JP2517055B2 - Superconductor - Google Patents

Superconductor

Info

Publication number
JP2517055B2
JP2517055B2 JP63080836A JP8083688A JP2517055B2 JP 2517055 B2 JP2517055 B2 JP 2517055B2 JP 63080836 A JP63080836 A JP 63080836A JP 8083688 A JP8083688 A JP 8083688A JP 2517055 B2 JP2517055 B2 JP 2517055B2
Authority
JP
Japan
Prior art keywords
film
substrate
superconductor
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63080836A
Other languages
Japanese (ja)
Other versions
JPH01252536A (en
Inventor
里佳 山尾
真一郎 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63080836A priority Critical patent/JP2517055B2/en
Publication of JPH01252536A publication Critical patent/JPH01252536A/en
Application granted granted Critical
Publication of JP2517055B2 publication Critical patent/JP2517055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体に関するものである。特に金属酸化
物被膜上に形成した酸化物超電導体に関するものであ
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to superconductors. In particular, it relates to an oxide superconductor formed on a metal oxide film.

従来の技術 高温超電導体として、Bi−Sr−Ca−Cu−O系のものが
最近提案された。[H.Maeda等、ジャパニーズ ジャー
ナル オブ アプライド フィジクス(Jpn.L Appl.phy
s)Vol.27 L209(1988)]また、Tl−Ba−Cu−O系のも
のも提案された。(国際超電導会議March 1988,IBM発
表) Bi−Sr−Ca−Cu−O又はTl−Ba−Cu−O系の材料の超
電導機構の詳細は明らかではないが、転移温度が液体窒
素温度以上に高くなる可能性があり、高温超電導体とし
て従来の2元系化合物より、より有望な特性が期待され
る。
2. Description of the Related Art Bi-Sr-Ca-Cu-O-based materials have recently been proposed as high-temperature superconductors. [H. Maeda et al., Japanese Journal of Applied Physics (Jpn.L Appl.phy
s) Vol. 27 L209 (1988)] Also, a Tl-Ba-Cu-O system was proposed. (International Conference on Superconductivity March 1988, announced by IBM) The details of the superconducting mechanism of Bi-Sr-Ca-Cu-O or Tl-Ba-Cu-O based materials are not clear, but the transition temperature is higher than the liquid nitrogen temperature. Therefore, more promising characteristics are expected as a high-temperature superconductor than conventional binary compounds.

発明が解決しようとする課題 しかしながら、Bi−Sr−Ca−Cu−O又はTl−Ba−Cu−
O系の材料は、現在の技術では焼結という過程でしか形
成できないため、セラミックの粉末あるいはブロックの
形状でしか得られない。一方、この種の材料を実用化す
る場合、薄膜化あるいは線状化が強く要望されている
が、従来の技術では、超伝導特性の再現性・信頼性が悪
くいずれも非常に困難とされている。加えて、単結晶基
体上に成膜するために基体のコストが高価なものであっ
た。
Problems to be Solved by the Invention However, Bi-Sr-Ca-Cu-O or Tl-Ba-Cu-
O-based materials can only be obtained in the form of ceramic powder or blocks, since they can only be formed in the process of sintering with the current technology. On the other hand, when putting this type of material into practical use, there is a strong demand for thinning or linearization, but with the conventional technology, reproducibility and reliability of superconducting properties are poor, and both are extremely difficult. There is. In addition, the cost of the substrate is high because the film is formed on the single crystal substrate.

本発明者らは、この種の材料を例えばスパッタリング
法等の薄膜化手法を用い超電導膜の界面の構造を工夫す
ると、良質の薄膜状の高温超電導体が形成されることを
発見し、これにもとづいて新規なファイバー状超電導体
構成を発明した。
The inventors of the present invention discovered that a high-quality thin film high-temperature superconductor can be formed by devising the structure of the interface of the superconducting film by using a thinning method such as a sputtering method for this kind of material. Based on that, a new fibrous superconductor structure was invented.

課題を解決するための手段 本発明の超電導体は、金属酸化物薄膜をコートした基
体上にBi,Sr,CaおよびCu又はTl,Ba,CaおよびCuを含む酸
化物で、元素比が 又は の3元化合物被膜を付着させたことを特徴としている。
Means for Solving the Problems The superconductor of the present invention is an oxide containing Bi, Sr, Ca and Cu or Tl, Ba, Ca and Cu on a substrate coated with a metal oxide thin film, and the element ratio is Or It is characterized in that a ternary compound film of (3) is attached.

