JPH0822792B2 - Method for forming protective film of superconducting thin film - Google Patents
Method for forming protective film of superconducting thin filmInfo
- Publication number
- JPH0822792B2 JPH0822792B2 JP63136537A JP13653788A JPH0822792B2 JP H0822792 B2 JPH0822792 B2 JP H0822792B2 JP 63136537 A JP63136537 A JP 63136537A JP 13653788 A JP13653788 A JP 13653788A JP H0822792 B2 JPH0822792 B2 JP H0822792B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- superconducting thin
- superconducting
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 38
- 239000010408 film Substances 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 25
- 230000001681 protective effect Effects 0.000 title claims description 8
- 229920005989 resin Polymers 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 239000004645 polyester resin Substances 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 239000002887 superconductor Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910002480 Cu-O Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- ZDCHZHDOCCIZIY-UHFFFAOYSA-N phthalic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.OC(=O)C1=CC=CC=C1C(O)=O ZDCHZHDOCCIZIY-UHFFFAOYSA-N 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 (イ)技術分野 本発明は、超伝導薄膜を保護するための保護膜の成膜
方法に関するものである。TECHNICAL FIELD The present invention relates to a method for forming a protective film for protecting a superconducting thin film.
(ロ)従来技術 超伝導薄膜を形成するためには、超伝導になる組成膜
を基板上に形成しなければならない。(B) Prior Art In order to form a superconducting thin film, a composition film that becomes superconducting must be formed on a substrate.
従来、臨界温度の最も高い超伝導材料としては、A−
15型結晶構造のNb3Ceであったが、その後K2NiF4型の(L
aBa)2CuO4が臨界温度30Kを達成することにより、更に
高い臨界温度を得るためのターゲットは金属間化合物か
らペロブスカイト系結晶構造の酸化物に移行し、さらに
近年になって、斜方結晶のY1Ba2Cu3O7−xやBi2Sr2Ca2C
u3O10−x,Tl2Ba2Ca2Cu3O10−xが液体窒素の温度を超え
る臨界温度90Kを得られるようになった。Conventionally, as a superconducting material having the highest critical temperature, A-
It was Nb 3 Ce with a 15-type crystal structure, but was subsequently replaced with K 2 NiF 4 -type (L
aBa) 2 CuO 4 has achieved a critical temperature of 30 K, the target for obtaining a higher critical temperature has shifted from intermetallic compounds to oxides with a perovskite crystal structure. Y 1 Ba 2 Cu 3 O 7- x and Bi 2 Sr 2 Ca 2 C
u 3 O 10 −x and Tl 2 Ba 2 Ca 2 Cu 3 O 10 −x can now obtain a critical temperature of 90 K, which exceeds the temperature of liquid nitrogen.
しかしながら、Y1Ba2Cu3O7−x等の高臨界温度の超伝
導材料に超伝導特性(臨界磁界や臨界電流密度)を充分
に発揮させるためには、未だ多くの解決しなけれならな
い問題点がある。However, there are still many problems to be solved in order to make the superconducting materials (such as Y 1 Ba 2 Cu 3 O 7 -x) with high critical temperature have sufficient superconducting properties (critical magnetic field and critical current density). There is a point.
その対策の一つとして、付加価値の高い薄膜材料が重
要性を増して来ており、その理由として次の3点が考え
られる。As one of the countermeasures, high value-added thin film materials are becoming more important, and the following three points can be considered as the reasons.
第1は、超伝導体の利用形態と加工技術に基づくもの
で、超伝導薄膜が微細加工が必要なジョセフソン素子な
どのエレクトロニクス材料として用いられるようになっ
て来たことであり、そのため超伝導体間の弱結合を作り
易く、微細加工が容易で、高集積化,省資源,低コスト
化につながる薄膜としての利用が重要となってきたので
ある。The first is based on the usage pattern and processing technology of superconductors, and superconducting thin films have come to be used as electronic materials such as Josephson devices that require fine processing. It has become important to use it as a thin film that facilitates weak bonding between bodies, facilitates fine processing, and leads to high integration, resource saving, and cost reduction.
