JP3187089B2 - Oxide superconducting structure - Google Patents

Oxide superconducting structure

Info

Publication number
JP3187089B2
JP3187089B2 JP25079691A JP25079691A JP3187089B2 JP 3187089 B2 JP3187089 B2 JP 3187089B2 JP 25079691 A JP25079691 A JP 25079691A JP 25079691 A JP25079691 A JP 25079691A JP 3187089 B2 JP3187089 B2 JP 3187089B2
Authority
JP
Japan
Prior art keywords
sintered body
oxide
oxide superconducting
superconducting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25079691A
Other languages
Japanese (ja)
Other versions
JPH0585724A (en
Inventor
ひろみ 井村
祐二 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25079691A priority Critical patent/JP3187089B2/en
Publication of JPH0585724A publication Critical patent/JPH0585724A/en
Application granted granted Critical
Publication of JP3187089B2 publication Critical patent/JP3187089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導焼結体を
具備した構造体に関し、詳細には、高密度で高配向の酸
化物超電導焼結体を具備するとともに高い強度を有する
構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure having an oxide superconducting sintered body, and more particularly to a structure having a high-density and highly oriented oxide superconducting sintered body and having high strength. It is about.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体よりも高い臨界温度Tc(抵抗がゼ
ロになる温度)を有する材料として酸化物超電導体が発
見され、その実用化が期待されている。現在、酸化物超
電導体としては、主としてY−Ba−Cu−O系、Bi
−Sr−Ca−Cu−O系およびTl−Ba−Ca−C
u−O系の3種が主として知られている。これらの酸化
物超電導体は、その実用化に際しては高い臨界温度を有
するとともに臨界電流密度(抵抗ゼロにおける電流値)
が大きいことが必要とされている。また、構造体として
の強度を高める必要もあるが、このような特性を得るた
めにはその相対密度を高め、高緻密化することが最も重
要であると言われている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as materials having a higher critical temperature Tc (temperature at which resistance becomes zero) than metal-based superconductors conventionally used as superconductors, and their practical use is expected. Have been. At present, as oxide superconductors, mainly Y-Ba-Cu-O-based, Bi
-Sr-Ca-Cu-O system and Tl-Ba-Ca-C
Three types of uO type are mainly known. These oxide superconductors have a high critical temperature and a critical current density (current value at zero resistance) for practical use.
Is needed to be large. In addition, it is necessary to increase the strength of the structure, but it is said that it is most important to increase the relative density and increase the density in order to obtain such characteristics.

【0003】そこで、従来より高密度の酸化物超電導焼
結体を作成する方法として、従来より高い機械的な圧力
を加えつつ加熱するホットプレス法が採用されている。
[0003] Therefore, as a method for producing an oxide superconducting sintered body having a higher density than in the past, a hot press method of heating while applying a higher mechanical pressure than in the past has been adopted.

【0004】また超電導体を用いた構造体として、Ag
等の金属パイプ中に超電導粉末を封印したものが電線等
として開発されている。
Further, as a structure using a superconductor, Ag is used.
A superconducting powder sealed in a metal pipe such as that described above has been developed as an electric wire or the like.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、酸化
物超電導焼結体自体の強度が低く、ホットプレス法によ
り高緻密化が達成されてもその強度は低く取扱いに注意
を払う必要があり、実用化に対して不十分であった。し
かも、結晶粒子の配向性も不十分であるために得られる
焼結体の臨界電流密度もせいぜい1000A/cm2
下であり、実用的レベルには到底達していないのが現状
であった。
However, the strength of the oxide superconducting sintered body itself is low, and even if high densification is achieved by the hot press method, the strength is low and it is necessary to pay attention to handling, and Was insufficient for In addition, the critical current density of the obtained sintered body is at most 1000 A / cm 2 or less due to insufficient orientation of the crystal grains, and it has not reached a practical level at present.

