JPS63276824A - Manufacturing of high-temperature superconducting film - Google Patents
Manufacturing of high-temperature superconducting filmInfo
- Publication number
- JPS63276824A JPS63276824A JP62110508A JP11050887A JPS63276824A JP S63276824 A JPS63276824 A JP S63276824A JP 62110508 A JP62110508 A JP 62110508A JP 11050887 A JP11050887 A JP 11050887A JP S63276824 A JPS63276824 A JP S63276824A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- thin film
- oxygen
- gas atmosphere
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims abstract description 13
- 239000010409 thin film Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 abstract description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 10
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000001704 evaporation Methods 0.000 abstract description 2
- 229910002561 K2NiF4 Inorganic materials 0.000 abstract 2
- 238000000151 deposition Methods 0.000 abstract 2
- -1 Cu and the like Chemical class 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 230000007704 transition Effects 0.000 abstract 1
- 150000003624 transition metals Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は超電導材料に係り、特に電子・電気機器素子に
好適な高温超電導薄膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to superconducting materials, and particularly to a method for producing a high-temperature superconducting thin film suitable for electronic and electrical device elements.
これまで超電導を示す材料はN b 、 P b 、
N b sSn、Nb3Ge等に代表されるように、そ
の臨界温度Tcは高々25に以下であった。しかし、最
近、Ba−La−Ca−0,5r−La−CuO* B
a−Y−Cu O等で液体窒素温度77に以上の高
臨界温度を示す材料が発見されるに及び、その研究開発
が活発化している(例えば、フィジカル レビュー レ
ター(Phys、 Rev、 Lett、)58巻40
5 (1987)’)。So far, materials that exhibit superconductivity include N b , P b ,
As represented by Nb sSn, Nb3Ge, etc., the critical temperature Tc was at most 25 or less. However, recently, Ba-La-Ca-0,5r-La-CuO*B
With the discovery of materials such as a-Y-CuO that exhibit a high critical temperature of 77 or higher than the liquid nitrogen temperature, research and development of these materials has become active (for example, Physical Review Letters (Phys, Rev. Lett.) Volume 58 40
5 (1987)').
しかし、]二記高温超電導材料はほとんどが、粉末冶金
法で作製された焼結体であり、しかも空気中、あるいは
酸素ガス圧の低いガス雰囲気中で焼結されていた。However, most of the high temperature superconducting materials mentioned above are sintered bodies produced by powder metallurgy, and moreover, they are sintered in air or in a gas atmosphere with low oxygen gas pressure.
本発明の目的は電子・電気機器応用に最適な高温臨界温
度を有する高温超電導薄膜を提供することにある。An object of the present invention is to provide a high-temperature superconducting thin film having a high critical temperature that is optimal for electronic and electrical equipment applications.
」−記目的はペロブスカイトあるいはに3NiFn型の
構造に類似構造の組成式AxB、02の薄膜(ここで、
AはBa、Sr、Ra、Se、Y、La及び他の希土類
元素から選ばれた少なくとも2種以上の元素、BがCu
等の遷移金属元素の少なくとも1種以上の元素で、x=
1〜2*y=1pz=3〜4)を少なくとも酸素ガスを
10%以上含むガス雰囲気中でスパッタ法あるいは蒸着
法で作製し、該薄膜を少なくとも酸素を50%以上含む
ガス中で、該ガス圧を2気圧以−1−に保持しながら熱
処理することにより、達成される。” - The purpose of the description is to create a thin film with the composition formula AxB, 02 (here,
A is at least two or more elements selected from Ba, Sr, Ra, Se, Y, La and other rare earth elements, and B is Cu
At least one or more transition metal elements such as x=
1-2*y=1pz=3-4) by sputtering or vapor deposition in a gas atmosphere containing at least 10% or more oxygen gas, and then forming the thin film in a gas containing at least 50% oxygen. This is achieved by heat treatment while maintaining the pressure at 2 atmospheres or more.
高温超電導を示すセラミックス材料は含有酸素量が少な
いと超電導を示さないため、少なくとも50“A以−1
−の酸素ガスを含むガス雰囲気中でスパッタあるいは蒸
着する必要がある。この時基板温度を500℃以−t、
z 900℃以下にすると、作製した状態で構造が斜方
晶の超電導構造を示す組織になり超電導を示す。さらに
、常電導から超電導に変化する温度範囲を小さくして良
好な高温超電導材を得るには、少なくとも50%以−1
,の酸素ガスを含むガス雰囲気中で、全ガス圧を2気圧
以」二にして、蒸気圧の高いCu O等の蒸発による減
少を抑え、その時熱処理温度を600℃以lx 100
0℃以下にすることにより斜方晶のペロブスカイト構造
である超電導を示す和の単相膜を作ることが出来る。Ceramic materials that exhibit high-temperature superconductivity do not exhibit superconductivity if the amount of oxygen they contain is small;
- It is necessary to perform sputtering or vapor deposition in a gas atmosphere containing oxygen gas. At this time, the substrate temperature was set at 500℃ or higher.
z When the temperature is 900° C. or less, the fabricated structure becomes an orthorhombic superconducting structure and exhibits superconductivity. Furthermore, in order to obtain a good high-temperature superconducting material by reducing the temperature range in which normal conductivity changes to superconductivity, at least 50% -1
, in a gas atmosphere containing oxygen gas, the total gas pressure is set to 2 atm or more to suppress the reduction due to evaporation of CuO, etc., which has a high vapor pressure, and the heat treatment temperature is set to 600 ° C or more lx 100.
By keeping the temperature below 0° C., a single-phase film having an orthorhombic perovskite structure and exhibiting superconductivity can be produced.
以下本発明の一実施例を説明する。 An embodiment of the present invention will be described below.
ターゲットには怪100mmの(Lal+、n5ro2
)zCu o4−X、 (B aO,7yo、3)Cu
03 x等の粉末焼結体ターゲラ1−を用いた。マグ
ネトロン高周波スパッタ装置を用いAr+10%02ガ
スを用い。The target is a mysterious 100mm (Lal+, n5ro2
)zCu o4-X, (BaO,7yo, 3)Cu
A powder sintered body Targera 1- such as 03x was used. Ar+10% 02 gas was used using a magnetron high frequency sputtering device.
全圧5〜50 mTorr 、投入電力100〜200
W、基板温度は室温〜1000”Cの条件下で、基板に
SL、Al、O,、Sin、ZrO2,S rTi03
等を用いて、膜厚/μmの薄膜を作製した。基板温度を
500℃以上にすると結晶質の超電導薄膜が得られた。Total pressure 5-50 mTorr, input power 100-200
SL, Al, O,, Sin, ZrO2, S rTi03 on the substrate under conditions of W, substrate temperature from room temperature to 1000''C.
A thin film with a film thickness/μm was prepared using the following methods. A crystalline superconducting thin film was obtained when the substrate temperature was increased to 500° C. or higher.
基板温度1000℃以上とすると膜中のCuが偏析した
り、少なくなったりして超電導膜が得られない。基板温
度900℃よりも低い温度で作製した膜は、全圧2気圧
以上の酸素ガス雰囲気中で600℃〜1000℃2〜2
4時間の熱処理を行なった。空気中で熱処理を行なった
膜は超電導を示さず、また多くの場合膜は粉々に剥離し
てしまった作製された代表的な(Lao、aS ro、
z)2c u 04−xt (B ao )Yo、
3)Cu 0s−x膜をそれぞれ800℃でAr+Oz
ガス雰囲気で全圧を2気圧一定として酸素分圧を変えて
10時間熱処理した時の電気伝導度と温度曲線を第1図
、第2図にそれぞれ示す。図から明らかな如く、熱処理
の酸素ガス分圧は少なくとも全圧に対して50%以上必
要であることが分かる。If the substrate temperature is 1000° C. or higher, Cu in the film segregates or decreases, making it impossible to obtain a superconducting film. Films prepared at a temperature lower than the substrate temperature of 900°C are heated at 600°C to 1000°C in an oxygen gas atmosphere with a total pressure of 2 atm or more.
Heat treatment was performed for 4 hours. Films heat-treated in air do not exhibit superconductivity, and in many cases the films peel off into pieces.
z)2c u 04-xt (B ao )Yo,
3) Cu 0s-x films were treated with Ar+Oz at 800°C.
Figures 1 and 2 show the electrical conductivity and temperature curves obtained when heat treatment was performed in a gas atmosphere for 10 hours with the total pressure kept constant at 2 atmospheres and the oxygen partial pressure varied. As is clear from the figure, the partial pressure of oxygen gas in the heat treatment is required to be at least 50% or more of the total pressure.
第3図には、A r + 10%ガス雰囲気中で、基板
温度だけを変化させて作製した膜の電気型導度と温度曲
線を示す。図より、超電導を示す膜を得るには基板温度
は500℃以J−900℃以下にする必要があることが
分かる。FIG. 3 shows the electrical type conductivity and temperature curves of films fabricated in an Ar + 10% gas atmosphere by changing only the substrate temperature. From the figure, it can be seen that in order to obtain a film exhibiting superconductivity, the substrate temperature needs to be between 500°C and J-900°C.
また、前述したベロジスカイ1〜或いはに2NiF4型
の構造に類似の構造の組成式AxByO□の薄膜製造に
本発明の構成が有用であった。Further, the configuration of the present invention was useful for producing a thin film having a compositional formula of AxByO□ and having a structure similar to that of the Velodisky 1 to 2NiF4 type described above.
要するに1本発明は下記の通りである。In short, one aspect of the present invention is as follows.
組成式がAxB、02で示され、」〕記AがBa。The compositional formula is shown by AxB, 02, and A is Ba.
Sr、Ra、Sc、Y、La及び他の希土類元、+3か
ら選ばれた少なくとも2種以]二の元素、上記13がC
u等の遷移金属元素の少なくとも1種以」二の元素で、
x = 1〜2 、 y = 1 、7. = 3〜4
を満足するペロブスカイトあるいはに2Nil’4型に
類似した構造を有する無機セラミックス材をスパッタ法
あるいは蒸着法で作成し、その役牛なくとも2気圧以上
の酸素中あるいは50ヅ)以1−の酸素を含む混合ガス
雰囲気中で600°C以上1000℃以上で熱処理する
ことを特徴とする高温超電導薄膜の製造方法。At least two or more elements selected from Sr, Ra, Sc, Y, La, and other rare earth elements, +3, and 13 above is C
At least one or more transition metal elements such as u,
x = 1-2, y = 1, 7. = 3~4
An inorganic ceramic material having a structure similar to perovskite or 2Nil'4 type that satisfies 1. A method for producing a high-temperature superconducting thin film, comprising heat treatment at 600° C. or higher and 1000° C. or higher in a mixed gas atmosphere containing the same.
以−1−の−に記説明からなるように、本発明の製造法
を用いることにより、高品質の高温超電導薄膜を作製す
ることが出来る。As explained in -1- below, by using the production method of the present invention, a high-quality high-temperature superconducting thin film can be produced.
第1図は(L ao、ss ro、s+)zc u 0
4−Xスパッタ膜を種々の酸素ガス分圧で800℃、1
0時間熱処理した時の電気伝導度の温度依存性を示す線
図、第2図は(B a(1,7Yo、3)Cu 03−
Xスパッタ膜を種々の酸素ガス分圧で800’C15時
間熱処理した時の電気伝導度の温度依存性を示す線図、
第3図は(L a(1,BS ro、z)zCu○4.
、Xスパッタ膜を種々の基板温度で作製した膜の電気伝
導度の温度依存性を示す線図である。
1、.4=#kr+5%02.2 、5− A r +
20%02、3 + 6 ・・・A r + 50%
02or純酸素、7・・・500℃、8・・・1200
℃、9・・・600℃、10・・・900℃。
第7図
藻崖T(X)
纂3国
7・・−IIρと
F −−−/、2ρθ2
ヲー・ 2ρt′c
lρ−F〃’c、−Figure 1 shows (L ao, ss ro, s+)zc u 0
The 4-X sputtered film was grown at 800°C at various oxygen gas partial pressures for 1
Figure 2 is a diagram showing the temperature dependence of electrical conductivity when heat treated for 0 hours.
A diagram showing the temperature dependence of electrical conductivity when an X-sputtered film is heat-treated at 800'C for 15 hours at various oxygen gas partial pressures,
Figure 3 shows (La(1, BS ro, z)zCu○4.