第2は、薄膜形成技術そのものと、高臨界温度(Tc)
の超伝導体特有の性質によるものであり、また第3は超
伝導体本来の性質に基づくもので、その本来の特性を発
揮できる空間的な最小単位であるコヒーレンスの長さが
5〜1000mmであること、また超伝導体が完全反磁性であ
るため、超伝導電流が10〜200mm程度の磁場侵入深さに
相当する厚さの表面層のみに流れることである。Secondly, the thin film formation technology itself and high critical temperature (Tc)
Is due to the peculiar properties of superconductors, and the third is due to the peculiar properties of superconductors, where the coherence length, which is the minimum spatial unit capable of exhibiting the peculiar properties, is 5 to 1000 mm. Since the superconductor is completely diamagnetic, the superconducting current flows only in the surface layer having a thickness corresponding to a magnetic field penetration depth of about 10 to 200 mm.
超伝導体薄膜形成法としては、スパッタリング法,蒸
着法及びCVD(化学蒸着)法等があって、超伝導薄膜の
特性や利用形態により使い分けられている。As a superconductor thin film forming method, there are a sputtering method, a vapor deposition method, a CVD (chemical vapor deposition) method, and the like, which are properly used depending on the characteristics and the usage form of the superconductor thin film.
Y−Ba−Cu−O系超伝導体の場合、Y,Ba,Cuの金属を
基板に各々蒸着させることにより、基板上にY,Ba,Cuが
各々1:2:3の組成の金属を成膜させる。これを空気又は
酸素中で加熱処理してY1Ba2Cu3O7−xの超伝導薄膜を形
成する方法がある。In the case of a Y-Ba-Cu-O-based superconductor, Y, Ba, and Cu are vapor-deposited on a substrate, respectively, so that Y, Ba, and Cu each have a composition of 1: 2: 3. Form a film. There is a method of heat-treating this in air or oxygen to form a Y 1 Ba 2 Cu 3 O 7 -x superconducting thin film.
また、それ以外の方法として、直接蒸着過程で酸素を
導入して酸化膜を形成することもできるが、該法は通常
スパッタリング法で成膜する場合に適用される。As another method, an oxide film can be formed by directly introducing oxygen in the vapor deposition process, but this method is usually applied when forming a film by a sputtering method.
更に他法として、Y,Ba,Cuの酸化物を各々スパッタリ
ングして、基板上にこれらの金属がそれぞれ1:2:3の組
成膜を形成させる方法と、Y,Ba,Cuの酸化物の合成した
ターゲットを用いて同様に1:2:3の組成膜を形成させる
方法等がある。As yet another method, a method of forming oxides of Y, Ba, and Cu by sputtering oxides of Y, Ba, and Cu, respectively, and forming a composition film of these metals on the substrate in a ratio of 1: 2: 3, respectively. Similarly, there is a method of forming a 1: 2: 3 composition film using the synthesized target.
上記のような方法で形成した薄膜は、一般的にアモル
ファスであるので、上記金属が1:2:3のY1Ba2Cu3O7−x
の結晶ができていない。従って、成膜後に結晶化させる
必要がある。Since the thin film formed by the above method is generally amorphous, the above metal has a ratio of 1: 2: 3 Y 1 Ba 2 Cu 3 O 7 -x.
No crystals have been made. Therefore, it is necessary to crystallize after film formation.
なお、成膜法としては、上記スパッタリング法や蒸着
法以外に、イオンビーム法やイオンクラスタービーム法
もあるが、基本的には同様である。As the film forming method, there are an ion beam method and an ion cluster beam method in addition to the above-mentioned sputtering method and vapor deposition method, but basically the same.
従って、通常は基板を約700℃程度に保持し、そこに
スパッタリング法でY,Ba,Cuを各々1:2:3の組成で膜を成
膜し、該基板上に順次にY1Ba2Cu3O7−xの結晶を形成さ
せる方法、あるいはY,Ba,Cuが各々1:2:3の組成膜を形成
させた基板を約600〜900℃の温度で空気或あるいは酸素
雰囲気中でアニールし、そのアモルファスの組成膜を結
晶化させて超伝導薄膜を形成する方法が採られている。Therefore, normally, the substrate is kept at about 700 ° C., a film of Y, Ba, and Cu is formed thereon with a composition of 1: 2: 3 by a sputtering method, and Y 1 Ba 2 is sequentially formed on the substrate. A method of forming a Cu 3 O 7 -x crystal, or a substrate on which a composition film of Y, Ba, and Cu of 1: 2: 3 is formed at a temperature of about 600 to 900 ° C in an air or oxygen atmosphere. A method of forming a superconducting thin film by annealing and crystallizing the amorphous composition film is adopted.
上記のように、超伝導薄膜を形成するにはY−Ba−Cu
−O系の超伝導材料であれば、その組成比になるような
組成膜の成膜と該組成膜の結晶化という2種のプロセス
が必要となる。As described above, Y-Ba-Cu is used to form a superconducting thin film.
In the case of a —O-based superconducting material, two types of processes are required: forming a composition film having the composition ratio and crystallizing the composition film.
しかしながら、Y1Ba2Cu3O7−x超伝導薄膜は、水や二
酸化炭素と反応し易く、不安定であり、室温で空気中に
放置しても超伝導特性が劣化してしまう欠点があり、そ
の対策が種々と研究されているが、未だその解決方法は
見当らないのが実情である。However, the Y 1 Ba 2 Cu 3 O 7 -x superconducting thin film has a drawback that it easily reacts with water and carbon dioxide and is unstable, and its superconducting property deteriorates even if left in the air at room temperature. However, various countermeasures have been studied, but the reality is that no solution has been found yet.
また、Bi−Sr−Ca−Cu−O系,Tl−Ba−Ca−Cu−O系
の超伝導薄膜も比較的に化学的安定性は向上しているも
のの、同様の問題がある。Further, although the Bi-Sr-Ca-Cu-O-based and Tl-Ba-Ca-Cu-O-based superconducting thin films have relatively improved chemical stability, they have the same problem.
(ハ)発明の開示 本発明は、上記のような欠点を解決するものであり、
超伝導組成膜をアニール処理し、超伝導薄膜を形成した
もの又は単結晶エピタキシャル成長させて形成した超伝
導薄膜の表面に紫外線硬化型や熱硬化型等の硬化型樹脂
でコートし、その後硬化させることにより、該薄膜表面
に保護膜を形成させて超伝導薄膜を保護し、安定化させ
る方法を提供するものである。(C) Disclosure of the Invention The present invention is to solve the above-mentioned drawbacks,
Annealing the superconducting composition film, coating the surface of the superconducting thin film formed by superconducting thin film or single crystal epitaxial growth with a curable resin such as UV curable or thermosetting type, and then curing Thus, a method for forming a protective film on the surface of the thin film to protect and stabilize the superconducting thin film is provided.
即ち、本発明は基板表面に形成された超伝導薄膜の表
面を硬化型樹脂で被覆した後、該樹脂膜を硬化させるこ
とを特徴とする超伝導薄膜の保護膜形成方法である。That is, the present invention is a method for forming a protective film for a superconducting thin film, which comprises coating the surface of a superconducting thin film formed on a substrate surface with a curable resin and then curing the resin film.
本発明法によれば、スパッタリング装置でY−Ba−Cu
−O系ターゲットを用いて基板上に超伝導組成膜を成膜
させた後、アニールして超伝導薄膜を形成させ、該薄膜
表面に紫外線硬化型や熱硬化型等の硬化型樹脂をコート
した後硬化させて保護膜を形成させることにより、超伝
導薄膜を水や二酸化炭素から遮蔽して保護することがで
きるのである。According to the method of the present invention, Y-Ba-Cu is used in a sputtering apparatus.
After forming a superconducting composition film on a substrate using a -O target, annealing is performed to form a superconducting thin film, and the thin film surface is coated with a curable resin such as an ultraviolet curable type or a thermosetting type. By post-curing to form a protective film, the superconducting thin film can be protected by being shielded from water and carbon dioxide.
