JPH05319828A - Production of thin film superconductor - Google Patents

Production of thin film superconductor

Info

Publication number
JPH05319828A
JPH05319828A JP4127080A JP12708092A JPH05319828A JP H05319828 A JPH05319828 A JP H05319828A JP 4127080 A JP4127080 A JP 4127080A JP 12708092 A JP12708092 A JP 12708092A JP H05319828 A JPH05319828 A JP H05319828A
Authority
JP
Japan
Prior art keywords
thin film
bismuth
layer
alkaline earth
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127080A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Kentaro Setsune
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4127080A priority Critical patent/JPH05319828A/en
Publication of JPH05319828A publication Critical patent/JPH05319828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a bismuth-contg. oxide superconducting thin film having a high critical superconduction temp. and a high critical current density. CONSTITUTION:A bismuth oxide (Bi2O3) block layer 21, a layer contg. CuO5 pyramids 23, a monoatomic layer 22 of one or more kinds of alkaline earth metals, a CuO2 plane 41, a monoatomic layer 22 of one or more kinds of alkaline earth metals and a layer contg. CuO5 pyramids 23 are successively laminated. Two layers laminated on each of both sides of the CuO2 plane 41, that is, the monoatomic layer 22 of one or more kinds of alkaline earth metals and the layer contg. CuO5 pyramids 23 form a perovskite type crystal structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビスマス系酸化物超伝
導薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth oxide superconducting thin film.

【0002】[0002]

【従来の技術】少なくともビスマス元素、一種以上のア
ルカリ土類元素、銅、酸素よりなるビスマス系超伝導体
は、超伝導臨界温度80〜110Kを示す物質で、液体
窒素温度での使用が期待されている。また、これに鉛元
素を添加すると臨界温度がさらに10K程度上昇するこ
とが知られている。この理由は、鉛を加えることにより
臨界温度の高い結晶相が成長し易くなるためであると考
えられている。この物質を電子デバイスに応用するため
には薄膜にすることが必須であり、種々の方法でビスマ
ス系超伝導体の薄膜化が行われている。
2. Description of the Related Art A bismuth-based superconductor composed of at least bismuth element, one or more alkaline earth elements, copper and oxygen is a material having a superconducting critical temperature of 80 to 110 K and is expected to be used at liquid nitrogen temperature. ing. Further, it is known that when lead element is added to this, the critical temperature further rises by about 10K. It is considered that the reason is that the addition of lead facilitates the growth of the crystal phase having a high critical temperature. In order to apply this substance to an electronic device, it is essential to form a thin film, and a thin film of a bismuth superconductor has been formed by various methods.

【0003】鉛を添加しないビスマス系超伝導薄膜で
は、最高超伝導臨界温度は104K程度のものが得られ
ている。[広地久美子 他,表面科学,Vol.9, 541-547
(1988)]さらに臨界温度を上げるため、鉛を薄膜に添
加する試みが成されている。この方法として、初めから
鉛を含んだ薄膜を付着し熱処理して得るやり方と、鉛を
含まない薄膜を鉛を含む雰囲気中で熱処理して得るやり
方がある。いずれの場合にも、超伝導相の形成は鉛を伴
った熱処理中に行われるので、熱処理する薄膜は低温で
形成したアモルファス状の結晶化していないものが適し
ている。この方法により臨界温度105K以上のビスマ
ス系超伝導薄膜が得られている[田中 他,アプライド
・フィジックス・レターズ (Applied Physics Letter
s), Vol.55,1252-1254 (1989)]。
For the bismuth-based superconducting thin film to which lead is not added, the maximum superconducting critical temperature is about 104K. [Kumiko Hirochi et al., Surface Science, Vol.9, 541-547
(1988)] In order to further raise the critical temperature, attempts have been made to add lead to the thin film. As this method, there is a method of obtaining a thin film containing lead from the beginning by heat treatment and a method of obtaining a thin film not containing lead by heat treatment in an atmosphere containing lead. In any case, since the formation of the superconducting phase is performed during the heat treatment involving lead, the thin film to be heat treated is preferably an amorphous, non-crystallized film formed at a low temperature. By this method, a bismuth-based superconducting thin film with a critical temperature of 105 K or higher has been obtained [Applied Physics Letters, Tanaka et al.
s), Vol.55, 1252-1254 (1989)].

【0004】[0004]

【発明が解決しようとする課題】しかし従来のこの種の
方法では、熱処理中の結晶粒の成長のため薄膜の微細組
織は乱れ、表面構造は起伏の激しいものとなる。従って
臨界温度は高いものの臨界電流に関しては液体窒素温度
(77K)で高々数万A/cm2あるいはそれ以下の低
い値であり、ビスマス系超伝導薄膜の実用上の障害にな
っていた。
However, in the conventional method of this kind, the fine structure of the thin film is disturbed due to the growth of the crystal grains during the heat treatment, and the surface structure becomes rough. Therefore, although the critical temperature is high, the critical current is as low as tens of thousands of A / cm 2 or less at the liquid nitrogen temperature (77K), which is a practical obstacle to the bismuth-based superconducting thin film.

【0005】本発明は、超伝導臨界温度が高く、かつ臨
界電流密度も大きい、鉛添加のビスマス系超伝導薄膜の
製造方法の提供を目的とする。
An object of the present invention is to provide a method for producing a lead-added bismuth-based superconducting thin film having a high superconducting critical temperature and a large critical current density.

【0006】[0006]

【課題を解決するための手段】第1の発明は、ビスマス
酸化物からなるブロック層と、1種以上のアルカリ土類
元素の1原子層を介して向かい合った2層のCuO5
ラミッドを含むペロブスカイト類型ブロック層とが、交
互に積層した主結晶構造を有するビスマス系層状化合物
薄膜を、鉛を含む雰囲気中で熱処理する薄膜超伝導体の
製造方法である。
According to a first aspect of the present invention, there is provided a perovskite including a block layer made of bismuth oxide and two layers of CuO 5 pyramids facing each other through one atomic layer of at least one alkaline earth element. A type block layer is a method for producing a thin film superconductor in which a bismuth-based layered compound thin film having a main crystal structure alternately laminated is heat-treated in an atmosphere containing lead.

【0007】第2の発明は、ビスマス酸化物からなるブ
ロック層と、CuO5ピラミッドを含む層−1種以上の
アルカリ土類元素の1原子層−1枚のCuO2面−1種
以上のアルカリ土類元素の1原子層−CuO5ピラミッ
ドを含む層のペロブスカイト類型ブロック層とを、この
順番に交互に積層した主結晶構造を有するビスマス系層
状化合物薄膜を、鉛を含む雰囲気中で熱処理する薄膜超
伝導体の製造方法である。
A second invention is a block layer made of bismuth oxide, a layer containing CuO 5 pyramid-1 atomic layer of one or more alkaline earth elements-1 sheet of CuO 2 face-1 or more alkaline species A thin film obtained by heat-treating a bismuth-based layered compound thin film having a main crystal structure in which a 1-atom layer of an earth element-a perovskite-type block layer of a layer containing a CuO 5 pyramid are alternately stacked in this order in an atmosphere containing lead. It is a method of manufacturing a superconductor.

【0008】[0008]

【作用】本発明の製造方法によると、薄膜は形成時から
各々の構造に結晶化しており、電気的特性のみが熱処理
中に改善される。つまり、初めから結晶化した薄膜は、
熱処理中に結晶成長がほとんど起こらず、結晶粒の出現
による微細組織の劣化がない。従って臨界電流密度が損
なわれる要因が取り除かれる。
According to the manufacturing method of the present invention, the thin film is crystallized into each structure from the time of formation, and only the electrical characteristics are improved during the heat treatment. In other words, the thin film crystallized from the beginning is
Almost no crystal growth occurs during heat treatment, and there is no deterioration of the microstructure due to the appearance of crystal grains. Therefore, the factor that impairs the critical current density is eliminated.

【0009】また、鉛元素は従来超伝導の結晶相の成長
に効くと考えられてきたが、本発明のように既に結晶化
したビスマス系層状化合物を鉛を含む雰囲気中で熱処理
した場合、超伝導特性が向上することを本発明者らは確
認した。この原因は定かではないが、熱処理中に鉛元素
が一部のビスマス元素と置換して、超伝導体の電子状態
に影響を与えたためではないかと考えられる。
Although it has been conventionally considered that lead element is effective for the growth of a crystal phase of superconductivity, when a bismuth-based layered compound which has already been crystallized as in the present invention is heat-treated in an atmosphere containing lead, it has a The present inventors have confirmed that the conduction characteristics are improved. The reason for this is not clear, but it is thought that this is because the lead element replaced a part of the bismuth element during the heat treatment, which affected the electronic state of the superconductor.

【0010】[0010]

【実施例】本発明の製造方法は、予めビスマス系層状化
合物薄膜を、例えばMgO単結晶等の専ら使用される基
体上に積層する。
EXAMPLE In the manufacturing method of the present invention, a bismuth-based layered compound thin film is previously laminated on a substrate such as MgO single crystal which is used exclusively.

【0011】ビスマス系層状化合物薄膜の形成方法とし
ては、例えば高周波マグネトロンスパッタ法、分子線エ
ピタキシー法、抵抗加熱蒸着法等通常の気相薄膜形成法
等が挙げられるが、多元素を周期的に1層ずつ制御する
には、高周波マグネトロンスパッタ法が好ましい。
Examples of the method for forming the bismuth-based layered compound thin film include a high-frequency magnetron sputtering method, a molecular beam epitaxy method, an ordinary vapor-phase thin film forming method such as a resistance heating vapor deposition method, and the like. To control the layers layer by layer, the high frequency magnetron sputtering method is preferable.

【0012】本発明のビスマス系層状化合物には、2つ
の結晶構造がある。一方の結晶構造は、例えば(図2)
に示したように、 ビスマス酸化物(Bi22)ブロック層21 CuO5ピラミッド23を含む層 1種以上のアルカリ土類元素1原子層22 CuO5ピラミッド23を含む層 が、この順番に積層している。この内、1種以上のアル
カリ土類元素1原子層22の両側に積層した2つのCu
5ピラミッド23を含む層の3層が、ペロブスカイト
類型結晶構造を形成している。
The bismuth-based layered compound of the present invention has two crystal structures. One crystal structure is, for example (Fig. 2)
As shown in, the bismuth oxide (Bi 2 O 2 ) block layer 21 the layer containing CuO 5 pyramid 23, the layer containing one or more alkaline earth element 1 atomic layer 22 CuO 5 pyramid 23, stacked in this order. is doing. Of these, two Cu layers laminated on both sides of one or more alkaline earth element monoatomic layers 22
Three layers including the O 5 pyramid 23 form a perovskite type crystal structure.

【0013】他方の結晶構造は、例えば(図4)に示し
たように、 ビスマス酸化物(Bi22)ブロック層21 CuO5ピラミッド23を含む層 1種以上のアルカリ土類元素1原子層22 CuO2面41 1種以上のアルカリ土類元素1原子層22 CuO5ピラミッド23を含む層 が、この順番に積層している。この内、CuO2面41
の両側に積層した各々2つの層、1種以上のアルカリ土
類元素1原子層22とCuO5ピラミッド23を含む層
で、ペロブスカイト類型結晶構造を形成している。
The other crystal structure is, for example, as shown in FIG. 4, a bismuth oxide (Bi 2 O 2 ) block layer 21, a layer containing a CuO 5 pyramid 23, and one or more alkaline earth element monoatomic layers. 22 CuO 2 surface 41 Layers containing one or more alkaline earth element monoatomic layers 22 CuO 5 pyramids 23 are stacked in this order. Of these, CuO 2 surface 41
Two layers, one layer of one or more alkaline earth element monoatomic layer 22 and one layer of CuO 5 pyramid 23, each of which is laminated on both sides, form a perovskite type crystal structure.

【0014】このような2つの結晶構造に適用できるア
ルカリ土類元素としては、CaまたはSr等が挙げられ
るが、中でもCaとSrとを組み合わせて用いると、良
好な超伝導特性が得られるため好ましい。
Examples of alkaline earth elements applicable to such two crystal structures include Ca and Sr. Among them, it is preferable to use Ca and Sr in combination because good superconducting properties can be obtained. ..

【0015】このようにして予め形成したビスマス系層
状化合物薄膜を、鉛を含む雰囲気中で熱処理を行なう。
鉛を含む雰囲気とは、例えば酸化鉛(PbO)粉末また
は鉛添加ビスマス系セラミックス(例えばBi−Pb−
Sr−Ca−Cu−O等)粉末をビスマス系層状化合物
薄膜上にしきつめる、または例えば鉛蒸気をビスマス系
層状化合物薄膜上に供給する等により達成できる。この
内、粉末、特に酸化鉛粉末とビスマス系層状化合物薄膜
とを、容器に封入する手法の方が作業工程が簡素であ
り、工業的にも優れている。
The bismuth-based layered compound thin film thus formed in advance is heat-treated in an atmosphere containing lead.
The atmosphere containing lead is, for example, lead oxide (PbO) powder or lead-added bismuth-based ceramics (for example, Bi-Pb-
(Sr-Ca-Cu-O, etc.) powder on the bismuth-based layered compound thin film, or by supplying lead vapor onto the bismuth-based layered compound thin film, for example. Among these, the method of enclosing the powder, particularly the lead oxide powder and the bismuth-based layered compound thin film in the container has a simpler working process and is industrially superior.

【0016】熱処理温度は700℃〜900℃が好まし
く、特に800℃〜870℃の範囲で行なうとゼロ抵抗
温度が高く、具体的には例えば図2の結晶構造では90
K以上、例えば図4の結晶構造では110K以上となる
ため、好ましい。なお、熱処理時間は、ビスマス系層状
化合物薄膜の膜厚、鉛を含む雰囲気の形態等に依存する
が、通常1〜10時間程度で達成できる。
The heat treatment temperature is preferably 700.degree. C. to 900.degree. C., and the zero resistance temperature is high especially when the temperature is 800.degree. C. to 870.degree. C. Specifically, for example, 90 in the crystal structure of FIG.
K or more, for example, 110 K or more in the crystal structure of FIG. 4, which is preferable. The heat treatment time depends on the film thickness of the bismuth-based layered compound thin film, the form of the atmosphere containing lead, and the like, but can be usually achieved in about 1 to 10 hours.

【0017】本発明の製造方法の鉛を含む雰囲気で薄膜
を熱処理をすることにより、鉛を含まない雰囲気の熱処
理に比べて超伝導臨界温度が約10K上昇し、その結果
液体窒素温度での臨界電流密度も2倍〜10倍の大きさ
になった。
By heat-treating the thin film in the lead-containing atmosphere of the manufacturing method of the present invention, the superconducting critical temperature is increased by about 10 K as compared with the heat treatment in the lead-free atmosphere, and as a result, the critical temperature at the liquid nitrogen temperature is increased. The current density is also double to 10 times.

【0018】本発明のより詳しい理解のために、詳細な
実施例により以下に説明を行なう。 (実施例1)まず結晶化したビスマス系層状化合物薄膜
の形成を行った。高周波マグネトロンスパッタ装置を用
い、直径100mmのBi-Sr-Ca-Cu-O焼成酸化物をター
ゲットとしてスパッタリングを行った。ターゲットの組
成はおよそBi:Sr:Ca:Cu=1.6:1:0.8:1.5とした。650
℃に加熱したMgO単結晶(100)面基体上に、アル
ゴン(50%)と酸素(50%)混合ガス0.5Paの
スパッタガスのもと、150Wのスパッタリング放電を
行ない、約30分で2000Å程度の薄膜を形成した。
作製された薄膜のX線回折パターンを図1に示す。この
結果c軸長が30.7Åのc軸配向したビスマス系層状構造
が作製されたことが判る。この薄膜は化学組成がおよそ
Bi:Sr:Ca:Cu=2:2:1:2となっており、図2に示す結晶構
造、すなわち主体成分がビスマスの酸化物(Bi22
からなるブロック層21と、アルカリ土類元素1原子層22
を介して向かい合った2層のCuO5ピラミッド23を含
むペロブスカイト類型ブロック層24との、交互に積層さ
れた構造をもつ。
For a more detailed understanding of the present invention, the following description is given by way of detailed examples. Example 1 First, a crystallized bismuth-based layered compound thin film was formed. Sputtering was performed using a high-frequency magnetron sputtering device with a Bi-Sr-Ca-Cu-O baked oxide having a diameter of 100 mm as a target. The composition of the target was approximately Bi: Sr: Ca: Cu = 1.6: 1: 0.8: 1.5. 650
On a MgO single crystal (100) plane substrate heated to ℃, a sputtering discharge of 150 W was performed under a sputtering gas of a mixed gas of argon (50%) and oxygen (50%) of 0.5 Pa, and 2000 Å in about 30 minutes. A thin film of a certain degree was formed.
The X-ray diffraction pattern of the produced thin film is shown in FIG. As a result, it can be seen that a c-axis oriented bismuth-based layered structure having a c-axis length of 30.7Å was produced. The chemical composition of this thin film is approximately
Bi: Sr: Ca: Cu = 2: 2: 1: 2, and has a crystal structure shown in FIG. 2, that is, an oxide (Bi 2 O 2 ) whose main component is bismuth.
Block layer 21 consisting of and alkaline earth element 1 atomic layer 22
And a perovskite-type block layer 24 including two layers of CuO 5 pyramids 23 facing each other via a layer structure alternately stacked.

【0019】この薄膜を、鉛を含む雰囲気中で熱処理を
行った。アルミナるつぼにPbOの粉末と薄膜を入れ蓋を
して空気中で加熱した。850℃で5時間加熱した場
合、結晶構造の変化は認められないもののゼロ抵抗温度
95Kを示す超伝導薄膜が得られた。77Kでの臨界電
流密度は20万A/cm2であった。同じ薄膜を鉛を含
まない雰囲気で最適熱処理しても、ゼロ抵抗温度83
K、臨界電流密度5万A/cm2程度であることから、
本発明の方法が効果的であることが確認された。この薄
膜の結晶構造は、ビスマス系超伝導体の中では臨界温度
の高い構造ではないが、薄膜を再現性よく作り易いの
で、工業的生産に有効である。
This thin film was heat-treated in an atmosphere containing lead. A PbO powder and a thin film were placed in an alumina crucible, and the lid was closed and heated in air. When heated at 850 ° C. for 5 hours, a superconducting thin film having a zero resistance temperature of 95 K was obtained although no change in crystal structure was observed. The critical current density at 77K was 200,000 A / cm 2 . Even if the same thin film is optimally heat-treated in a lead-free atmosphere, a zero resistance temperature of 83
K, because the critical current density is about 50,000 A / cm 2 ,
It was confirmed that the method of the present invention is effective. The crystal structure of this thin film is not a structure having a high critical temperature in a bismuth-based superconductor, but it is effective for industrial production because it is easy to make a thin film with good reproducibility.

【0020】熱処理温度の検討を行った結果、800〜
870℃の温度範囲の熱処理の場合ゼロ抵抗温度が90
K以上が達成され、効果的であった。また鉛を含む雰囲
気を実現する方法としては、鉛添加ビスマス系超伝導体
Bi-Pb-Sr-Ca-Cu-Oセラミックスあるいは粉末そのものを
薄膜と一緒に封入して加熱する方法も有効である。一番
簡単な方法は本実施例のように酸化鉛と薄膜を封入する
もので、作業工程が簡素であり再現性にも優れているこ
とを確認した。
As a result of the examination of the heat treatment temperature,
In the case of heat treatment in the temperature range of 870 ° C, the zero resistance temperature is 90.
K or more was achieved and it was effective. Also, as a method for realizing an atmosphere containing lead, a bismuth-based superconductor containing lead is used.
A method in which Bi-Pb-Sr-Ca-Cu-O ceramics or powder itself is enclosed together with a thin film and heated is also effective. The simplest method was to enclose lead oxide and a thin film as in this example, and it was confirmed that the working process was simple and excellent in reproducibility.

【0021】(実施例2)高周波マグネトロンスパッタ
装置を用い、直径100mmのBi-Sr-Ca-Cu-O焼成酸化
物をターゲットとしてスパッタリングを行った。ターゲ
ットの組成はおよそBi:Sr:Ca:Cu=1.6:1:1.6:1.8とし
た。650℃に加熱したMgO単結晶(100)面基体
上に、実施例1と同条件で薄膜を形成した。作製された
薄膜のX線回折パターンを図3に示す。この結果c軸長
が37.6Åのc軸配向したビスマス系層状構造が作製され
たことが判る。この薄膜は化学組成がおよそBi:Sr:Ca:C
u=2:2:2:3となっており、図4に示す結晶構造、すなわ
ち主体成分がビスマスの酸化物(Bi22)からなるブ
ロック層21と、1枚のCuO2面41および両側の1原子
層のアルカリ土類元素22を介して向かい合った2層のC
uO5ピラミッド23を含むペロブスカイト類型ブロック
層42との交互に積層された構造をもつ。
(Example 2) Sputtering was performed using a high frequency magnetron sputtering device with a Bi-Sr-Ca-Cu-O calcined oxide having a diameter of 100 mm as a target. The composition of the target was approximately Bi: Sr: Ca: Cu = 1.6: 1: 1.6: 1.8. A thin film was formed on the MgO single crystal (100) plane substrate heated to 650 ° C. under the same conditions as in Example 1. The X-ray diffraction pattern of the produced thin film is shown in FIG. As a result, it is understood that a c-axis oriented bismuth-based layered structure having a c-axis length of 37.6Å was produced. This thin film has a chemical composition of approximately Bi: Sr: Ca: C.
u = 2: 2: 2: 3, and the crystal structure shown in FIG. 4, that is, the block layer 21 mainly composed of bismuth oxide (Bi 2 O 2 ) and one CuO 2 surface 41 and Two layers of C facing each other through one atomic layer of alkaline earth element 22 on both sides
It has a structure in which the perovskite type block layers 42 including the uO 5 pyramids 23 are alternately laminated.

【0022】この薄膜を、PbOを用いた鉛を含む雰囲気
中で熱処理を行った。850℃で5時間加熱した場合、
結晶構造の変化は認められないもののゼロ抵抗温度11
5Kを示す超伝導薄膜が得られた。77Kでの臨界電流
密度は150万A/cm2であった。同じ薄膜を鉛を含
まない雰囲気で最適熱処理しても、ゼロ抵抗温度103
K、臨界電流密度20万A/cm2程度であることか
ら、本発明の方法が非常に効果的であることが確認され
た。この薄膜の結晶構造は、ビスマス系超伝導体の中で
臨界温度の高い構造であり、高性能の超伝導薄膜として
応用が期待される。熱処理温度の検討を行った結果、8
00〜870℃の温度範囲の熱処理の場合ゼロ抵抗温度
が110K以上が達成され、効果的であった。
This thin film was heat-treated in an atmosphere containing lead using PbO. When heated at 850 ° C for 5 hours,
No change in crystal structure, but zero resistance temperature 11
A superconducting thin film showing 5K was obtained. The critical current density at 77K was 1.5 million A / cm 2 . Even if the same thin film is optimally heat-treated in a lead-free atmosphere, the zero resistance temperature 103
It was confirmed that the method of the present invention is very effective because the K and the critical current density are about 200,000 A / cm 2 . The crystal structure of this thin film is a structure having a high critical temperature among bismuth-based superconductors, and is expected to be applied as a high-performance superconducting thin film. As a result of examining the heat treatment temperature, 8
In the case of heat treatment in the temperature range of 00 to 870 ° C., the zero resistance temperature of 110 K or higher was achieved, which was effective.

【0023】[0023]

【発明の効果】以上のように本発明は、 (1)ビスマス酸化物からなるブロック層と、1種以上の
アルカリ土類元素の1原子層を介して向かい合った2層
のCuO5ピラミッドを含むペロブスカイト類型ブロッ
ク層とが、交互に積層した主結晶構造を有するビスマス
系層状化合物薄膜を、鉛を含む雰囲気中で熱処理するあ
るいは (2)ビスマス酸化物からなるブロック層と、CuO5
ラミッドを含む層−1種以上のアルカリ土類元素の1原
子層−1枚のCuO2面−1種以上のアルカリ土類元素
の1原子層−CuO5ピラミッドを含む層のペロブスカ
イト類型ブロック層とを、この順番に積層した主結晶構
造を有するビスマス系層状化合物薄膜を、鉛を含む雰囲
気中で熱処理する薄膜超伝導体の製造方法であるため、
超伝導臨界温度が高くかつ臨界電流密度も大きいビスマ
ス系酸化物超伝導薄膜の作製を実現したものである。ま
た、本発明により実用に足る超伝導薄膜が再現性よく合
成できるようになり、液体窒素温度でのデバイス応用を
可能にしたもので、本発明の工業的価値は大きい。
As described above, the present invention comprises (1) a block layer made of bismuth oxide and two layers of CuO 5 pyramids facing each other through one atomic layer of one or more alkaline earth elements. A perovskite-type block layer is formed by alternately heat-treating a bismuth-based layered compound thin film having a main crystal structure in a lead-containing atmosphere, or (2) a block layer made of bismuth oxide and a layer containing CuO 5 pyramids. -1 or more and a perovskite type blocking layer of the layer including one atomic layer -CuO 5 pyramid 1 atomic layer -1 single CuO 2 planes -1 or more alkaline earth element of an alkaline earth element, this order Since the bismuth-based layered compound thin film having the main crystal structure laminated on is heat-treated in a lead-containing atmosphere,
The bismuth oxide superconducting thin film having a high superconducting critical temperature and a large critical current density was realized. In addition, the present invention has made it possible to synthesize a practically suitable superconducting thin film with good reproducibility and enables device application at a liquid nitrogen temperature, and the present invention has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法で作製した一実施例における
Bi2Sr2CaCu2x薄膜のX線回折パターン図
FIG. 1 is an X-ray diffraction pattern diagram of a Bi 2 Sr 2 CaCu 2 O x thin film in one example manufactured by the manufacturing method of the present invention.

【図2】本発明の製造方法で作製した一実施例のBi2
Sr2CaCu2x薄膜における結晶構造図
FIG. 2 is an example of Bi 2 produced by the production method of the present invention.
Crystal structure diagram of Sr 2 CaCu 2 O x thin film

【図3】本発明の製造方法で作製した一実施例における
Bi2Sr2Ca2Cu3y薄膜のX線回折パターン図
FIG. 3 is an X-ray diffraction pattern diagram of a Bi 2 Sr 2 Ca 2 Cu 3 O y thin film in one example manufactured by the manufacturing method of the present invention.

【図4】本発明の製造方法で作製した一実施例のBi2
Sr2Ca2Cu3y薄膜における結晶構造図
FIG. 4 is an example of Bi 2 produced by the production method of the present invention.
Crystal structure diagram of Sr 2 Ca 2 Cu 3 O y thin film

【符号の説明】[Explanation of symbols]

