、薄膜
のC軸配向度を測定することにより一次評価して、超伝
導効果の高いものを選別することができる。
Before measuring the superconducting properties of the superconducting thin film, a primary evaluation is performed by measuring the degree of C-axis orientation of the thin film to select those having a high superconducting effect.

【図面の簡単な説明】[Brief description of the drawings]

図−1は液体窒素温度での電流密度の高いBi系酸化物超
伝導薄膜の断面の粒子構造を示す走査型電子顕微鏡(SE
M)写真である。 図−2は電流密度の低い同一組成のBi系酸化物超伝導薄
膜の断面の粒子構造を示す走査型電子顕微鏡(SEM)写
真である。
Figure 1 shows a scanning electron microscope (SE) showing the cross-sectional particle structure of a Bi-based oxide superconducting thin film with a high current density at the temperature of liquid nitrogen.
M) It is a photograph. FIG. 2 is a scanning electron microscope (SEM) photograph showing the particle structure of a cross section of a Bi-based oxide superconducting thin film of the same composition having a low current density.

フロントページの続き (56)参考文献 特開 平2−55299(JP,A) 特開 平2−55228(JP,A) 特開 平3−268406(JP,A) 特開 平2−153581(JP,A) 特開 平2−188426(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 Continuation of the front page (56) References JP-A-2-55299 (JP, A) JP-A-2-55228 (JP, A) JP-A-3-268406 (JP, A) JP-A-2-153581 (JP) , A) JP-A-2-188426 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スパッタリング法、蒸着法などの物理的手
法により製造された下記の組成の酸化物超伝導体の薄膜
であって、基板の垂直方向をC軸として、超伝導粒子の
C軸の配向度が1〜10゜の範囲であることを特徴とする
Bi系酸化物超伝導薄膜。 BiaPbbSr1.00CacCudOx ここで、0.5≦a≦1.2 0 ≦b≦1.2 0.4≦c≦1.0 1.3≦d≦2.0
1. A thin film of an oxide superconductor having the following composition manufactured by a physical method such as a sputtering method or a vapor deposition method, wherein a C axis of a superconducting particle is defined as a C axis in a direction perpendicular to a substrate. Characterized in that the degree of orientation is in the range of 1 to 10 °
Bi-based oxide superconducting thin film. Bi a Pb b Sr 1.00 Ca c Cu d O x where 0.5 ≦ a ≦ 1.20 ≦ b ≦ 1.2 0.4 ≦ c ≦ 1.0 1.3 ≦ d ≦ 2.0
JP2098280A 1990-04-14 1990-04-14 Bi-based oxide superconducting thin film Expired - Lifetime JP3041529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098280A JP3041529B2 (en) 1990-04-14 1990-04-14 Bi-based oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098280A JP3041529B2 (en) 1990-04-14 1990-04-14 Bi-based oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH03295811A JPH03295811A (en) 1991-12-26
JP3041529B2 true JP3041529B2 (en) 2000-05-15

Family

ID=14215523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098280A Expired - Lifetime JP3041529B2 (en) 1990-04-14 1990-04-14 Bi-based oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP3041529B2 (en)

Also Published As

Publication number Publication date
JPH03295811A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
EP0406126B2 (en) Substrate having a superconductor layer
Pissas et al. The optimum percentage of Pb and the appropriate thermal procedure for the preparation of the 110 K Bi2-xPbxSr2Ca2Cu3Oy superconductor
US5814584A (en) Compound in the series A2 MeSbO6 for use as substrates barrier-dielectric layers and passivating layers in high critical temperature superconducting devices
US6117572A (en) YBCO epitaxial films deposited on substrate and buffer layer compounds in the system Ca2 MeSbO6 where Me=Al, Ga, Sc and In
JP3041529B2 (en) Bi-based oxide superconducting thin film
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US5049541A (en) Process for preparing superconductor
JP3038485B2 (en) Bi-based oxide superconducting thin film
US5264413A (en) Bi-Sr-Ca-Cu-O compounds and methods
EP0366510B2 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JP3219563B2 (en) Metal oxide and method for producing the same
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP3020518B2 (en) Oxide superconductor thin film
JPH02175613A (en) Production of oxide superconducting thin film
US6328942B1 (en) A4MeSb3O12 compounds for growth of epitaxial HTSC/perovskite oxide films for use in HTSC/perovskite oxide devices and microwave device structures
JP2893034B2 (en) High sensitivity magnetic sensitive element
JP3813493B2 (en) Composite board
JP3787613B2 (en) High-temperature superconducting copper oxide excellent in critical current density characteristics and / or irreversible magnetic field characteristics, and high-temperature superconducting material containing the high-temperature superconducting copper oxide
Hato et al. High T/sub c/superconducting thin films prepared by flash evaporation
JPH08208229A (en) Bismuth superconductor element
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPH06157041A (en) Lead complex copper oxide material
JP2003059352A (en) High-temperature superconductor film having flat surface
JP2814404B2 (en) Heat treatment method for superconducting thin film