, is a diagram showing the temperature dependence of electrical conductivity of X-sputtered films produced at various substrate temperatures. 1. 4=#kr+5%02.2, 5-A r +
20%02, 3 + 6...A r + 50%
02or pure oxygen, 7...500℃, 8...1200
℃, 9...600℃, 10...900℃. Figure 7 Mogai T (X) 纂3国7...-IIρ and F ---/, 2ρθ2 wo-2ρt'c lρ-F〃'c, -
Claims (1)
a、Sr、Ra、Sc、Y、La及び他の希土類元素か
ら選ばれた少なくとも2種以上の元素、上記BがCu等
の遷移金属元素の少なくとも1種以上の元素で、x=1
〜2、y=1、z=3〜4を満足するペロブスカイトあ
るいはK_2NiF_4型に類似した構造を有する無機
セラミックス材料をスパッタ法あるいは蒸着法で作製し
、その後少なくとも2気圧以上の酸素中あるいは50%
以上の酸素を含む混合ガス雰囲気中で600℃以上10
00℃以下で熱処理することを特徴とする高温超電導薄
膜の製造方法。 2、前記スパッタあるいは蒸着を、少なくとも10%以
上の酸素を含むガス雰囲気中で行なうことを特徴とする
特許請求の範囲第1項記載の高温超電導薄膜の製造方法
。 3、前記スパッタあるいは蒸着で、基板温度を、500
℃〜900℃に保持して行なうことを特徴とする特許請
求の範囲第1項記載の高温超電導薄膜の製造方法。[Claims] 1. The compositional formula is represented by A_xB_yO_z, and the above A is B.
a, at least two or more elements selected from Sr, Ra, Sc, Y, La and other rare earth elements, B is at least one or more transition metal elements such as Cu, and x = 1
~2, y = 1, z = 3 ~ 4 An inorganic ceramic material having a structure similar to perovskite or K_2NiF_4 type is produced by sputtering or vapor deposition, and then exposed to oxygen at at least 2 atmospheres or more or 50%
600℃ or higher in a mixed gas atmosphere containing oxygen or higher than 10℃
1. A method for producing a high-temperature superconducting thin film, characterized by heat treatment at a temperature of 00°C or lower. 2. The method for producing a high-temperature superconducting thin film according to claim 1, wherein the sputtering or vapor deposition is performed in a gas atmosphere containing at least 10% oxygen. 3. During the sputtering or vapor deposition, the substrate temperature was set to 500°C.
2. A method for producing a high-temperature superconducting thin film according to claim 1, wherein the process is carried out while maintaining the temperature between .degree. C. and 900.degree.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62110508A JPS63276824A (en) | 1987-05-08 | 1987-05-08 | Manufacturing of high-temperature superconducting film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62110508A JPS63276824A (en) | 1987-05-08 | 1987-05-08 | Manufacturing of high-temperature superconducting film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63276824A true JPS63276824A (en) | 1988-11-15 |
Family
ID=14537556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62110508A Pending JPS63276824A (en) | 1987-05-08 | 1987-05-08 | Manufacturing of high-temperature superconducting film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63276824A (en) |
-
1987
- 1987-05-08 JP JP62110508A patent/JPS63276824A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63242532A (en) | Super conductor and its manufacture | |
JPH0286014A (en) | Composite oxide superconducting thin film and film forming method | |
JPH02167820A (en) | Method for forming tl-base multiple oxide superconducting thin film | |
JPS63276824A (en) | Manufacturing of high-temperature superconducting film | |
US5462921A (en) | Method of forming Hg-containing oxide superconducting films | |
JPS63301424A (en) | Manufacture of oxide superconductor membrane | |
JPH02311396A (en) | Thin-film superconductor and its production | |
JPH02252618A (en) | Production of bi-based superconducting thin film | |
JPH02175613A (en) | Production of oxide superconducting thin film | |
JPH03275504A (en) | Oxide superconductor thin film and its production | |
JP2781331B2 (en) | Manufacturing method of thin film superconductor | |
JPH01105416A (en) | Manufacture of thin film superconductor | |
JPH01208328A (en) | Sputtering target and production of superconductor thin film | |
JPH01125878A (en) | Thin film multilayer superconductor | |
JPH0517147A (en) | Production of thin compound oxide film containing lead | |
JPH02170311A (en) | Manufacture of oxide superconductor thin film | |
JPS63307614A (en) | High-temperature oxide superconductor thin film | |
JPH06305728A (en) | Superconductor and its production | |
JPH01212215A (en) | Production of thin film of high temperature oxide superconductor | |
JPS63257127A (en) | Manufacture of thin film superconductor | |
JPH0388724A (en) | Production of bismuth-containing oxide superconducting thin film | |
JPH03197320A (en) | Production of superconductor of thin film | |
JPH01203220A (en) | Superconductor | |
JPH0492816A (en) | Production of thin-film superconductor | |
JPH07106902B2 (en) | Method of manufacturing thin film superconductor |