また、Y−Ba−Cu−O系ターゲットを用いてMgO単結
晶基板を600〜700℃に加熱保持し、該基板上にY1Ba2Cu3
O7−xをエピタキシャル成長させて成膜した後に、熱硬
化型や紫外線硬化型等の硬化型樹脂をコートした後硬化
させて保護膜を形成させることにより、超伝導薄膜を水
や二酸化炭素から遮蔽して保護することもできるのであ
る。Further, a MgO single crystal substrate was heated and held at 600 to 700 ° C. using a Y—Ba—Cu—O target, and Y 1 Ba 2 Cu 3 was deposited on the substrate.
Shields the superconducting thin film from water and carbon dioxide by forming a protective film by coating a thermosetting or UV-curable curable resin after the film is grown by epitaxial growth of O 7 -x and then cured. It can also be protected.
このような効果は、他の酸化物系超伝導体例えばBi2S
r2Ca2Cu3O10−x,Tl2Ba2Ca2Cu3O10−xの薄膜も同じであ
る。This effect is achieved by using other oxide-based superconductors such as Bi 2 S.
r 2 Ca 2 Cu 3 O 10 -x, a thin film of Tl 2 Ba 2 Ca 2 Cu 3 O 10 -x is the same.
上記熱硬化型樹脂としては、フェノールホルムアルデ
ヒド樹脂,尿素樹脂,グリセリンフタール酸樹脂,フラ
ン樹脂,エポキシ樹脂のように熱によって重合物の重合
度が高まり硬化する熱硬化性重合物が使用され、また紫
外線硬化型樹脂としては、アクリル化ポリウレタン,ポ
リエステル樹脂,ポリエステルアクリレート,アクリル
化シリコン樹脂のように紫外線照射によって重合物の重
合度が高まり硬化する樹脂が用いられる。As the thermosetting resin, a thermosetting polymer such as a phenol formaldehyde resin, a urea resin, a glycerin phthalic acid resin, a furan resin or an epoxy resin, which is hardened by heat to increase the degree of polymerization of the polymer, is used. As the ultraviolet curable resin, a resin such as an acrylated polyurethane, a polyester resin, a polyester acrylate, or an acrylated silicone resin, which is cured by increasing the degree of polymerization of a polymer by ultraviolet irradiation, is used.
コートはスピンコートをはじめ、超伝導薄膜表面に膜
厚2〜3μmに上記樹脂を塗布できればよく、その後加
熱(室温を含む)あるいは紫外線照射により硬化させる
ことができればよいのである。It suffices for the coating to be spin coating, as long as the resin can be applied to the surface of the superconducting thin film to a film thickness of 2 to 3 μm, and then to be cured by heating (including room temperature) or irradiation with ultraviolet rays.
なお、本発明法はY−Ba−Cu−O系,Bi−Sr−Ca−Cu
−O系,Tl−Ba−Ca−Cu−O系の超伝導薄膜のみなら
ず、スパッタリング法,蒸着法,CVD法等により成膜され
る超伝導薄膜のすべてに適用できることは勿論であり、
超伝導薄膜が水や二酸化炭素と反応して、その特性が劣
化することを完全に防止でき、かつ悪影響を及ぼすこと
もないのである。The method of the present invention is based on Y-Ba-Cu-O system, Bi-Sr-Ca-Cu.
Needless to say, the present invention can be applied not only to -O-based and Tl-Ba-Ca-Cu-O-based superconducting thin films, but also to all superconducting thin films formed by sputtering, vapor deposition, CVD, etc.
It is possible to completely prevent the superconducting thin film from reacting with water or carbon dioxide to deteriorate its characteristics, and to prevent adverse effects.
次に、本発明を実施例によって説明する。 Next, the present invention will be described with reference to examples.