【0006】そこで、本発明者等は先に低Tc相の仮焼
粉末を常圧で焼成して充分に高Tc相を生成した後、該
焼結体に圧力を加えつつ加熱処理を行う、いわゆるホッ
トフォージング処理を行うことによって、高配向、高密
度でJc値が1500〜4500A/cm2程度の優れ
た酸化物超電導焼結体が得られることを提案したが、か
かる方法においても強度が不十分であり、その取扱いに
注意を必要とするという問題があった。
Therefore, the present inventors first fired the calcined powder of the low Tc phase at normal pressure to generate a sufficiently high Tc phase, and then performed heat treatment while applying pressure to the sintered body. It has been proposed that by performing a so-called hot forging treatment, an excellent oxide superconducting sintered body having a high orientation and a high density and a Jc value of about 1500 to 4500 A / cm 2 can be obtained. There was a problem that the treatment was inadequate and required careful handling.

【0007】また、電線用としてAgと複合化されたも
のは、伸線用として有用であるが、Ag自体が高価であ
り、磁気シールド体等の大型の構造体への適用は難し
く、また他の金属を用いると金属元素によっては超電導
体中に拡散して超電導特性を劣化させるという問題があ
った。
[0007] Further, the one compounded with Ag for electric wires is useful for wire drawing, but Ag itself is expensive, and it is difficult to apply it to large structures such as magnetic shields. When the metal is used, there is a problem that some metal elements diffuse into the superconductor and deteriorate superconductivity.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して、特に強度を向上させるための構造につい
て検討を重ねた結果、先に提案した方法に基づき、酸化
物超電導焼結体、特に少なくとも構成元素としてCuを
含有する酸化物超電導焼結体を酸化物系セラミックス焼
結体により挟持させた構造とするか、あるいは延性を有
する金属層を介して前記酸化物系セラミックス焼結体に
より挟持した構造とすることにより強固に接合した一体
物が得られ、構造体として高い超電導特性を維持しつ
つ、高い強度を有する構造体が得られることを知見し
た。
Means for Solving the Problems The inventors of the present invention have studied the above problems, especially about the structure for improving the strength, and as a result, based on the previously proposed method, have found that the oxide superconducting firing The sintered body may have a structure in which an oxide superconducting sintered body containing at least Cu as a constituent element is sandwiched by an oxide ceramic sintered body, or the oxide ceramic sintered body may be formed through a metal layer having ductility. It has been found that a rigidly joined monolith can be obtained by adopting a structure sandwiched by the binders, and a structure having high strength can be obtained while maintaining high superconducting characteristics as the structure.

【0009】以下、本発明の構造体について詳述する
と、この構造体は、図1に示すように、酸化物超電導焼
結体1と、その両面に酸化物セラミックス層2、3を接
着してなる3層構造よりなり、酸化物超電導焼結体は、
厚み0.05mm以上、酸化物系セラミックス焼結体は
厚み0.05mm以上の厚みより構成される。なお、酸
化物超電導焼結体1と酸化物セラミックス2、3との界
面には、酸化物超電導焼結体の一部が溶融し酸化物セラ
ミックス側に拡散しガラス質よりなる厚みが0.5mm
以下中間層の拡散層4、5を存在させることにより両者
の接着性は大きく向上する。
Hereinafter, the structure of the present invention will be described in detail. As shown in FIG. 1, this structure is obtained by bonding an oxide superconducting sintered body 1 and oxide ceramic layers 2 and 3 on both surfaces thereof. The oxide superconducting sintered body has a three-layer structure of
The oxide ceramic sintered body has a thickness of 0.05 mm or more and a thickness of 0.05 mm or more. At the interface between the oxide superconducting sintered body 1 and the oxide ceramics 2 and 3, a part of the oxide superconducting sintered body is melted and diffused to the oxide ceramic side to have a thickness of 0.5 mm made of glass.
In the following, the presence of the intermediate diffusion layers 4 and 5 greatly improves the adhesion between the two.

