JPH02311398A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH02311398A
JPH02311398A JP1135231A JP13523189A JPH02311398A JP H02311398 A JPH02311398 A JP H02311398A JP 1135231 A JP1135231 A JP 1135231A JP 13523189 A JP13523189 A JP 13523189A JP H02311398 A JPH02311398 A JP H02311398A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
film
substrate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1135231A
Other languages
Japanese (ja)
Other versions
JP2814563B2 (en
Inventor
Norikata Hayashi
憲器 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1135231A priority Critical patent/JP2814563B2/en
Publication of JPH02311398A publication Critical patent/JPH02311398A/en
Application granted granted Critical
Publication of JP2814563B2 publication Critical patent/JP2814563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the subject film capable of giving critical current density comparable to that for single crystal by heat treatment of the smooth first layer formed with an oxide superconducting material to provide this layer to have a crystal orientation followed by forming the second layer thereon under other film-forming conditions. CONSTITUTION:The smooth first layer consisting of an oxide material containing the same elements as those for the objective oxide superconducting material is formed on a substrate through a sputtering process. The first layer is then heat-treated to provide it to have a crystal orientation Thence, the second layer consisting of said oxide superconducting material is formed on the resultant first layer through a sputtering, laser ablation, vapor deposition, CVD or thermal decomposition process under film-forming conditions differing from those for forming the first layer.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、酸化物超電導膜の製造方法に関するもので
、特に、たとえば超電導コイル、超電導ケーブル等に使
用される酸化物超電導線に含まれる酸化物超電導膜の製
造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing an oxide superconducting film, and in particular, it relates to a method for producing an oxide superconducting film, and in particular, it relates to a method for producing an oxide superconducting film. The present invention relates to a method for manufacturing a superconducting film.

[従来の技術J 酸化物超電導物質を導体祠料として使用可能とするため
の一手段として、酸化物超電導膜を基板上に形成した状
態とすることが行なわれている。
[Prior Art J] As a means for making an oxide superconducting material usable as a conductor abrasive material, an oxide superconducting film is formed on a substrate.

基板として、可撓性を有する長尺状のものを用いれば、
酸化物超電導線が得られる。
If a flexible long substrate is used,
An oxide superconducting wire is obtained.

このような基板上への酸化物超電導膜の形成には種々の
方法が提案されているが、それらの方法のうち、酸化物
超電導膜に対して臨界電流密度の高い値が得られている
のは、気相法によるもので、この気相法には、スパッタ
法、レーザアブレーション法、蒸着法、CVD法、熱分
解法、等の方法がある。
Various methods have been proposed for forming oxide superconducting films on such substrates, but among these methods, only one method has been able to obtain a high value of critical current density for oxide superconducting films. is based on a vapor phase method, and the vapor phase method includes methods such as sputtering method, laser ablation method, vapor deposition method, CVD method, and thermal decomposition method.

特に、酸化物超電導物質の格子定数と近い値を有する単
結晶基板上において、高い臨界電流密度を持つ酸化物超
電導膜の製造に成功している。言換えると、多結晶基板
上で形成した酸化物超電導膜の臨界電流密度は、単結晶
基板上での酸化物超電導膜に比べ、一般に劣っている。
In particular, we have succeeded in producing oxide superconducting films with high critical current densities on single-crystal substrates with lattice constants close to those of oxide superconducting materials. In other words, the critical current density of an oxide superconducting film formed on a polycrystalline substrate is generally inferior to that of an oxide superconducting film formed on a single crystal substrate.

たとえば、Y−Ba−Cu−0系酸化物超電導膜の臨界
電流密度は、液体窒素中において、MgO単結晶基板上
では、106/cm2であるのに対し、YSz多結晶基
板上では、103A/Cm2であった。
For example, the critical current density of a Y-Ba-Cu-0 based oxide superconducting film is 106/cm2 on an MgO single crystal substrate in liquid nitrogen, whereas it is 103 A/cm2 on a YSz polycrystalline substrate. It was Cm2.

[発明が解決しようとする課題] セラミックスからなる基板の場合、現在、単結晶では、
可撓性を有するものが知られていない。
[Problems to be solved by the invention] Currently, in the case of substrates made of ceramics, single crystals have
There is no known material that is flexible.

このような可撓性は、超電導コイルや超電導ケーブル等
に使用される酸化物超電導線にとって、必須の条件であ
る。多結晶基板には、可撓性を有するものが既に多く知
られており、可撓性を得る目的からすれば、多結晶基板
を用いることが望ましい。
Such flexibility is an essential condition for oxide superconducting wires used in superconducting coils, superconducting cables, and the like. Many polycrystalline substrates having flexibility are already known, and from the viewpoint of obtaining flexibility, it is desirable to use a polycrystalline substrate.

たとえば、Y−Ba−Cu−0系酸化物超電導物質から
なる膜を、YSZ(イツトリア安定化ジルコニア)多結
晶基板上に形成したとき、そのような酸化物超電導膜は
、C軸が基板に対して垂直に配向しており、また、超電
導特性を示す臨界温度が80に以上を示している。しか
しながら、膜のモフォロジーに関しては、析出粒子間の
融合度が大きくなく、MgO単結晶基板上に形成した膜
と比べ、緻密性および平滑性が劣るという課題があった
。このような緻密性および平滑性が劣ることは、超電導
線材にとって重要な臨界電流密度の向上を妨げる。
For example, when a film made of Y-Ba-Cu-0-based oxide superconducting material is formed on a YSZ (yttria stabilized zirconia) polycrystalline substrate, the C-axis of such oxide superconducting film is In addition, the critical temperature exhibiting superconducting properties is 80°C or higher. However, regarding the morphology of the film, there was a problem that the degree of fusion between precipitated particles was not large, and the density and smoothness were inferior compared to a film formed on an MgO single crystal substrate. Such poor density and smoothness hinders improvement in critical current density, which is important for superconducting wires.

そこで、この発明は、高い臨界電流密度を与えることが
できる酸化物超電導膜の製造方法を提供することを目的
とするものである。
Therefore, an object of the present invention is to provide a method for manufacturing an oxide superconducting film that can provide a high critical current density.

[課題を解決するための手段] この発明は、酸化物超電導膜を基板上において製造する
方法に向けられるものであって、上述した技術的課題を
解決するため、まず、基板上に、酸化物超電導物質と同
じ元素を含む酸化物物質からなる平滑性を有する第1層
を形成し、次いで、この第1層を熱処理して酸化物物質
に結晶配向性を与え、さらに、続いて、結晶配向性が与
えられた第1層上に、この第1層を形成するのとは異な
る成膜条件または成膜法で前記酸化物超電導物質からな
る第2層を形成する、各ステップを備えることを特徴と
するものである。
[Means for Solving the Problems] The present invention is directed to a method of manufacturing an oxide superconducting film on a substrate. A smooth first layer made of an oxide material containing the same element as the superconducting material is formed, and then this first layer is heat-treated to impart crystal orientation to the oxide material. forming a second layer made of the oxide superconducting material on the first layer imparted with properties under different film forming conditions or a film forming method from that for forming the first layer. This is a characteristic feature.

上述した第1層および第2層を形成するため、たとえば
、第1層の形成には、スパッタ法が用いられ、また、第
2層の形成には、スパッタ法、レーザアブレーション法
、蒸着法、CVD法または熱分解法が用いられる。
In order to form the above-mentioned first layer and second layer, for example, the first layer is formed using a sputtering method, and the second layer is formed using a sputtering method, a laser ablation method, a vapor deposition method, A CVD method or a thermal decomposition method is used.

また、酸化物超電導線を得るためには、可撓性を有する
長尺体の形態をなす基板が用いられる。
Further, in order to obtain an oxide superconducting wire, a substrate in the form of a flexible elongated body is used.

そのような基板として、多結晶体からなるものを有利に
用いることができる。また、可撓性を有する基板は、よ
り具体的には、安定化ジルコニア、アルミナ、イツトリ
ア、シリカもしくはチタニアからなるセラミックス、ま
たは、白金、銅、銀、アルミニウム、ニッケル、ハステ
ロイ、インコネル、インコロイもしくはステンレス鋼か
らなる金属材料によって構成されたものがある。
As such a substrate, one made of polycrystalline material can be advantageously used. Further, the flexible substrate is more specifically made of ceramics made of stabilized zirconia, alumina, ittria, silica, or titania, or platinum, copper, silver, aluminum, nickel, Hastelloy, Inconel, Incoloy, or stainless steel. Some are constructed from metal materials such as steel.

なお、第1層を形成する酸化物物質は、超電導特性を有
するのが望ましいが、このことは必要条件ではない。
Note that although it is desirable that the oxide material forming the first layer has superconducting properties, this is not a necessary condition.

[発明の作用および効果コ この発明によって、酸化物超電導膜を製造する場合、第
1層が、まず、酸化物超電導物質と同じ元素を含む酸化
物物質によって形成される。このような第1層は、平滑
な表面状態で析出されればよく、たとえ非晶質であって
もよい。次に、第1層が熱処理されたとき、その平滑な
表面状態が保たれたまま、結晶化される。次に、第1層
と異なる成膜条件または成膜法で、酸化物超電導物質か
らなる第2層が形成される。この場合、第1層は、酸化
物超電導物質と同じ元素を含む酸化物超電導物質からな
るものであるので、第2層を構成する酸化物超電導物質
と化学量論比の点において近いものとなっている。した
がって、このような第1層を結晶化した後、その上に第
2層を形成したとき、この第2層は、結晶配向性ととも
に緻密性かつ平滑性に優れた膜とすることができる。そ
して、このように、第1層をまず形成し、それに結晶配
向性を与え、次いで、第2層を、第1層とは異なる成膜
条件または成膜法で形成すれば、たとえば、酸化物超電
導膜を第1層または第2層の形成条件単独で成膜した場
合に比べて、高い臨界電流密度が得られることがわかっ
た。
[Operations and Effects of the Invention] When manufacturing an oxide superconducting film according to the present invention, the first layer is first formed of an oxide material containing the same element as the oxide superconducting material. Such a first layer may be deposited with a smooth surface, and may even be amorphous. Next, when the first layer is heat treated, it is crystallized while maintaining its smooth surface condition. Next, a second layer made of an oxide superconducting material is formed using different film forming conditions or a different film forming method from the first layer. In this case, since the first layer is made of an oxide superconducting material containing the same elements as the oxide superconducting material, it is close in stoichiometric ratio to the oxide superconducting material constituting the second layer. ing. Therefore, when such a first layer is crystallized and then a second layer is formed thereon, the second layer can be a film having excellent crystal orientation, density, and smoothness. In this way, if the first layer is first formed and given crystal orientation, and then the second layer is formed under different deposition conditions or deposition methods than the first layer, for example, oxide It has been found that a higher critical current density can be obtained than when a superconducting film is formed under only the conditions for forming the first layer or the second layer.

たとえば多結晶基板上に、酸化物超電導膜を、直接、形
成しても、前述のように、高い臨界電流密度を得ること
ができない場合がある。この理由として、基板と酸化物
超電導膜とが反応すること、熱膨張係数が異なることに
より、酸化物超電導膜に歪およびクラックが生じること
、析出粒子間の融合度が低いこと、などが挙げられる。
For example, even if an oxide superconducting film is directly formed on a polycrystalline substrate, a high critical current density may not be obtained as described above. Reasons for this include reactions between the substrate and the oxide superconducting film, distortion and cracks in the oxide superconducting film due to differences in thermal expansion coefficients, and a low degree of fusion between precipitated particles. .

この発明において、超電導膜となる第2層を形成する前
に形成される第1層は、中間層として機能し、上述のよ
うな基板と酸化物超電導膜との間での不所望な相互作用
を防止する働きがある。
In this invention, the first layer formed before forming the second layer, which becomes the superconducting film, functions as an intermediate layer and prevents the undesired interaction between the substrate and the oxide superconducting film as described above. It works to prevent

また、第1層は、第2層を構成する酸化物超電導物質と
同じ元素を含む酸化物物質から構成されるので、たとえ
ば気相法で用いられる蒸着粒子の原材料となるターゲッ
ト等を共通に用いることができ、したがって、必要とあ
れば、第1層の形成と第2層の形成とを同じ装置または
連続した工程をもって実施することを可能にすることも
できる。
Furthermore, since the first layer is composed of an oxide material containing the same element as the oxide superconducting material constituting the second layer, a target, etc., which is a raw material for vapor deposition particles used in a vapor phase method, is used in common. Therefore, if necessary, it may be possible to perform the formation of the first layer and the formation of the second layer using the same device or in a continuous process.

この発明において、基板として、可撓性を有する長尺状
のものを用いれば、超電導コイル、超電導ケーブル等に
使用される酸化物超電導線を得ることができる。
In this invention, if a flexible elongated substrate is used, an oxide superconducting wire used for superconducting coils, superconducting cables, etc. can be obtained.

また、この発明では、前述したように、基板として、多
結晶体を用いても、単結晶基板を用いた場合に匹敵する
超電導特性、特に臨界電流密度を得ることができる。そ
のため、より高い臨界電流密度を維持しながら、可撓性
を有する基板の材料の選択範囲を拡げることができる。
Furthermore, in the present invention, as described above, even if a polycrystalline material is used as the substrate, superconducting properties, particularly critical current density, comparable to those obtained when a single crystal substrate is used can be obtained. Therefore, it is possible to expand the selection range of flexible substrate materials while maintaining a higher critical current density.

[実施例コ 以下に、この発明に従った行なった実施例および比較例
について説明する。
[Examples] Examples and comparative examples according to the present invention will be described below.

実施例1 スパッタリング法により、Y−Ba−Cu−0膜からな
る第1層を、以下の第1表に示した条件で作製した。
Example 1 A first layer consisting of a Y-Ba-Cu-0 film was produced by sputtering under the conditions shown in Table 1 below.

第1表 得られた第1層について、その表面を電子顕微鏡で観察
したところ、粒子間の境界か判別できないほど平滑な膜
であった。また、X線回折で、結晶性を調べたところ、
Y−Ba−Cu−0系超電導物質に割当てられるピーク
は認められなかった。
When the surface of the first layer obtained in Table 1 was observed using an electron microscope, it was found that the film was so smooth that boundaries between particles could not be discerned. In addition, when examining the crystallinity by X-ray diffraction,
No peak assigned to Y-Ba-Cu-0 based superconducting material was observed.

また、膜の一部を切取り、組成比を調べたところ、YI
Ba、oC!、、、9であった。
In addition, when we cut out a part of the film and examined the composition ratio, we found that YI
Ba,oC! ,,,9.

上述の第1層としての酸化物物質膜を、電気炉において
、900℃で1分間、熱処理した。熱処理後の膜の表面
を、電子顕微鏡で観察したところ、熱処理前に観察した
表面形状とほとんど変化がないことを確認した。X線回
折で結晶性を調べたところ、基板に対して、C軸が垂直
に配向しているのが認められた。
The above-described oxide material film as the first layer was heat-treated at 900° C. for 1 minute in an electric furnace. When the surface of the film after heat treatment was observed using an electron microscope, it was confirmed that there was almost no change in the surface shape observed before heat treatment. When the crystallinity was examined by X-ray diffraction, it was found that the C axis was oriented perpendicularly to the substrate.

次に、上述の第1層の上に、以下の第2表に示す条件の
スパッタ法により、Y−Ba−Cu−0膜からなる第2
層を形成した。
Next, a second Y-Ba-Cu-0 film was formed on the first layer by sputtering under the conditions shown in Table 2 below.
formed a layer.

(以下余白) 第2表 得られた酸化物超電導膜の超電導特性を測定したところ
、液体窒素中での臨界電流密度Jcは、8.9X103
A/cm2であった。さらに、950℃で10分間の熱
処理を行なった後のJcは、5.6X105A/Cm2
であった。
(Left below) Table 2 The superconducting properties of the obtained oxide superconducting film were measured, and the critical current density Jc in liquid nitrogen was 8.9X103
It was A/cm2. Furthermore, Jc after heat treatment at 950℃ for 10 minutes is 5.6X105A/Cm2
Met.

実施例2 第1層は、上述の実施例1と同じ成膜条件および同じ熱
処理条件で作製した。
Example 2 The first layer was produced under the same film formation conditions and the same heat treatment conditions as in Example 1 described above.

次いで、第2層を、以下の第3表に示す条件のCVD法
により形成した。
Next, a second layer was formed by CVD under the conditions shown in Table 3 below.

第3表 得られた超電導膜の液体窒素中でのJcは、3゜0×1
03A/cm2であり、さらに950 ℃で10分間の
熱処理を行なった後のJcは、2. 0×105A/c
m2であった。
Table 3 Jc of the obtained superconducting film in liquid nitrogen is 3°0×1
03A/cm2, and after further heat treatment at 950°C for 10 minutes, Jc is 2.03A/cm2. 0x105A/c
It was m2.

実施例3 第1層は、実施例1と同じ成膜条件および同じ熱処理条
件で作製した。
Example 3 The first layer was produced under the same film formation conditions and the same heat treatment conditions as in Example 1.

次いで、第2層を、以下の第4表で示す条件のレーザア
ブレーション法を用いて作製した。
Next, a second layer was produced using a laser ablation method under the conditions shown in Table 4 below.

(以下余白) 第4表 得られた酸化物超電導膜の液体窒素中でのJcは、5.
0XIO3A/cm2であり、さらに950℃で10分
間の熱処理を行なった後のJcは、7、 5 X 10
5A/ c m2であった。
(Left below) Table 4 Jc of the obtained oxide superconducting film in liquid nitrogen is 5.
0XIO3A/cm2, and after further heat treatment at 950°C for 10 minutes, Jc is 7.5 x 10
It was 5A/cm2.

比較例 前述の第2表で示す条件のスパッタ法により、Y−Ba
−Cu−0膜を作製した。
Comparative Example By sputtering under the conditions shown in Table 2 above, Y-Ba
-Cu-0 film was produced.

得られた膜の液体窒素中でのJcは、1,0×103A
/cm2であり、さらに950℃で10分間の熱処理を
行なった後のJcは、1.OXI04A/cm2であっ
た。
The Jc of the obtained film in liquid nitrogen is 1,0×103A
/cm2, and after further heat treatment at 950°C for 10 minutes, Jc is 1. It was OXI04A/cm2.

この比較例を、前述した実施例1〜3と比較すればわか
るように、同じ成膜法および同じ成膜条件で酸化物超電
導膜を形成した場合、高いJcを得ることができない。
As can be seen by comparing this comparative example with Examples 1 to 3 described above, when an oxide superconducting film is formed using the same film forming method and the same film forming conditions, a high Jc cannot be obtained.

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に、酸化物超電導物質と同じ元素を含む酸
化物物質からなる平滑性を有する第1層を形成し、 前記第1層を熱処理して前記酸化物物質に結晶配向性を
与え、 前記結晶配向性が与えられた前記第1層上に、前記第1
層を形成するのとは異なる成膜条件または成膜法で前記
酸化物超電導物質からなる第2層を形成する、 各ステップを備える、酸化物超電導膜の製造方法。
(1) Forming a smooth first layer made of an oxide material containing the same element as the oxide superconducting material on a substrate, and heat-treating the first layer to impart crystal orientation to the oxide material. , on the first layer given the crystal orientation, the first
A method for producing an oxide superconducting film, comprising steps of forming a second layer made of the oxide superconducting material under different film forming conditions or a film forming method from those used for forming the second layer.
(2)前記第1層を、スパッタ法により形成し、かつ、
前記第2層を、スパッタ法、レーザアブレーション法、
蒸着法、CVD法または熱分解法により形成する、請求
項1記載の酸化物超電導膜の製造方法。
(2) the first layer is formed by sputtering, and
The second layer is formed by a sputtering method, a laser ablation method,
The method for producing an oxide superconducting film according to claim 1, which is formed by a vapor deposition method, a CVD method, or a thermal decomposition method.
(3)前記基板は、可撓性を有する長尺体である、請求
項1または2記載の酸化物超電導膜の製造方法。
(3) The method for manufacturing an oxide superconducting film according to claim 1 or 2, wherein the substrate is a flexible elongated body.
(4)前記基板は、多結晶体からなる、請求項3記載の
酸化物超電導膜の製造方法。
(4) The method for manufacturing an oxide superconducting film according to claim 3, wherein the substrate is made of polycrystalline material.
(5)前記基板は、安定化ジルコニア、アルミナ、イッ
トリア、シリカもしくはチタニアからなるセラミックス
、または、白金、銅、銀、アルミニウム、ニッケル、ハ
ステロイ、インコネル、インコロイもしくはステンレス
鋼からなる金属材料によって構成される、請求項3記載
の酸化物超電導膜の製造方法。
(5) The substrate is made of a ceramic material made of stabilized zirconia, alumina, yttria, silica, or titania, or a metal material made of platinum, copper, silver, aluminum, nickel, Hastelloy, Inconel, Incoloy, or stainless steel. The method for manufacturing an oxide superconducting film according to claim 3.
JP1135231A 1989-05-29 1989-05-29 Manufacturing method of oxide superconducting film Expired - Lifetime JP2814563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135231A JP2814563B2 (en) 1989-05-29 1989-05-29 Manufacturing method of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135231A JP2814563B2 (en) 1989-05-29 1989-05-29 Manufacturing method of oxide superconducting film

Publications (2)

Publication Number Publication Date
JPH02311398A true JPH02311398A (en) 1990-12-26
JP2814563B2 JP2814563B2 (en) 1998-10-22

Family

ID=15146877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135231A Expired - Lifetime JP2814563B2 (en) 1989-05-29 1989-05-29 Manufacturing method of oxide superconducting film

Country Status (1)

Country Link
JP (1) JP2814563B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558625A (en) * 1991-08-28 1993-03-09 Sumitomo Electric Ind Ltd Oxide superconductor thin film having insulating layer and its production
JPH05139737A (en) * 1991-11-15 1993-06-08 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide thin film and film forming method therefor
US5386798A (en) * 1993-10-06 1995-02-07 Martin Marietta Energy Systems, Inc. Method for continuous control of composition and doping of pulsed laser deposited films
JP2003206134A (en) * 2002-12-04 2003-07-22 Sumitomo Electric Ind Ltd High temperature superconducting thick film member and method for producing the same
WO2006082747A1 (en) * 2005-02-03 2006-08-10 Sumitomo Electric Industries, Ltd. Superconducting thin film material, superconducting wire rod and methods for manufacturing such superconducting thin film material and superconducting wire rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239738A (en) * 1987-03-27 1988-10-05 Matsushita Electric Ind Co Ltd Superconductor wire and manufacture thereof
JPS6463215A (en) * 1987-09-03 1989-03-09 Fujikura Ltd High temperature superconductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239738A (en) * 1987-03-27 1988-10-05 Matsushita Electric Ind Co Ltd Superconductor wire and manufacture thereof
JPS6463215A (en) * 1987-09-03 1989-03-09 Fujikura Ltd High temperature superconductive material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558625A (en) * 1991-08-28 1993-03-09 Sumitomo Electric Ind Ltd Oxide superconductor thin film having insulating layer and its production
JPH05139737A (en) * 1991-11-15 1993-06-08 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide thin film and film forming method therefor
US5386798A (en) * 1993-10-06 1995-02-07 Martin Marietta Energy Systems, Inc. Method for continuous control of composition and doping of pulsed laser deposited films
US5499599A (en) * 1993-10-06 1996-03-19 Martin Marietta Energy Systems, Inc. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control
JP2003206134A (en) * 2002-12-04 2003-07-22 Sumitomo Electric Ind Ltd High temperature superconducting thick film member and method for producing the same
WO2006082747A1 (en) * 2005-02-03 2006-08-10 Sumitomo Electric Industries, Ltd. Superconducting thin film material, superconducting wire rod and methods for manufacturing such superconducting thin film material and superconducting wire rod
JP2006216365A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Superconductive thin film material, superconductive wire and manufacturing method thereof

Also Published As

Publication number Publication date
JP2814563B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
EP0446789B1 (en) Method of preparing oxide superconducting film
JPH02311398A (en) Production of oxide superconducting film
KR20050118294A (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JPS63239742A (en) Manufacture for film superconductor
JPH02311397A (en) Production of oxide superconducting film
JPH0218974A (en) Supeconducting device and its manufacture
JPH02252697A (en) Production of superconducting ceramic thin film
JPH01208327A (en) Production of thin film of superconductor
JPH01166419A (en) Manufacture of superconductive membrane
JPH053439B2 (en)
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH02217306A (en) Production of oxide superconductor
JPH0512318B2 (en)
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPH05148094A (en) Finishing of film-forming surface on film-forming base
JPH02196005A (en) Formation of superconducting thin film
JPH02196006A (en) Formation of superconducting thin film
JPH01167218A (en) Production of superconducting thin film
JPH03261607A (en) Manufacture of high-temperature superconducting thin film
JPH04232251A (en) Formation of lanthanum aluminate thin film
JPH0474798A (en) Production of oxide superconductor thin film
JPH0669920B2 (en) Method for producing multi-layered high temperature superconducting thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JPS63239737A (en) Superconductor
JPH03131595A (en) Formation of superconductor thin film