(ニ)実施例 実施例−1 SrTiO3の単結晶基板上にAr:O2が3:1の雰囲気で全圧4
×10-3torr(mmHg)下で該基板温度を650℃に保持し、
Y−Ba−Cu−O系ターゲットを使用し、スパッタリング
してY1Ba2Cu3O7−xの超伝導薄膜を2μm成膜した。(D) Example Example-1 At a total pressure of 4 in an atmosphere of Ar: O 2 of 3: 1 on a SrTiO 3 single crystal substrate.
Hold the substrate temperature at 650 ° C under × 10 -3 torr (mmHg),
Using a Y-Ba-Cu-O target, sputtering was performed to form a Y 1 Ba 2 Cu 3 O 7 -x superconducting thin film of 2 μm.
該超伝導薄膜表面に紫外線硬化型樹脂として大日本イ
ンキ(株)製「ユニディック17−824−9」(商品名)
を塗布し、その膜厚を2.5μmとした後、紫外線を照射
して硬化させた。"Unidick 17-824-9" (trade name) manufactured by Dainippon Ink Co., Ltd. as an ultraviolet curable resin on the surface of the superconducting thin film
Was applied, and the film thickness was adjusted to 2.5 μm.
これを100℃の水に2分間漬けた後、超伝導特性(Tc
測定等)を調べた結果、全く劣化は認められなかった。
また、変色等も全く認められなかった。Soak this in water at 100 ℃ for 2 minutes, and then
As a result of examining (measurement etc.), no deterioration was observed.
In addition, discoloration was not observed at all.
実施例−2 MgOの単結晶基板上に雰囲気Ar:O2=3:1,全圧4×10-3
torrの条件下で、該基板温度を100℃に保持しながらY
−Ba−Cu−O系ターゲットを用いて、Y1Ba2Cu3O7−xの
組成膜をスパッタリング法で膜厚を2μmに成膜した。Example-2 Atmosphere Ar: O 2 = 3: 1, total pressure 4 × 10 −3 on a single crystal substrate of MgO.
Under the condition of torr, while maintaining the substrate temperature at 100 ° C, Y
A composition film of Y 1 Ba 2 Cu 3 O 7 -x was formed into a film having a thickness of 2 μm by a sputtering method using a —Ba—Cu—O target.
該超伝導薄膜を850℃で3時間アニールし、更に600℃
で5時間処理した後、熱硬化型のエポキシ樹脂を2.5μ
m塗布し、室温硬化させた。The superconducting thin film is annealed at 850 ° C for 3 hours, and then 600 ° C.
After heat treatment for 5 hours, thermosetting epoxy resin 2.5μ
m, and cured at room temperature.
これを100℃で2分間水につけた後、超伝導特性を調
べたが、特性変化および変色変化は全く認められなかっ
た。After soaking it in water at 100 ° C. for 2 minutes, the superconducting properties were examined, but no change in properties and no change in discoloration were observed.
比較例−1 上記実施例1と同様にして成膜したY1Ba2Cu3O7−x超
伝導薄膜について、紫外線硬化型樹脂の保護膜を成膜す
ることなく、実施例1と同様に100℃で2分間水につけ
た後、超伝導特性を調べたところ、変色して、著しく特
性劣化していた。Comparative Example-1 A Y 1 Ba 2 Cu 3 O 7 -x superconducting thin film formed in the same manner as in Example 1 was processed in the same manner as in Example 1 without forming a protective film of an ultraviolet curable resin. After being immersed in water at 100 ° C. for 2 minutes, the superconducting property was examined. As a result, the color changed and the properties were remarkably deteriorated.
(ホ)発明の効果 本発明法は、上記のように超伝導薄膜表面に有機系硬
化膜、特に紫外線硬化性樹脂あるいは熱硬化性樹脂をコ
ートして硬化させることにより、水や空気中の二酸化炭
素等と反応して超伝導特性が劣化するのを完全に防止す
ることができる効果がある。(E) Effect of the Invention According to the method of the present invention, as described above, the surface of the superconducting thin film is coated with an organic cured film, particularly an ultraviolet curable resin or a thermosetting resin, and cured to remove carbon dioxide in water or air. There is an effect that it is possible to completely prevent deterioration of superconducting properties due to reaction with carbon or the like.