作用 本発明にかかる超電導体は、金属酸化物被膜をもった
基体上に特定の酸化物超電導体を薄膜線材化している所
に大きな特色がある。すなわち、薄膜化は超電導体の素
材を原子状態という極微粒子に分解してから直接基体上
に堆積させると、良質の超電導膜を得ることは困難な場
合が多い。しかし、基体にあらかじめ金属酸化物被膜を
付着させておくと特異的に緻密・平坦に堆積する。した
がって非常に高精度の超電導体が本発明で実現される。
Action The superconductor according to the present invention is characterized in that a specific oxide superconductor is formed into a thin film wire on a substrate having a metal oxide film. That is, in order to reduce the film thickness, it is often difficult to obtain a good quality superconducting film when the material of the superconductor is decomposed into ultrafine particles in the atomic state and directly deposited on the substrate. However, if a metal oxide film is attached to the substrate in advance, it is specifically and densely deposited. Therefore, a very high-precision superconductor is realized by the present invention.

実施例 本発明を図面とともに説明する。EXAMPLES The present invention will be described with reference to the drawings.

第1図において、酸化物超電導被膜13は基体11の表面
に成膜した金属酸化物被覆12の上に例えばスパッタリン
グ法で形成する。この場合、基体11は、超電導を示す酸
化物超電導被膜13の保持を目的としている。この被膜13
は通常700℃の温度で形成する。金属酸化物薄膜12をつ
けず、非晶質基体11上に直接酸化物超電導体を成膜する
と、基体との強い付着力がなくなり、電気抵抗が極めて
大きくなり超電導物性を失った。ここで、金属酸化物薄
膜12を基体11と酸化物超電導被膜の間に入れBi−Sr−Ca
−Cu−O系のものでは、900℃,20分さらに865℃,5時間
の酸素アニールで、Tl−Ba−Ca−Cu−O系では,850℃,3
0分の酸素雰囲気アニールにより、良質の超電導膜13が
つくられた。さらに、本発明者らは、第1図の金属酸化
物被膜12の材料についても検討した結果MnOFe2O3、FeOF
e2O3、CoOFe2O3、NiOFe2O3、CuOFe2O3、MgOFe2O3等のフ
ェライトについて良好な効果が見られ、中でもCoOFe2O3
が最良であることを確認した。
In FIG. 1, the oxide superconducting coating 13 is formed on the metal oxide coating 12 formed on the surface of the substrate 11 by, for example, a sputtering method. In this case, the substrate 11 is intended to hold the oxide superconducting film 13 that exhibits superconductivity. This film 13
Are usually formed at a temperature of 700 ° C. When the oxide superconductor was directly formed on the amorphous substrate 11 without attaching the metal oxide thin film 12, the strong adhesion to the substrate was lost, the electric resistance was extremely increased, and the superconducting properties were lost. Here, the metal oxide thin film 12 is inserted between the substrate 11 and the oxide superconducting film, and Bi-Sr-Ca
-Cu-O system was annealed at 900 ° C for 20 minutes and then at 865 ° C for 5 hours, and for Tl-Ba-Ca-Cu-O system at 850 ° C, 3 hours.
A good quality superconducting film 13 was formed by 0 minute oxygen atmosphere annealing. Further, the present inventors have examined the materials of the metal oxide film 12 of FIG. 1 and found that MnOFe 2 O 3 and FeOF
Good effects have been observed for ferrites such as e 2 O 3 , CoOFe 2 O 3 , NiOFe 2 O 3 , CuOFe 2 O 3 , and MgOFe 2 O 3 , especially CoOFe 2 O 3
Was confirmed to be the best.

さらに本発明者らは、第1図の基体11に、石英ガラス
基板、カーボン基板、あるいはニオブ、チタン、タンタ
ル、ステンレスの耐熱金属基板が有効であることを見い
出した。
Further, the present inventors have found that a quartz glass substrate, a carbon substrate, or a heat-resistant metal substrate of niobium, titanium, tantalum, or stainless steel is effective as the substrate 11 of FIG.

すなわち、結晶性の高い酸化物超電導被膜13を基体11
の表面に形成させるためには、金属酸化物被膜12を持っ
た基体上に、酸化物超導電体を成膜すればよいことがわ
かった。
That is, the oxide superconducting coating 13 having high crystallinity is applied to the substrate 11
It has been found that an oxide superconductor can be formed on the substrate having the metal oxide coating film 12 in order to form it on the surface of.

本発明者等は作製された被覆において元素比率が 又は の範囲であれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。
The present inventors have found that the element ratio in the produced coating is Or It was confirmed that the superconducting phenomenon was found even if there was some difference in the critical temperature within the range of.

なお、スパッタリング蒸着ではターゲットとして、焼
結したBi−Sr−Ca−Cu−O又はTl−Ba−Ca−Cu−Oセラ
ミックスを用いるが、基体温度が700℃の場合では、タ
ーゲットの金属成分と形成された薄膜における成分と比
較するとBi−Sr−Ca−Cu−O系ではBiとCu、Tl−Ba−Ca
−Cu−O系ではCuが薄膜では不足する傾向がみられ、タ
ーゲットに50%程度過剰に加えればよいことを本発明者
らは確認した。したがって、それぞれのターゲットの組
成は、被膜の最適範囲の 又は であることを本発明者らは確認した。この場合、ターゲ
ットは板状あるいは、円筒状のセラミックス以外に、粒
状あるいは粉末状の焼結状であってもスパッタリング蒸
着に有効である。
In the sputtering deposition, sintered Bi-Sr-Ca-Cu-O or Tl-Ba-Ca-Cu-O ceramics is used as a target, but when the substrate temperature is 700 ° C, it forms with the target metal component. In the Bi-Sr-Ca-Cu-O system, compared with the components in the prepared thin film, Bi and Cu, and Tl-Ba-Ca.
The present inventors have confirmed that in the -Cu-O system, Cu tends to be insufficient in a thin film, and about 50% may be excessively added to the target. Therefore, the composition of each target is within the optimum range of the coating. Or The present inventors have confirmed that In this case, the target is effective for sputtering deposition even if the target is not only plate-shaped or cylindrical ceramics but also granular or powdery sintered form.

(具体実施例1) MgOを基体11として用い、マンガンフェライトをター
ゲットとして直流プレーナマグネトロンスパッタにより
マンガンフェライト被膜12を付着させた。この場合Arガ
ス圧力は8Pa,スパッタ電力は300V×30mAで基板温度250
〜600℃に保ち、0.1μmの厚さに成膜した。このフェラ
イト膜は多結晶体であった。このフェライト被膜上に焼
結したBi1.5Sr,CaCu4.5O8ターゲットの高周波プレナー
マグネトロンスパッタにより、被膜13を付着させた。こ
の場合、Arガスの圧力は0.5Pa、スパッタリング電力150
W、スパッタリング時間2時間、被膜の薄膜0.5μm、基
体温度700℃であった。この場合、被膜の超電導転移温
度100゜Kであった。
(Specific Example 1) Using MgO as the base 11, a manganese ferrite coating film 12 was deposited by direct current planar magnetron sputtering using manganese ferrite as a target. In this case, Ar gas pressure is 8 Pa, sputtering power is 300 V x 30 mA, and substrate temperature is 250.
The film was formed at a thickness of 0.1 μm while maintaining the temperature at ˜600 ° C. This ferrite film was polycrystalline. The coating 13 was deposited on the ferrite coating by high frequency planar magnetron sputtering of a Bi 1.5 Sr, CaCu 4.5 O 8 target sintered. In this case, the Ar gas pressure is 0.5 Pa and the sputtering power is 150
W, sputtering time 2 hours, thin film of coating 0.5 μm, substrate temperature 700 ° C. In this case, the superconducting transition temperature of the coating was 100 ° K.

この種の酸化物超電導体(Bi,Sr,Ca)Cu2Oの構成元素
の変化による超電導特性の変化の詳細は明らかではな
い。
The details of changes in superconducting properties due to changes in constituent elements of this type of oxide superconductor (Bi, Sr, Ca) Cu 2 O are not clear.

(具体実施例2) MgOを基体11として用い、コバルトフェライトをター
ゲットとして直流プレーナマグネトロンスパッタにより
コバルトフェライト被膜12を付着させた。この場合Arガ
ス圧力は8Pa,スパッタ電力は300V×30mAで基板温度250
〜600℃に保ち、0.1μmの厚さに成膜した。このフェラ
イト膜は多結晶体であった。このフェライト被膜上に焼
結したTl2Ba2Ca2Cu3O8ターゲットの高周波プレナーマグ
ネトロンスパッタにより、被膜13を付着させた。この場
合、Arガスの圧力は0.5Pa、スパッタリング電力150W、
スパッタリング時間2時間、被膜の膜厚0.5μm、基体
温度700℃であった。この場合、被膜の超電導転移温度1
20゜Kであった。
(Specific Example 2) Using MgO as the substrate 11, a cobalt ferrite coating 12 was deposited by direct current planar magnetron sputtering using cobalt ferrite as a target. In this case, Ar gas pressure is 8 Pa, sputtering power is 300 V x 30 mA, and substrate temperature is 250.
The film was formed at a thickness of 0.1 μm while maintaining the temperature at ˜600 ° C. This ferrite film was polycrystalline. The coating 13 was deposited on the ferrite coating by high frequency planar magnetron sputtering of a Tl 2 Ba 2 Ca 2 Cu 3 O 8 target sintered. In this case, the pressure of Ar gas is 0.5 Pa, the sputtering power is 150 W,
The sputtering time was 2 hours, the film thickness was 0.5 μm, and the substrate temperature was 700 ° C. In this case, the superconducting transition temperature of the coating is 1
It was 20 ° K.

この種の酸化物超電導体(Tl,Ba,Ca)Cu3Oの構成元素
の変化による超電導特性の変化の詳細は明らかではな
い。
The details of changes in superconducting properties due to changes in constituent elements of this type of oxide superconductor (Tl, Ba, Ca) Cu 3 O are not clear.

本発明にかかる超電導体は、超電導体を薄膜線材化し
ている所に大きな特色がある。すなわち、薄膜化は超電
導体の素材を原子状態という極微粒子に分解してから、
基体上に堆積させるから、形成された超電導体の組成は
本質的に、従来の焼結体に比べて均質である。したがっ
て、非常に高精度の超電導体が本発明で実現される。
The superconductor according to the present invention has a great feature in that the superconductor is formed into a thin film wire. That is, thinning the material of the superconductor is decomposed into ultrafine particles called atomic state,
Being deposited on the substrate, the composition of the superconductor formed is essentially homogeneous compared to conventional sintered bodies. Therefore, a very high precision superconductor is realized by the present invention.

さらに、本発明の金属酸化物であるマンガン又はコバ
ルトフェライトは強磁性体であり、その磁化は、膜面に
垂直に向いている。それ故、超電導薄膜中に侵入した磁
束に対してこのフェライト膜は、よいトラップになりう
る。それ故、たとえば、超電導膜の高周波領域において
その損失特性が改善される。
Further, the metal oxide of the present invention, manganese or cobalt ferrite, is a ferromagnetic material, and its magnetization is perpendicular to the film surface. Therefore, this ferrite film can be a good trap for the magnetic flux penetrating into the superconducting thin film. Therefore, for example, the loss characteristics of the superconducting film are improved in the high frequency region.

なお、第1図において、酸化物超電導被膜13上にさら
に、金属酸化物被膜を形成するか、あるいは酸化物超電
導被膜と金属酸化物被膜を交互に積層すると、超電導被
膜の特性がより安定化し、良好な超電導体が形成される
ことを本発明者らは確認した。
In FIG. 1, when a metal oxide film is further formed on the oxide superconducting film 13 or when the oxide superconducting film and the metal oxide film are alternately laminated, the characteristics of the superconducting film are further stabilized, The present inventors have confirmed that a good superconductor is formed.

発明の効果 すでに説明したごとく、本発明によれば緻密で良質の
酸化物超電導体を形成することが可能となり、本発明を
用いて超電導コイルなとが実現される。そして、超電導
体中に侵入した磁束(ボルテックス)の動きを、強磁性
のフェライト薄膜がおさえるように働くので、Hc2,Jc,
高周波特性の改善が可能となる。また、テープ状の基体
を用いると、超電動テープが実現される。これらの本発
明にかかる超電導体は、セラミックス状の線材と比べ
て、臨界電流が一桁以上高い。特にこの種の化合物超電
導体の転移温度が室温になる可能性もあり、従来の実用
の範囲が広く、本発明の工業的価値は高い。
Effect of the Invention As described above, according to the present invention, it is possible to form a dense and high-quality oxide superconductor, and the present invention realizes a superconducting coil. Then, since the ferromagnetic ferrite thin film works to suppress the movement of the magnetic flux (vortex) that has penetrated into the superconductor, Hc 2 , Jc,
High frequency characteristics can be improved. Moreover, a superelectric tape is realized by using a tape-shaped base. These superconductors according to the present invention have a critical current that is higher than the critical current by one digit or more, as compared with the ceramic wire. In particular, the transition temperature of this type of compound superconductor may reach room temperature, and the conventional practical range is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の超電導体の基体構成断面
図、第2図は同超電導体の表面の走査電子顕微鏡(1万
倍)による観察状態を示す図である。 11……ファイバー状基体、12……フェライト薄膜、13…
…酸化物超電導被膜。
FIG. 1 is a sectional view showing the structure of a base body of a superconductor according to an embodiment of the present invention, and FIG. 11 …… Fiber substrate, 12 …… Ferrite thin film, 13…
… Oxide superconducting coating.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA H01L 39/12 ZAAC ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 39/12 ZAA H01L 39/12 ZAAC

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石英ガラス基板、カーボン基板、酸化マグ
ネシウム、ニオブ、チタン、タンタル、ステンレスの何
れかの基体上に、 MnOFe2O3、FeOFe2O3、CoOFe2O3、NiOFe2O3、CuOFe2O3
MgOFe2O3の何れかの金属酸化物被膜を形成し、この被膜
上に、Bi,Sr,CaおよびCuを含む酸化物で、元素のモル比
率が の酸化物被膜を付着させた事を特徴とする超電導体。
1. A MnOFe 2 O 3 , FeOFe 2 O 3 , CoOFe 2 O 3 , NiOFe 2 O 3 , on a quartz glass substrate, a carbon substrate, a magnesium oxide, niobium, titanium, tantalum, or stainless steel substrate. CuOFe 2 O 3 ,
A metal oxide film of MgOFe 2 O 3 is formed, and an oxide containing Bi, Sr, Ca and Cu is formed on the film, and the molar ratio of the elements is A superconductor characterized by having the oxide film of 1.
【請求項2】石英ガラス基板、カーボン基板、酸化マグ
ネシウム、ニオブ、チタン、タンタル、ステンレスの何
れかの基体上に、 MnOFe2O3、FeOFe2O3、CoOFe2O3、NiOFe2O3、CuOFe2O3
MgOFe2O3の何れかの金属酸化物被膜を形成し、この被膜
上に、Tl,Ba,CaおよびCuを含む酸化物で、元素のモル比
率が の酸化物被膜を付着させた事を特徴とする超電導体。
2. A MnOFe 2 O 3 , FeOFe 2 O 3 , CoOFe 2 O 3 , NiOFe 2 O 3 , on a quartz glass substrate, a carbon substrate, a magnesium oxide, niobium, titanium, tantalum, or stainless steel substrate. CuOFe 2 O 3 ,
A metal oxide film of MgOFe 2 O 3 is formed, and on this film, an oxide containing Tl, Ba, Ca, and Cu, in which the molar ratio of elements is A superconductor characterized by having the oxide film of 1.
【請求項3】金属酸化物被膜上にさらに、酸化物超電導
被膜を形成するか、あるいは金属酸化物被膜と酸化物超
電導被膜を交互に積層して形成したことを特徴とする特
許請求の範囲第1項または第2項記載の超電導体。
3. An oxide superconducting film is further formed on the metal oxide film, or a metal oxide film and an oxide superconducting film are alternately laminated to each other. The superconductor according to item 1 or 2.
JP63080836A 1988-03-31 1988-03-31 Superconductor Expired - Fee Related JP2517055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080836A JP2517055B2 (en) 1988-03-31 1988-03-31 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080836A JP2517055B2 (en) 1988-03-31 1988-03-31 Superconductor

Publications (2)

Publication Number Publication Date
JPH01252536A JPH01252536A (en) 1989-10-09
JP2517055B2 true JP2517055B2 (en) 1996-07-24

Family

ID=13729466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080836A Expired - Fee Related JP2517055B2 (en) 1988-03-31 1988-03-31 Superconductor

Country Status (1)

Country Link
JP (1) JP2517055B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208327A (en) * 1988-02-15 1989-08-22 Matsushita Electric Ind Co Ltd Production of thin film of superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208327A (en) * 1988-02-15 1989-08-22 Matsushita Electric Ind Co Ltd Production of thin film of superconductor

Also Published As

Publication number Publication date
JPH01252536A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
EP0292959B1 (en) Superconducting member
JP2711253B2 (en) Superconducting film and method for forming the same
JPH04229510A (en) Substrate for ceramic superconductor having nickel as basic material
JP2517055B2 (en) Superconductor
JPH0776155B2 (en) Method for manufacturing ceramic superconducting compact
JPH0688858B2 (en) Superconductor
JPH026394A (en) Superconductive thin layer
US5512542A (en) Metallic oxide with boron and process for manufacturing the same
JP2506798B2 (en) Superconductor
JP2585366B2 (en) Oxide superconducting wire
JPH07106896B2 (en) Superconductor
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
Tiefel et al. High transport J c and magnetization in textured Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
EP0333513B1 (en) Oxide superconductor
JPH0818837B2 (en) Sputtering target and method for manufacturing superconducting thin film
JPH01125878A (en) Thin film multilayer superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP2913653B2 (en) Oxide superconducting thin film structure
JP2821885B2 (en) Superconducting thin film forming method
JPS63299010A (en) Ceramic superconductive material
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH0761867B2 (en) Method for producing complex oxide superconducting thin film
JPH0195419A (en) Formation of superconducting thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees