JPH01140622A - Device having superconducting film - Google Patents

Device having superconducting film

Info

Publication number
JPH01140622A
JPH01140622A JP62298815A JP29881587A JPH01140622A JP H01140622 A JPH01140622 A JP H01140622A JP 62298815 A JP62298815 A JP 62298815A JP 29881587 A JP29881587 A JP 29881587A JP H01140622 A JPH01140622 A JP H01140622A
Authority
JP
Japan
Prior art keywords
film
rare earth
ceramic substrate
compound
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62298815A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uno
宇野 善弘
Shunji Murai
村井 俊二
Tetsuya Urano
浦野 哲也
Yutaka Aikawa
豊 相川
Masayuki Fujimoto
正之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62298815A priority Critical patent/JPH01140622A/en
Publication of JPH01140622A publication Critical patent/JPH01140622A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To achieve low cost, and improve reliability, by arranging, on a ceramic substrate, a first film composed of rare earth oxide, barium compound and copper compound, and arranging thereon a second film composed of a specified compound. CONSTITUTION:On a ceramic substrate 1, a mixture composed of rare earth oxide, barium oxide, and copper compound is spread, a first film 2 is formed by heat treatment. A mixture composed of rare earth oxide, barium compound, and copper compound is spread thereon, and a second film 3 composed of RBa2 Cu3O7-x (R is a trivalent rare earth element and (x) is a numerical value) is formed by heat treatment in an oxygen atmosphere. Therefore, the first film 2 is formed, in the same manner with the second film 3, of rare earth oxide, barium compound and copper compound, so that the first film is approximate to RBa2Cu3O7-x. As a result, differences of thermal expansion coefficients and lattice constants between the ceramic substrate 1 and the second film 3 are relaxed. Thereby enabling the application of a low cost ceramic substrate and improving the reliability of the second film 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はセラミック基板上に超電導膜体を形成した装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus in which a superconducting film is formed on a ceramic substrate.

[従来の技術] 超電導効果が得られる物質としては、絶対温度20に付
近でその効果が得られるNb3Sn系、Nb3Ge系、
NbTi系等の金属系超電導物質が知られている。この
ような従来の金属合金系の超電導物質より、はるかに商
い温度(絶対温度的90K)で超電導効果を得ることが
可能なRBa2Cu30□−8系超電導セラミツクス(
ただし、Ra =Y、 Nd 、 Dy 、 Etl 
、 Gd 、 Ha 等の3価の希土類元素、Xは1よ
り小さい敬値)も最近発見され、実用化に向けて各方面
で検討が進められている。例えば、このような超電導物
質を回路配線等に利用するため、超電導物質から吠る7
謄を基板表面に形成することが検討されている。超電導
厚膜の形成に用いられる基板としては、従来、部分安定
化ジルコニア(PSZ)基板、あるいは純度99.99
%程度の超高純度アルミナ(A12o3)基板等が使用
されている。
[Prior art] Substances that can obtain superconducting effects include Nb3Sn-based materials, Nb3Ge-based materials that provide their effects at an absolute temperature of around 20,
Metal-based superconducting materials such as NbTi-based materials are known. RBa2Cu30□-8-based superconducting ceramics (RBa2Cu30□-8) are capable of achieving superconducting effects at much lower temperatures (absolute temperature of 90K) than conventional metal alloy-based superconducting materials.
However, Ra = Y, Nd, Dy, Etl
Trivalent rare earth elements such as , Gd, and Ha (where X is a value smaller than 1) have recently been discovered, and studies are underway in various fields for their practical application. For example, in order to use such superconducting materials for circuit wiring, etc.,
Forming the cover on the surface of the substrate is being considered. Conventionally, the substrate used for forming superconducting thick films is a partially stabilized zirconia (PSZ) substrate or a substrate with a purity of 99.99.
% ultra-high purity alumina (A12o3) substrate, etc. are used.

[発明が解決しようとする開題点] ところで、部分安定化ジルコニア(PSZ)、あるいは
純度99.99%程度の超高純度アルミす(Al 20
3)は高価である。そこで、純度96%程度の安価なア
ルミナ基板を使用すると、超電導特性を示すペロブスカ
イト型の結晶構造の厚膜が得られないか、あるいはペロ
ブスカイト型の結晶構造が得られたとしても厚膜にクラ
ックが生じてしまうために、絶対温度90に付近で超電
導特性を得ることが困難であった。
[Problem to be solved by the invention] By the way, partially stabilized zirconia (PSZ) or ultra-high purity aluminum with a purity of about 99.99% (Al 20
3) is expensive. Therefore, if an inexpensive alumina substrate with a purity of about 96% is used, a thick film with a perovskite-type crystal structure that exhibits superconducting properties cannot be obtained, or even if a perovskite-type crystal structure is obtained, the thick film will have cracks. Therefore, it has been difficult to obtain superconducting properties at an absolute temperature of about 90°C.

そこで、本発明の目的は、低コスト化及び信頼性の向上
が可能な超電導肢体を有する装置を提供するにとにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a device having superconducting limbs that can reduce costs and improve reliability.

[問題点を解決するための手段] 上記問題点を解決し、上記目的を達成するための本発明
は、セラミック基板と、前記セラミンク基板上に希土類
酸化物とバリウム化合物と銅化合物とから成る混合物を
塗布し、熱処理することによって形成された第1の膜と
、前記第1の膜の上に希土類酸化物とバリウム化合物と
銅化合物とから成る混合物を塗布し、酸素雰囲気中で熱
処理することによって形成されたRBa2Cu3o7−
x(但し、Rは3価の希土類元素、Xは数値)から成る
第2の膜とを備えている超電導膜体を有する装置に係わ
るものである。
[Means for Solving the Problems] In order to solve the above problems and achieve the above objects, the present invention includes a ceramic substrate, and a mixture comprising a rare earth oxide, a barium compound, and a copper compound on the ceramic substrate. A first film formed by applying and heat-treating; and a mixture of a rare earth oxide, a barium compound, and a copper compound being applied on the first film and heat-treated in an oxygen atmosphere. Formed RBa2Cu3o7-
The present invention relates to a device having a superconducting film body including a second film made of x (where R is a trivalent rare earth element and X is a numerical value).

[作用] 上記発明によれば、セラミック基板と第2の膜との間に
介在する第1の膜は第2の膜と同様に、希土類酸化物と
バリウム化合物と銅化合物とで形成されたものであるか
ら、RBa2Cu307−x又はこれに近いものである
。従って第1の膜はセラミック基板と第2の膜との熱膨
張係数や格子定数の違いを緩和する効果を発揮する。こ
の結果、セラミック基板の質が悪くても、第2の膜の超
電導特性を良くすることができる。
[Function] According to the above invention, the first film interposed between the ceramic substrate and the second film is formed of a rare earth oxide, a barium compound, and a copper compound, like the second film. Therefore, it is RBa2Cu307-x or something close to this. Therefore, the first film exhibits the effect of alleviating the difference in thermal expansion coefficient and lattice constant between the ceramic substrate and the second film. As a result, even if the quality of the ceramic substrate is poor, the superconducting properties of the second film can be improved.

[実施例] 次に、本発明の実施例に係わる超電導膜体を有する装置
及びその製造方法を説明する。
[Example] Next, a device having a superconducting film body and a manufacturing method thereof according to an example of the present invention will be described.

まず、厚膜ペーストの原料粉末を得るなめにY2O2(
酸化イツトリウム)を2.42g、BaCO3(炭酸バ
・リウム)を8.46g、Cu O(酸化銅)を5.1
1gそれぞれ秤量してメノウ乳鉢で粉砕しながら30分
間混合し、原料混合粉末ご得た。なお、Y、9a 、C
uの原子比が1=2:3になるように各原料が秤量され
る。
First, in order to obtain the raw material powder for the thick film paste, Y2O2 (
2.42 g of yttrium oxide), 8.46 g of BaCO3 (barium carbonate), and 5.1 g of CuO (copper oxide).
1 g of each was weighed and mixed for 30 minutes while being crushed in an agate mortar to obtain a raw material mixed powder. In addition, Y, 9a, C
Each raw material is weighed so that the atomic ratio of u is 1=2:3.

次に、原料混合粉末にエチルアルコールを3 ml加え
て30分間混合した後、100℃で10分間乾燥した。
Next, 3 ml of ethyl alcohol was added to the raw material mixed powder, mixed for 30 minutes, and then dried at 100° C. for 10 minutes.

次に、乾燥した原料混合粉末に、ブチルカルピトールア
セード100gにエルセルロースLogを溶解させたバ
インダーを4g加え、乳鉢で混線して超電導厚膜ペース
トを得た。
Next, 4 g of a binder prepared by dissolving L Cellulose Log in 100 g of butyl calpitol acede was added to the dried raw material mixed powder, and mixed in a mortar to obtain a superconducting thick film paste.

次に、第1図に示す縦50關、横50mm、厚さ2vm
でAI 203 K1度96%のアルミナ基板1の一方
の主面に、スクリーン印91方により上記の超電導7吸
ペーストを15μmの厚膜に印刷し、100°Cで30
分間乾燥した6 次に、厚膜ペーストを印刷したアルミナ基板1を酸素を
500m1/分で流しているパイプ炉中に入れて920
°C14時間の熱処理(焼成)をなし、第1図に示すY
Ba  Cu 307.、、から成る第1の膜2を得た
Next, as shown in Figure 1, the length is 50 mm, the width is 50 mm, and the thickness is 2 mm.
The above superconducting paste was printed to a thickness of 15 μm on one main surface of an alumina substrate 1 with an AI 203 K1 degree of 96% using a screen mark 91, and heated at 100°C for 30 minutes.
After drying for 6 minutes, the alumina substrate 1 printed with the thick film paste was placed in a pipe furnace flowing oxygen at a rate of 500 m1/min.
After heat treatment (baking) at °C for 14 hours, Y as shown in Figure 1 was used.
Ba Cu 307. A first film 2 consisting of , , and the like was obtained.

次に、第1の膜2の上に、更に上記の超電導厚膜ペース
トを15μmの膜厚に印刷し、100’C130分間乾
燥した。
Next, the above superconducting thick film paste was further printed on the first film 2 to a thickness of 15 μm, and dried for 130 minutes at 100'C.

次に、アルミナ基板を、酸素を500 rn(7分で流
しているパイプ炉中で920°C14時間の熱処理(焼
成)をなし、第2図に示すYBa 2cu 307−x
から成る第2の膜3を得な。
Next, the alumina substrate was heat-treated (baked) at 920°C for 14 hours in a pipe furnace in which oxygen was flowing at 500 rn (7 minutes), and the YBa 2cu 307-x shown in Fig. 2 was heated.
Obtain a second membrane 3 consisting of:

次に、第1及び第2の膜2.3から成る二層構造の超電
導厚膜体を有するアルミナ基板1から幅3 o+m、長
さ15mmの試料片を切り出し、この試料片を、クライ
オスタット中で常温から液体窒素温度77Kまで徐々に
冷却して、試料片の表面に形成された第2の膜3の電気
抵抗がゼロになる臨界温度Tc [K]及び磁化率を測
定した。この結果、臨界温度TCは90[K]であり、
磁化率はマイナス即ち外部磁化に対して磁化方向が逆転
するとマイスナー効果が確認された。
Next, a sample piece with a width of 3 o+m and a length of 15 mm is cut out from the alumina substrate 1 having a two-layered superconducting thick film body consisting of the first and second films 2.3, and this sample piece is placed in a cryostat. The sample piece was gradually cooled from room temperature to a liquid nitrogen temperature of 77 K, and the critical temperature Tc [K] at which the electrical resistance of the second film 3 formed on the surface of the sample piece became zero and the magnetic susceptibility were measured. As a result, the critical temperature TC is 90 [K],
The Meissner effect was confirmed when the magnetic susceptibility was negative, that is, when the direction of magnetization was reversed with respect to external magnetization.

[比救例1] 実施例において第1の膜2のみを形成した第1図のもの
と同一のものを作り、倶こから幅3 zm、長さ15−
の試料片を切り出し、実施例と同様に超電導現象を調べ
たところ、液体窒素温度77Kまで冷却しても超電導現
象が確認されなかった。
[Comparative Example 1] A film identical to that shown in FIG. 1 in which only the first film 2 was formed in the example was made, and from the bottom it was made with a width of 3 zm and a length of 15 mm.
When a sample piece was cut out and the superconducting phenomenon was investigated in the same manner as in the example, no superconducting phenomenon was confirmed even after cooling to the liquid nitrogen temperature of 77K.

L比軟例2コ 実施例において第1の膜2のみを形成した第1図のもの
と同一のものを作り、更にこれを、酸素を500m1/
分で流したパイプ炉中で920℃、4時間熱処理(第2
回焼成)し、ここから幅3 mm、長さ15mmの試料
片を切り出した。しかる後、実施例と同様に超電導現象
を調べなところ、液体窒素温度77Kまで冷却しても超
電導現象が確認されなかった。
L Ratio Soft Example 2 An example similar to that shown in FIG. 1 in which only the first film 2 was formed was made, and further, oxygen was added to the
Heat treatment at 920℃ for 4 hours in a pipe furnace (second
A sample piece with a width of 3 mm and a length of 15 mm was cut out from the sample. Thereafter, the superconducting phenomenon was investigated in the same manner as in the example, and no superconducting phenomenon was confirmed even after cooling to the liquid nitrogen temperature of 77K.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1) 純度96%のアルミナ基板に限ることなく、部
分安定化ジルコニア又は高純度アルミナ基板を使用して
もよい。この場合でも第2の膜の信頼性が向上する。
(1) The substrate is not limited to an alumina substrate with a purity of 96%, and partially stabilized zirconia or a high-purity alumina substrate may be used. Even in this case, the reliability of the second film is improved.

(2) 第2の膜3の上に更に超電導厚膜ベーストを印
刷し、焼成してRB a 2 C11307賊、”Jを
形成し、三層又はこれ以上の多層構造としてもよい。 
 (3) 超電導厚膜ペーストの原f1杓末は、希土類
酸化efJR203と過酸化バリウム9aOと過酸化@
2Cu3O7−x2との混合粉末でもよい。
(2) A superconducting thick film base is further printed on the second film 3 and fired to form an RB a 2 C11307 layer, thereby forming a three-layer or more multilayer structure.
(3) The raw f1 ladle powder of the superconducting thick film paste consists of rare earth oxide efJR203, barium peroxide 9aO, and peroxide@
A mixed powder with 2Cu3O7-x2 may also be used.

(4) RがY以外のNd 、Dy 、Eu 、Gd、
HO等の3価の元素の場合にも適用可能である。
(4) Nd, Dy, Eu, Gd, where R is other than Y
It is also applicable to trivalent elements such as HO.

、二の場合にも原料としてはR2O3で示されろ希土類
酸化物を使用する。
In the case of , and 2, a rare earth oxide represented by R2O3 is used as the raw material.

(5) 焼成温度は焼結可能な範囲(例えは800°C
〜1200℃)で種々変えることができろ。
(5) The firing temperature should be within the range that allows sintering (for example, 800°C
~1200℃).

(6) 焼成工程の後に、例えば酸素雰囲気中500°
C112時間のアニール工程を付加してもよい。
(6) After the firing process, for example at 500° in an oxygen atmosphere.
An annealing step of C112 hours may be added.

[発明の効果] 上述から明らかな如く本発明によれば、安価なセラミッ
ク基板の超電導膜体装置を提供することができる。また
、第1の膜が緩衝物質として機能し、第2の膜の信頼性
を向上させることかできろ。
[Effects of the Invention] As is clear from the above, according to the present invention, an inexpensive superconducting film device of a ceramic substrate can be provided. Also, the first membrane could function as a buffer substance and improve the reliability of the second membrane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例に係わる。超電導膜
体を有する装置の形成方法を工程順にに説明するための
断面図である。 1・・・セラミック基板、2・・・第1の膜、3・・・
第2の膜。
1 and 2 relate to an embodiment of the present invention. FIG. 3 is a cross-sectional view for explaining a method for forming a device having a superconducting film body in the order of steps. 1... Ceramic substrate, 2... First film, 3...
Second membrane.

Claims (1)

【特許請求の範囲】 [1]セラミック基板と、 前記セラミック基板上に希土類酸化物とバリウム化合物
と銅化合物とから成る混合物を塗布し、熱処理すること
によって形成された第1の膜と、前記第1の膜の上に希
土類酸化物とバリウム化合物と銅化合物とから成る混合
物を塗布し、酸素雰囲気中で熱処理することによって形
成されたRBa_2Cu_3O_7_−_x(但し、R
は3価の希土類元素、xは数値)から成る第2の膜と を備えていることを特徴とする超電導膜体を有する装置
[Scope of Claims] [1] A ceramic substrate; a first film formed by applying a mixture of a rare earth oxide, a barium compound, and a copper compound on the ceramic substrate and heat-treating the mixture; RBa_2Cu_3O_7_-_x (However, R
and a second film consisting of a trivalent rare earth element and x is a numerical value.
JP62298815A 1987-11-26 1987-11-26 Device having superconducting film Pending JPH01140622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298815A JPH01140622A (en) 1987-11-26 1987-11-26 Device having superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298815A JPH01140622A (en) 1987-11-26 1987-11-26 Device having superconducting film

Publications (1)

Publication Number Publication Date
JPH01140622A true JPH01140622A (en) 1989-06-01

Family

ID=17864578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298815A Pending JPH01140622A (en) 1987-11-26 1987-11-26 Device having superconducting film

Country Status (1)

Country Link
JP (1) JPH01140622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558625A (en) * 1991-08-28 1993-03-09 Sumitomo Electric Ind Ltd Oxide superconductor thin film having insulating layer and its production
JPH05139737A (en) * 1991-11-15 1993-06-08 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide thin film and film forming method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242261A (en) * 1975-09-30 1977-04-01 Mitsubishi Electric Corp Switch spring actuator
JPS5310307A (en) * 1976-05-10 1978-01-30 Int Nickel Co Process for hot working of metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242261A (en) * 1975-09-30 1977-04-01 Mitsubishi Electric Corp Switch spring actuator
JPS5310307A (en) * 1976-05-10 1978-01-30 Int Nickel Co Process for hot working of metallic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558625A (en) * 1991-08-28 1993-03-09 Sumitomo Electric Ind Ltd Oxide superconductor thin film having insulating layer and its production
JPH05139737A (en) * 1991-11-15 1993-06-08 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide thin film and film forming method therefor

Similar Documents

Publication Publication Date Title
EP0292959A2 (en) Superconducting member
JPH0649626B2 (en) Oxide superconducting material
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
JPH01140622A (en) Device having superconducting film
Kurian et al. Bi (2223) thick films (TC (0)= 109K) on Ba2GdNbO6: a new perovskite ceramic substrate for BSCCO superconductor
JP2501035B2 (en) Superconducting thin film
US5308800A (en) Apparatus and method for forming textured bulk high temperature superconducting materials
JPH026394A (en) Superconductive thin layer
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2544759B2 (en) How to make a superconducting thin film
JP3187089B2 (en) Oxide superconducting structure
JP2544761B2 (en) Preparation method of superconducting thin film
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPH01103965A (en) Method for bonding superconductive materials
JPH0753576B2 (en) Ceramics superconductor
Poeppel et al. Ceramic Processing Of High-T [sub] c [/sub] Superconductors
Takenaka et al. Grain orientation effects on superconducting properties of hot-forged oxide ceramics
JPS63310511A (en) High temperature superconductor membrane
JPH0388716A (en) Production of oxide superconducting thin film
Heeb et al. PartialMelting of Bulk Bi-2212
JPH01176216A (en) Production of superconducting thin film of compound oxide
Dorris et al. Fabrication of superconductor coils
JPS63230524A (en) Superconductive material
JPH013062A (en) Method for manufacturing superconducting materials
JPH04292415A (en) Metal oxide material