Claims (1)
形成し、該超伝導薄膜表面にアクリル化ポリウレタン、
ポリエステル樹脂、ポリエステルアクリレート、アクリ
ル化シリコン樹脂等の紫外線硬化型樹脂のうちから選ば
れる少なくとも一種を厚さ3μm以下被覆した後、該樹
脂膜を紫外線照射により硬化させることを特徴とする超
伝導薄膜の保護膜形成方法。1. A superconducting thin film having a thickness of 2 μm or less is formed on the surface of a substrate, and acrylated polyurethane is formed on the surface of the superconducting thin film.
A superconducting thin film, characterized in that after coating at least one selected from ultraviolet curable resins such as polyester resin, polyester acrylate, and acrylated silicon resin to a thickness of 3 μm or less, the resin film is cured by ultraviolet irradiation. Protective film forming method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136537A JPH0822792B2 (en) | 1988-06-02 | 1988-06-02 | Method for forming protective film of superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136537A JPH0822792B2 (en) | 1988-06-02 | 1988-06-02 | Method for forming protective film of superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01305880A JPH01305880A (en) | 1989-12-11 |
JPH0822792B2 true JPH0822792B2 (en) | 1996-03-06 |
Family
ID=15177507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63136537A Expired - Fee Related JPH0822792B2 (en) | 1988-06-02 | 1988-06-02 | Method for forming protective film of superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0822792B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2645730B2 (en) * | 1987-07-27 | 1997-08-25 | 住友電気工業株式会社 | Superconducting thin film |
CN117467177B (en) * | 2023-10-31 | 2024-09-24 | 江苏众立生包装科技有限公司 | Preparation method of superconductor composite film based on normal temperature state transfer, film and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS643914A (en) * | 1987-06-26 | 1989-01-09 | Tdk Corp | Superconductive oxide ceramic material |
JPH01126284A (en) * | 1987-11-10 | 1989-05-18 | Ube Ind Ltd | Stabilized ceramics superconductive at high temperature |
-
1988
- 1988-06-02 JP JP63136537A patent/JPH0822792B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01305880A (en) | 1989-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5021398A (en) | Method of forming patterned oxide superconducting films | |
US4880770A (en) | Metalorganic deposition process for preparing superconducting oxide films | |
JP2711253B2 (en) | Superconducting film and method for forming the same | |
US4988674A (en) | Electrically conductive articles and processes for their fabrication | |
US5330966A (en) | Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films | |
JPH0822792B2 (en) | Method for forming protective film of superconducting thin film | |
CA1309904C (en) | Method of producing a superconductive oxide layer on a substrate | |
US5070072A (en) | Conductive articles and processes for their preparation | |
JP2969273B2 (en) | Surface stabilization method for oxide superconducting bulk | |
Sathyamurthy et al. | Solution deposition approach to high J/sub c/coated conductor fabrication | |
JP3038758B2 (en) | Method for producing oxide superconducting thin film | |
JP2715667B2 (en) | Apparatus for producing oxide superconducting thin film and method for producing oxide superconducting single crystal thin film | |
JPH0524806A (en) | Oxide superconductor | |
JP2821885B2 (en) | Superconducting thin film forming method | |
JPS63298922A (en) | Manufacture of superconductive wire material | |
JPH0669561A (en) | Semiconductor device and its manufacture | |
JPH0297420A (en) | Production of high temperature superconducting thin film | |
JPS63289725A (en) | Manufacture of compound superconductive thin film | |
JPH01170073A (en) | Semiconductor substrate provided with superconductor layer | |
JP2003073809A (en) | Method for protecting oxide superconductor | |
JPH01170078A (en) | Semiconductor substrate provided with superconductor layer | |
JPH01249607A (en) | Production of oxide superconducting film | |
JPH0753639B2 (en) | Method for producing thin film made of oxide superconducting material | |
JPS63248019A (en) | Manufacture of oxide superconductive thin film | |
JPH02133304A (en) | Production of oxide superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |