JPH0558625A - Oxide superconductor thin film having insulating layer and its production - Google Patents

Oxide superconductor thin film having insulating layer and its production

Info

Publication number
JPH0558625A
JPH0558625A JP3242801A JP24280191A JPH0558625A JP H0558625 A JPH0558625 A JP H0558625A JP 3242801 A JP3242801 A JP 3242801A JP 24280191 A JP24280191 A JP 24280191A JP H0558625 A JPH0558625 A JP H0558625A
Authority
JP
Japan
Prior art keywords
oxide
thin film
superconducting
superconducting thin
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3242801A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3242801A priority Critical patent/JPH0558625A/en
Priority to EP92402354A priority patent/EP0534811B1/en
Priority to CA002077047A priority patent/CA2077047C/en
Priority to DE69210523T priority patent/DE69210523T2/en
Publication of JPH0558625A publication Critical patent/JPH0558625A/en
Priority to US08/198,362 priority patent/US5462919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable to continuous film formation without deteriorating an oxide superconductor thin film in a processing by the photolithography technique. CONSTITUTION:A Y1Ba2Cu3O7-yoxide superconductor thin film 2 formed on a MgO substrate 1 is heated at 375 deg.C in vacuum <=1X10<-9>Torr and kept at the temperature for 10 minutes to change a part having about 15nm thickness of the surface into a Y1Ba2Cu3O7-X (x<y<7) non-superconductive oxide layer 20. Au electrodes 5 and 6 are formed on the non-superconductive layer 20, then a Y1Ba2Cu3O7-y oxide superconductor thin film is further laminated to the layer to form superconductive electrodes 31, 32 and 33. During growing of the Y1Ba2Cu3O7-X oxide superconductor thin film, the lower parts of superconductive electrodes 31, 32 and 33 in the non-superconductive oxide layer 20 become an oxide superconductor by taking oxygen. Hence, non- superconductive oxide layers 21 and 22 are formed solely under the Au electrodes 5 and 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導薄膜に関
する。より詳細には、表面の一部に絶縁体層を有する酸
化物超電導薄膜に関する。
FIELD OF THE INVENTION The present invention relates to an oxide superconducting thin film. More specifically, it relates to an oxide superconducting thin film having an insulating layer on a part of its surface.

【0002】[0002]

【従来の技術】酸化物超電導体を各種の超電導素子等に
使用するためには、薄膜化し、さらに絶縁体層、半導体
層と積層することが必要となる。例えば、トンネル接合
型のジョセフソン素子を酸化物超電導体を使用して実現
する場合には、一対の酸化物超電導体層の間に極めて薄
い絶縁体層を挟む構成を実現しなければならない。ま
た、超電導電界効果型素子は、超電導チャネルを流れる
超電導電流を超電導チャネル上に絶縁層を介して配置さ
れたゲート電極に印加する電圧で制御する構成であり、
酸化物超電導体を超電導チャネルに使用する場合には、
酸化物超電導薄膜上に絶縁体層を形成しなければならな
い。
2. Description of the Related Art In order to use an oxide superconductor in various superconducting elements, it is necessary to make it thin and further laminate it with an insulator layer and a semiconductor layer. For example, when realizing a tunnel junction type Josephson device using an oxide superconductor, it is necessary to realize a structure in which an extremely thin insulator layer is sandwiched between a pair of oxide superconductor layers. Further, the superconducting field effect element has a configuration in which a superconducting current flowing through the superconducting channel is controlled by a voltage applied to a gate electrode arranged via an insulating layer on the superconducting channel,
When using oxide superconductors in superconducting channels,
An insulator layer must be formed on the oxide superconducting thin film.

【0003】上記のような、超電導素子、超電導装置を
作製する場合、酸化物超電導薄膜上の所定の位置に絶縁
体層等を形成しなければならない。一般に、薄膜上の一
部に他の薄膜を積層する加工を行う場合には、フォトレ
ジストが使用される。前述の酸化物超電導薄膜上に絶縁
体層を形成するには、酸化物超電導薄膜表面の絶縁体層
を形成しない部分をフォトレジストで被覆し、それをマ
スクとして絶縁体層を成長させる。
When manufacturing the superconducting element and the superconducting device as described above, it is necessary to form an insulator layer or the like at a predetermined position on the oxide superconducting thin film. Generally, a photoresist is used when a process of laminating another thin film on a part of the thin film is performed. In order to form the insulator layer on the oxide superconducting thin film described above, a portion of the surface of the oxide superconducting thin film on which the insulator layer is not formed is covered with a photoresist, and the insulator layer is grown using the photoresist as a mask.

【0004】[0004]

【発明が解決しようとする課題】上記の加工では、最終
的には、フォトレジストを除去するが、その際、フォト
レジストが残留して酸化物超電導薄膜の表面を汚染した
り、フォトレジスト剥離剤と酸化物超電導薄膜を構成す
る酸化物超電導体が反応して酸化物超電導体が超電導性
を失ったりすることがある。また、このように酸化物超
電導薄膜の表面に問題が生じると、この酸化物超電導薄
膜上に他の薄膜を積層しても所定の効果が得られず、特
に、超電導素子を作製するには不利になる。また、酸化
物超電導薄膜に連続して他の薄膜を成膜し、積層膜を形
成する処理は困難である。
In the above processing, the photoresist is finally removed, but at that time, the photoresist remains and contaminates the surface of the oxide superconducting thin film, or the photoresist stripping agent is used. And the oxide superconductor forming the oxide superconducting thin film may react with each other to cause the oxide superconductor to lose superconductivity. In addition, when a problem occurs on the surface of the oxide superconducting thin film as described above, a predetermined effect cannot be obtained even if another thin film is laminated on the oxide superconducting thin film, which is particularly disadvantageous for producing a superconducting element. become. Further, it is difficult to form a laminated film by continuously forming another thin film on the oxide superconducting thin film.

【0005】そこで本発明の目的は、上記従来技術の問
題点を解決した酸化物超電導薄膜およびその作製方法を
提供することにある。
Therefore, an object of the present invention is to provide an oxide superconducting thin film and a method for producing the same, which solve the above-mentioned problems of the prior art.

【0006】[0006]

【課題を解決するための手段】本発明に従うと、表面の
一部に絶縁体層を有し、他の部分が酸化物超電導体で構
成されている酸化物超電導薄膜において、前記絶縁体層
が前記酸化物超電導薄膜と一体に形成され、酸化物超電
導体と等しい構成元素が有し、結晶中の酸素が少なくて
超電導性を示さない非超電導酸化物で構成されているこ
とを特徴とする酸化物超電導薄膜が提供される。
According to the present invention, in an oxide superconducting thin film having an insulator layer on a part of the surface and another part made of an oxide superconductor, the insulator layer is Oxidation characterized in that it is formed integrally with the oxide superconducting thin film, has the same constituent elements as the oxide superconductor, and is composed of a non-superconducting oxide that does not show superconductivity due to a small amount of oxygen in the crystal. A superconducting thin film is provided.

【0007】また、本発明においては、酸化物超電導薄
膜に該酸化物超電導薄膜の表面の一部をなす絶縁体層を
含む層を積層する方法において、前記酸化物超電導薄膜
を圧力1×10-9Torr以下の高真空中で熱処理し、該酸化
物超電導薄膜表面の酸化物超電導体結晶中の酸素を減少
させて非超電導酸化物に変え、絶縁体層とする部分を被
覆した後、前記非超電導酸化物に酸素を導入して酸化物
超電導体に変える工程を含むことを特徴とする方法が提
供される。
Further, in the present invention, in the method of laminating a layer including an insulator layer forming a part of the surface of the oxide superconducting thin film on the oxide superconducting thin film, the oxide superconducting thin film is pressured at 1 × 10 − After heat treatment in a high vacuum of 9 Torr or less, oxygen in the oxide superconducting crystal on the surface of the oxide superconducting thin film is reduced to a non-superconducting oxide, and the non-superconducting oxide layer is covered with A method is provided which comprises the step of introducing oxygen into the superconducting oxide to convert it into an oxide superconductor.

【0008】[0008]

【作用】本発明の酸化物超電導薄膜は、酸化物超電導体
の結晶中の酸素を除去して形成された非超電導酸化物で
構成された絶縁体層を表面の一部に有する。本発明の酸
化物超電導薄膜の非超電導酸化物は、酸化物超電導薄膜
が十分な超電導性を示す温度で絶縁体特性を示すもので
ある。本発明の酸化物超電導薄膜の絶縁体層は、酸化物
超電導薄膜を構成する酸化物超電導体の一部が非超電導
酸化物に変化したものである。従って、絶縁体層は、酸
化物超電導薄膜と一体に形成され、酸化物超電導体と構
成元素が等しい。そのため、本発明の酸化物超電導薄膜
では、絶縁体層により周囲の酸化物超電導体が汚染され
たり、特性が劣化するようなことがない。
The oxide superconducting thin film of the present invention has an insulating layer composed of a non-superconducting oxide formed by removing oxygen in the crystal of the oxide superconductor on a part of the surface. The non-superconducting oxide of the oxide superconducting thin film of the present invention exhibits insulating properties at a temperature at which the oxide superconducting thin film exhibits sufficient superconductivity. In the insulator layer of the oxide superconducting thin film of the present invention, a part of the oxide superconductor forming the oxide superconducting thin film is changed to a non-superconducting oxide. Therefore, the insulator layer is formed integrally with the oxide superconducting thin film, and has the same constituent elements as those of the oxide superconductor. Therefore, in the oxide superconducting thin film of the present invention, the surrounding oxide superconductor is not contaminated by the insulator layer and the characteristics are not deteriorated.

【0009】また、本発明では、上記のような酸化物超
電導薄膜の表面の一部を絶縁体層にするのに、酸化物超
電導薄膜を圧力1×10-9Torr以下の高真空中で熱処理
し、表面の酸化物超電導体結晶中の酸素を減少させて非
超電導酸化物に変え、絶縁体層とする部分を被覆した
後、この非超電導酸化物に酸素を導入して再び酸化物超
電導体に変える方法が採られる。即ち、本発明の方法で
は、酸化物超電導薄膜全体の表面を一度非超電導酸化物
にして絶縁体層とする部分にのみ常電導体等の薄膜を積
層し、その後露出している部分に酸素を導入して再び酸
化物超電導体とする。従って、酸化物超電導体の部分に
は表面に異なる物質が被覆されないので、上記の表面汚
染等が発生しない。
In the present invention, the oxide superconducting thin film is heat-treated in a high vacuum at a pressure of 1 × 10 -9 Torr or less in order to form a part of the surface of the oxide superconducting thin film as an insulating layer. Then, the oxygen in the oxide superconductor crystal on the surface is reduced and changed to a non-superconducting oxide, and after covering the part to be the insulator layer, oxygen is introduced into this non-superconducting oxide and the oxide superconductor is again introduced. The method of changing to. That is, in the method of the present invention, the surface of the entire oxide superconducting thin film is once made into a non-superconducting oxide, and a thin film such as a normal conductor is laminated only on a portion to be an insulator layer, and then oxygen is applied to the exposed portion. It is introduced and made into an oxide superconductor again. Therefore, the surface of the oxide superconductor is not covered with a different substance, so that the above surface contamination does not occur.

【0010】また、本発明の方法では、酸化物超電導薄
膜上に絶縁体層を形成した後、連続して常電導体による
電極、配線層等を形成することが可能である。従って、
本発明の方法で、本発明の酸化物超電導薄膜を作製する
ことにより、酸化物超電導薄膜上に連続して複数の薄膜
を積層することができる。これにより、各種超電導素
子、超電導装置、超電導集積回路等の作製が容易にな
る。
Further, according to the method of the present invention, after forming an insulator layer on the oxide superconducting thin film, it is possible to continuously form electrodes, wiring layers and the like by a normal conductor. Therefore,
By producing the oxide superconducting thin film of the present invention by the method of the present invention, a plurality of thin films can be continuously laminated on the oxide superconducting thin film. This facilitates the production of various superconducting elements, superconducting devices, superconducting integrated circuits, and the like.

【0011】本発明の方法で、酸化物超電導薄膜の表面
を非超電導酸化物に変える熱処理は、圧力1×10-9Torr
以下の高真空中で、結晶中の酸素が最も動く温度に加熱
する処理である。結晶中の酸素が最も動く温度は、例え
ば、Y1Ba2Cu37-X系酸化物超電導体では、350 〜 400
℃である。この温度よりも高い温度に加熱すると、酸化
物超電導体が分解し、後に酸素を導入する処理を行って
も超電導性を回復しないことがある。また、これより低
い温度では、酸化物超電導体結晶中の酸素があまり動か
ないので処理に時間がかかる。さらに、上記の方法で
は、処理時間により形成する非超電導酸化物層の厚さを
調整することが容易である。
According to the method of the present invention, the heat treatment for converting the surface of the oxide superconducting thin film into a non-superconducting oxide is performed at a pressure of 1 × 10 −9 Torr.
In the following high vacuum, it is a process of heating to a temperature at which oxygen in the crystal moves most. The temperature at which oxygen in the crystal moves most is, for example, 350 to 400 in Y 1 Ba 2 Cu 3 O 7-X oxide superconductor.
℃. When heated to a temperature higher than this temperature, the oxide superconductor is decomposed, and the superconductivity may not be recovered even if a treatment of introducing oxygen later is performed. Further, at a temperature lower than this temperature, the oxygen in the oxide superconductor crystal does not move so much that the treatment takes time. Further, in the above method, it is easy to adjust the thickness of the non-superconducting oxide layer to be formed depending on the treatment time.

【0012】一方、本発明の方法で、酸化物超電導薄膜
表面に形成された非超電導酸化物を再度酸化物超電導体
にするには、逆に酸素雰囲気中で酸化物超電導薄膜を上
記の結晶中の酸素が最も動く温度に加熱する熱処理を行
う。また、上記の非超電導酸化物上に酸化物超電導薄膜
を積層する処理を行うと、同時にこの非超電導酸化物は
酸化物超電導体に戻る。これは、酸化物超電導薄膜の成
膜環境では、上記の非超電導酸化物中に酸素が取り込ま
れるためであり、実質的に酸素雰囲気中で熱処理を行っ
たことになるからである。
On the other hand, in order to convert the non-superconducting oxide formed on the surface of the oxide superconducting thin film into the oxide superconductor again by the method of the present invention, conversely, the oxide superconducting thin film is formed in the above crystal in an oxygen atmosphere. The heat treatment of heating to the temperature at which oxygen most moves is performed. In addition, when the oxide superconducting thin film is laminated on the non-superconducting oxide, the non-superconducting oxide returns to the oxide superconductor at the same time. This is because in the film forming environment of the oxide superconducting thin film, oxygen is taken into the above-mentioned non-superconducting oxide, which means that the heat treatment is substantially performed in the oxygen atmosphere.

【0013】本発明は、任意の酸化物超電導体に適用で
きるが、Y1Ba2Cu37-X系酸化物超電導体は安定的に高
品質の結晶性のよい薄膜が得られるので好ましい。ま
た、Bi2Sr2Ca2Cu3x 系酸化物超電導体は、特にその超
電導臨界温度Tc が高いので好ましい。
The present invention can be applied to any oxide superconductor, but the Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor is preferred because it can stably obtain a high quality thin film with good crystallinity. .. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0014】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0015】[0015]

【実施例】本発明の方法で作製した本発明の酸化物超電
導薄膜を使用して超電導素子を作製した。図1を参照し
て、その工程を説明する。まず、図1(a)に示すようMg
O基板1上にY1Ba2Cu37-X酸化物超電導薄膜2を成膜
する。成膜方法としては、各種のスパッタリング法、M
BE法、真空蒸着法、CVD法等任意の方法が使用可能
である。スパッタリング法で成膜を行う際の主な成膜条
件を以下に示す。 基板温度 700℃ スパッタリングガス Ar 90 % O2 10 % 圧力 5×10-2Torr 膜厚 400nm
EXAMPLE A superconducting device was produced using the oxide superconducting thin film of the present invention produced by the method of the present invention. The process will be described with reference to FIG. First, as shown in Fig. 1 (a), Mg
A Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2 is formed on an O substrate 1. As a film forming method, various sputtering methods, M
Any method such as a BE method, a vacuum vapor deposition method, a CVD method can be used. The main film forming conditions for forming a film by the sputtering method are shown below. Substrate temperature 700 ℃ Sputtering gas Ar 90% O 2 10% Pressure 5 × 10 -2 Torr Film thickness 400nm

【0016】次に、このY1Ba2Cu37-X酸化物超電導薄
膜2を圧力1×10-9Torr以下の高真空中で375℃に加熱
し、10分間その温度を維持し、図1(b)に示すようY1Ba
2Cu37-X酸化物超電導薄膜2の表面の厚さ約15nmの部
分をY1Ba2Cu37-y(x<y<7)非超電導酸化物層20
に変える。この非超電導酸化物層20上の3箇所に図1
(c)に示すようフォトレジスト膜41、42および43を形成
する。続いて、真空蒸着法により、Au層を成長させた後
フォトレジスト膜41、42および43を除去し、図1(d)に
示すようAu電極5および6を形成する。この際、フォト
レジストの現像剤、剥離剤に触れても非超電導酸化物層
20はほとんど劣化しない。
Next, the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2 was heated to 375 ° C. in a high vacuum with a pressure of 1 × 10 -9 Torr or less and maintained at that temperature for 10 minutes. As shown in Fig. 1 (b), Y 1 Ba
The surface of the 2 Cu 3 O 7-X oxide superconducting thin film 2 having a thickness of about 15 nm is covered with a Y 1 Ba 2 Cu 3 O 7-y (x <y <7) non-superconducting oxide layer 20.
Change to. At the three locations on this non-superconducting oxide layer 20, FIG.
Photoresist films 41, 42 and 43 are formed as shown in (c). Then, the Au layer is grown by a vacuum evaporation method, and then the photoresist films 41, 42 and 43 are removed, and Au electrodes 5 and 6 are formed as shown in FIG. 1D. At this time, the non-superconducting oxide layer does not come into contact with the photoresist developer or release agent.
20 hardly deteriorates.

【0017】最後に再びY1Ba2Cu37-X酸化物超電導薄
膜を積層し、図1(e)に示すよう超電導電極31、32およ
び33を形成する。Y1Ba2Cu37-X酸化物超電導薄膜が成
長するときに、非超電導酸化物層20の超電導電極31、32
および33の下側部分は酸素を取り込み酸化物超電導体と
なる。従って、Au電極5および6の下側にのみ非超電導
酸化物層21および22が形成される。
Finally, Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin films are laminated again to form superconducting electrodes 31, 32 and 33 as shown in FIG. 1 (e). When the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film is grown, the superconducting electrodes 31, 32 of the non-superconducting oxide layer 20 are grown.
The lower part of 33 and 33 takes in oxygen and becomes an oxide superconductor. Therefore, the non-superconducting oxide layers 21 and 22 are formed only under the Au electrodes 5 and 6.

【0018】上記のように作製した超電導素子は、超電
導電極31および32間の酸化物超電導薄膜2を流れる超電
導電流をAu電極5に印加する電圧で制御し、超電導電極
32および33間の酸化物超電導薄膜2を流れる超電導電流
をAu電極6に印加する電圧で制御する超電導電界効果型
素子である。
In the superconducting device manufactured as described above, the superconducting current flowing through the oxide superconducting thin film 2 between the superconducting electrodes 31 and 32 is controlled by the voltage applied to the Au electrode 5,
This is a superconducting field effect element in which the superconducting current flowing through the oxide superconducting thin film 2 between 32 and 33 is controlled by the voltage applied to the Au electrode 6.

【0019】[0019]

【発明の効果】以上説明したように、本発明に従えば、
表面に絶縁体層を有する酸化物超電導薄膜およびその作
製方法が提供される。本発明の酸化物超電導薄膜は、連
続して他の材料の薄膜を積層することが容易であり、超
電導素子に使用することが有利である。
As described above, according to the present invention,
Provided are an oxide superconducting thin film having an insulator layer on its surface, and a method for producing the same. The oxide superconducting thin film of the present invention makes it easy to continuously stack thin films of other materials, and is advantageously used for a superconducting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で作製した本発明の酸化物超電導
薄膜を使用して超電導素子を作製する工程を説明する図
である。
FIG. 1 is a diagram illustrating a step of producing a superconducting device using the oxide superconducting thin film of the present invention produced by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 MgO基板 2 酸化物超電導薄膜 5、6 Au電極 20、21、22 非超電導酸化物層 41、42、43 フォトレジスト 1 MgO substrate 2 Oxide superconducting thin film 5, 6 Au electrode 20, 21, 22 Non-superconducting oxide layer 41, 42, 43 Photoresist

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面の一部に絶縁体層を有し、他の部分
が酸化物超電導体で構成されている酸化物超電導薄膜に
おいて、前記絶縁体層が前記酸化物超電導薄膜と一体に
形成され、酸化物超電導体と等しい構成元素が有し、結
晶中の酸素が少なくて超電導性を示さない非超電導酸化
物で構成されていることを特徴とする酸化物超電導薄
膜。
1. An oxide superconducting thin film having an insulating layer on a part of the surface and an oxide superconductor on the other part, wherein the insulating layer is formed integrally with the oxide superconducting thin film. And a non-superconducting oxide having the same constituent elements as those of the oxide superconductor and having no oxygen in the crystal and exhibiting no superconductivity.
【請求項2】 酸化物超電導薄膜に該酸化物超電導薄膜
の表面の一部をなす絶縁体層を含む層を積層する方法に
おいて、前記酸化物超電導薄膜を圧力1×10-9Torr以下
の高真空中で熱処理し、該酸化物超電導薄膜表面の酸化
物超電導体結晶中の酸素を減少させて非超電導酸化物に
変え、絶縁体層とする部分を被覆した後、前記非超電導
酸化物に酸素を導入して酸化物超電導体に変える工程を
含むことを特徴とする方法。
2. A method of laminating a layer including an insulator layer forming a part of the surface of the oxide superconducting thin film on the oxide superconducting thin film, wherein the oxide superconducting thin film is high at a pressure of 1 × 10 −9 Torr or less. After heat treatment in vacuum, oxygen in the oxide superconducting crystal on the surface of the oxide superconducting thin film is reduced to a non-superconducting oxide, and the non-superconducting oxide is covered with oxygen. A method of introducing an oxide superconductor into the oxide superconductor.
JP3242801A 1991-08-28 1991-08-28 Oxide superconductor thin film having insulating layer and its production Pending JPH0558625A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3242801A JPH0558625A (en) 1991-08-28 1991-08-28 Oxide superconductor thin film having insulating layer and its production
EP92402354A EP0534811B1 (en) 1991-08-28 1992-08-27 Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film
CA002077047A CA2077047C (en) 1991-08-28 1992-08-27 Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, method for manufacturing superconducting device utilizing the superconducting thin film and superconducting thin film manufactured thereby
DE69210523T DE69210523T2 (en) 1991-08-28 1992-08-27 Process for the production of superconducting layers of superconducting oxide in which non-superconducting regions occur and process for the production of a component which contains such layers
US08/198,362 US5462919A (en) 1991-08-28 1994-02-18 Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region and device utilizing the superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242801A JPH0558625A (en) 1991-08-28 1991-08-28 Oxide superconductor thin film having insulating layer and its production

Publications (1)

Publication Number Publication Date
JPH0558625A true JPH0558625A (en) 1993-03-09

Family

ID=17094491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242801A Pending JPH0558625A (en) 1991-08-28 1991-08-28 Oxide superconductor thin film having insulating layer and its production

Country Status (1)

Country Link
JP (1) JPH0558625A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420639A (en) * 1987-07-15 1989-01-24 Sharp Kk Manufacture of superconductor
JPS6451680A (en) * 1987-08-22 1989-02-27 Sumitomo Electric Industries Oxide ceramics laminated layer structure and its manufacture
JPH01106479A (en) * 1987-10-20 1989-04-24 Fujitsu Ltd Superconductive material structure
JPH01140622A (en) * 1987-11-26 1989-06-01 Taiyo Yuden Co Ltd Device having superconducting film
JPH02311398A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420639A (en) * 1987-07-15 1989-01-24 Sharp Kk Manufacture of superconductor
JPS6451680A (en) * 1987-08-22 1989-02-27 Sumitomo Electric Industries Oxide ceramics laminated layer structure and its manufacture
JPH01106479A (en) * 1987-10-20 1989-04-24 Fujitsu Ltd Superconductive material structure
JPH01140622A (en) * 1987-11-26 1989-06-01 Taiyo Yuden Co Ltd Device having superconducting film
JPH02311398A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film

Similar Documents

Publication Publication Date Title
US5846846A (en) Method for making a superconducting field-effect device with grain boundary channel
JP3031884B2 (en) High temperature SSNS and SNS Josephson junction and manufacturing method thereof
EP0478465A1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
EP0506582B1 (en) Process for preparing layered thin films
EP0546958B1 (en) Superconducting field-effect transitor having an extremly thin superconducting channel formed of oxide superconductor material
EP0468868B1 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
EP0477103B1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
EP0534811B1 (en) Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film
JPH0558625A (en) Oxide superconductor thin film having insulating layer and its production
JP2908346B2 (en) Superconducting structure
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JP2691065B2 (en) Superconducting element and fabrication method
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JP2667289B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2773455B2 (en) Manufacturing method of laminated film
JP2599500B2 (en) Superconducting element and fabrication method
JP2730360B2 (en) Fabrication method of tunnel type Josephson junction device
JP2773456B2 (en) Manufacturing method of laminated film
KR100233845B1 (en) Twin-crystal-grain-boundary-junction superconducting field effect device and manufacturing method thereof
JP2738144B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JP2883464B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JPH05190927A (en) Tunnel type josephson junction element and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980908