21 ビスマス酸化物(Bi2O2)ブロック層 22 アルカリ土類元素1原子層 23 CuO5ピラミッド 24 ペロブスカイト類型ブロック層 41 CuO2面 42 ペロブスカイト類型ブロック層21 Bismuth oxide (Bi 2 O 2 ) block layer 22 Alkaline earth element 1 atom layer 23 CuO 5 pyramid 24 Perovskite type block layer 41 CuO 2 surface 42 Perovskite type block layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ビスマス酸化物からなるブロック層と、1
種以上のアルカリ土類元素の1原子層を介して向かい合
った2層のCuO5ピラミッドを含むペロブスカイト類
型ブロック層とが、交互に積層した主結晶構造を有する
ビスマス系層状化合物薄膜を、鉛を含む雰囲気中で熱処
理することを特徴とする薄膜超伝導体の製造方法。
1. A block layer made of bismuth oxide, and 1.
A bismuth-based layered compound thin film having a main crystal structure in which two layers of CuO 5 pyramid-containing perovskite-type block layers facing each other through one atomic layer of at least one alkaline earth element are alternately laminated, and containing lead. A method of manufacturing a thin film superconductor, characterized by performing heat treatment in an atmosphere.
【請求項2】ビスマス酸化物からなるブロック層と、C
uO5ピラミッドを含む層−1種以上のアルカリ土類元
素の1原子層−1枚のCuO2面−1種以上のアルカリ
土類元素の1原子層−CuO5ピラミッドを含む層のペ
ロブスカイト類型ブロック層とを、この順番に積層した
主結晶構造を有するビスマス系層状化合物薄膜を、鉛を
含む雰囲気中で熱処理することを特徴とする薄膜超伝導
体の製造方法。
2. A block layer made of bismuth oxide, and C
Layer containing uO 5 pyramid-1 atomic layer of one or more alkaline earth elements-1 sheet of CuO 2 face-1 atomic layer of alkaline earth element of 1 type or more-Perovskite type block of layer containing CuO 5 pyramid And a bismuth-based layered compound thin film having a main crystal structure laminated in this order in a heat treatment in an atmosphere containing lead.
【請求項3】熱処理の温度が、800℃から870℃で
あることを特徴とする、請求項1もしくは2何れかに記
載の薄膜超伝導体の製造方法。
3. The method for producing a thin film superconductor according to claim 1, wherein the temperature of the heat treatment is 800 ° C. to 870 ° C.
【請求項4】アルカリ土類元素が、ストロンチウムおよ
びカルシウムの組合せでであることを特徴とする、請求
項1もしくは2何れかに記載の薄膜超伝導体の製造方
法。
4. The method for producing a thin film superconductor according to claim 1, wherein the alkaline earth element is a combination of strontium and calcium.
JP4127080A 1992-05-20 1992-05-20 Production of thin film superconductor Pending JPH05319828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127080A JPH05319828A (en) 1992-05-20 1992-05-20 Production of thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127080A JPH05319828A (en) 1992-05-20 1992-05-20 Production of thin film superconductor

Publications (1)

Publication Number Publication Date
JPH05319828A true JPH05319828A (en) 1993-12-03

Family

ID=14951081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127080A Pending JPH05319828A (en) 1992-05-20 1992-05-20 Production of thin film superconductor

Country Status (1)

Country Link
JP (1) JPH05319828A (en)

Similar Documents

Publication Publication Date Title
US5567673A (en) Process of forming multilayered Tl-containing superconducting composites
JPH07267791A (en) Production of oxide superconductor thin film and oxide superconductor thin film laminate
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
JPS63239742A (en) Manufacture for film superconductor
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH05319828A (en) Production of thin film superconductor
EP0624910B1 (en) Method of fabricating a Hg-based superconducting thin film
JPH02175613A (en) Production of oxide superconducting thin film
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH0278282A (en) Josephson element
JP2781331B2 (en) Manufacturing method of thin film superconductor
JP3787572B2 (en) Selective reduction type high temperature superconductor and method for producing the same
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH02311396A (en) Thin-film superconductor and its production
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP2748457B2 (en) Superconducting film manufacturing method
JPH05170448A (en) Production of thin ceramic film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH07206437A (en) Superconductor and its production
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP2768066B2 (en) Method for laminating upper thin film on oxide superconducting thin film