【0010】また、本発明における他の実施態様として
は図2に示すように、酸化物超電導焼結体1と酸化物系
セラミックス焼結体2、3との間に厚み0.02mm以
上の延性を有する金属層6、7を介在させることができ
る。この金属層6、7は、金属自身の延性効果により後
述するホットフォージング処理した際に酸化物超電導焼
結体中の鱗片状結晶粒子が配向されるとともに圧縮さ
れ、酸化物超電導焼結体の密度を高くすることが出来
る。
As another embodiment of the present invention, as shown in FIG. 2, a ductile material having a thickness of 0.02 mm or more between the oxide superconducting sintered body 1 and the oxide ceramic sintered bodies 2 and 3 is used. Can be interposed. The metal layers 6 and 7 are oriented and compressed during the hot forging process to be described later due to the ductility effect of the metal itself, and are compressed to form the oxide superconducting sintered body. Density can be increased.

【0011】なお、本発明において用いられる酸化物系
セラッミクス焼結体としてはAl23、ZrO2、Si
2、MgO等からなるものが好適で、これらの酸化物
系セラミックス焼結体は、酸化物超電導焼結体とは別途
周知の方法で作製されたもので、特に対理論密度比が8
0%以上の焼結体が好適である。また、酸化物超電導体
としては、Y−Ba−Cu−O系、Bi−Sr−Ca−
Cu−O系およびTl−Ba−Ca−Cu−O系などの
Cuを含む超電導体のいずれでもよい。
The oxide ceramic sintered body used in the present invention includes Al 2 O 3 , ZrO 2 , Si
O 2, suitably made of MgO or the like, these oxide ceramic sintered body, but the oxide superconducting sintered body which is produced separately in a known manner, especially to-theoretical density ratio of 8
A sintered body of 0% or more is preferable. As the oxide superconductor, Y-Ba-Cu-O-based, Bi-Sr-Ca-
Any of Cu-based superconductors such as Cu-O-based and Tl-Ba-Ca-Cu-O-based may be used.

【0012】次に、上記の構造体の作成方法について説
明すると、まず酸化物超電導体を構成する金属の酸化物
粉末あるいは焼成により酸化物を形成しうる炭酸塩や硝
酸塩粉末を用いてこれらを酸化物超電導体を形成しうる
割合に秤量混合する。具体的には前述したBi系酸化物
超電導体のうち高Tc相を作成する場合には、Bi
23、SrO、CaCO3、CuOの各粉末を用いてこ
れらを原子比においてSrを2としたとき、Biが1.
8〜2.2、Caが2.0〜3.5、Cuが3.0〜
4.5の範囲になるように秤量する。また、高Tc相の
生成量を増加させることを目的として上記の混合体にさ
らにPbO粉末、およびK2CO3、Na2CO3、Li2
CO2等をSrを2としてPbを0.1〜0.5、K、
Li、Naを0.05〜0.6の割合で混合することが
できる。得られた混合物は所望により700〜850℃
の酸化性雰囲気中で1〜20時間程度仮焼した後、成形
する。成形は公知の成形手段によって行うことができ、
例えばプレス成形、押出し成形、ドクターブレード成形
法等により実施される。
Next, the method of forming the above-mentioned structure will be described. First, the oxide superconductor is oxidized using a metal oxide powder or a carbonate or nitrate powder capable of forming an oxide by firing. Weigh and mix in such a ratio that a superconductor can be formed. Specifically, when a high Tc phase is formed in the above-described Bi-based oxide superconductor, Bi
When each of the powders of 2 O 3 , SrO, CaCO 3 , and CuO is used and the atomic ratio of Sr is 2, Bi is 1.
8 to 2.2, Ca is 2.0 to 3.5, Cu is 3.0 to 3.0
Weigh to 4.5 range. Further, for the purpose of increasing the generation amount of the high Tc phase, PbO powder, K 2 CO 3 , Na 2 CO 3 , Li 2
0.1 to 0.5 and Pb of CO 2 such as 2 Sr, K,
Li and Na can be mixed at a ratio of 0.05 to 0.6. The resulting mixture is optionally at 700-850 ° C.
After calcination for about 1 to 20 hours in an oxidizing atmosphere, molding is performed. Molding can be performed by known molding means,
For example, it is carried out by press molding, extrusion molding, doctor blade molding, or the like.

【0013】次に、上記のようにして得られた成形体を
840〜855℃の酸化性雰囲気中で焼成する。この焼
成によって一旦低Tc相の燐片状の結晶が生成されると
ともに焼成が進行するに従い、低Tc相から高Tc相に
変換される。
Next, the molded body obtained as described above is fired in an oxidizing atmosphere at 840 to 855 ° C. By this baking, scaly crystals having a low Tc phase are once generated, and as the baking proceeds, the low Tc phase is converted into a high Tc phase.

【0014】この焼成を非加圧で行うと燐片状の結晶の
成長により低密度の焼結体となるために、ホットプレス
焼成を行ってもよい。上記焼成工程終了時点では、焼結
体の燐片状結晶はほとんど無配向状態である。
If this sintering is carried out under no pressure, a sintered body having a low density is obtained by the growth of scaly crystals, so that hot press sintering may be carried out. At the end of the firing step, the scaly crystals of the sintered body are almost non-oriented.

【0015】次に、上記の酸化物超電導焼結体を酸化物
系セラミックス焼結体に挟んだ状態でホットフォージン
グ処理する。この処理方法を図3を用いて説明する。図
中、8は酸化物超電導焼結体、9、10はプレスパン
チ、11、12は酸化物系セラミックス焼結体である。
本発明によれば、酸化物超電導焼結体8とプレスパンチ
9、10との間に酸化物系セラミックス焼結体11、1
2を介して配置し、プレスパンチ9、10によってA方
向に圧力を付与すると同時に適当な加熱手段(図示せ
ず)によって加熱を行う。この時の圧力は50kg/c
2以上、加熱温度は800〜850℃が適当である。
このホットフォージング処理により、酸化物超電導焼結
体8と酸化物系セラミックス焼結体11、12は接合一
体化され、酸化物超電導焼結体を含む構造体として高い
強度を有したものとなる。
Next, hot forging treatment is performed with the above-described oxide superconducting sintered body sandwiched between oxide-based ceramic sintered bodies. This processing method will be described with reference to FIG. In the figure, 8 is an oxide superconductive sintered body, 9 and 10 are press punches, and 11 and 12 are oxide ceramic sintered bodies.
According to the present invention, between the oxide superconducting sintered body 8 and the press punches 9, 10, the oxide-based ceramic sintered bodies 11, 1
2 and pressurizing is performed in the direction A by the press punches 9 and 10, and at the same time, heating is performed by a suitable heating means (not shown). The pressure at this time is 50 kg / c
m 2 or more, and a heating temperature of 800 to 850 ° C. is appropriate.
By this hot forging treatment, the oxide superconducting sintered body 8 and the oxide ceramic sintered bodies 11 and 12 are joined and integrated, and have a high strength as a structure including the oxide superconducting sintered body. .

【0016】また、上記方法において、図4に示すよう
に酸化物超電導焼結体焼結体8と酸化物系セラミックス
焼結体11、12との間に延性金属板13、14を介在
させると、図4におけるA方向からの圧力によって延性
金属板自身がA方向と直角な方向に圧延され、それと同
時に酸化物超電導焼結体8も同様な方向に圧延されるた
めに焼結体中の燐片状結晶粒子が配向されるとともに圧
縮され焼結体の密度を高くすることができる。それによ
り、燐片状結晶同士の密着性が飛躍的に向上するために
酸化物超電導焼結体の臨界電流密度をさらに高くするこ
とができる。
In the above method, as shown in FIG. 4, when the ductile metal plates 13 and 14 are interposed between the sintered oxide superconductor 8 and the sintered oxide ceramics 11 and 12, respectively. 4, the ductile metal plate itself is rolled in the direction perpendicular to the direction A by the pressure from the direction A in FIG. 4, and simultaneously, the oxide superconducting sintered body 8 is also rolled in the same direction. The flake crystal particles are oriented and compressed, and the density of the sintered body can be increased. Thereby, the critical current density of the oxide superconducting sintered body can be further increased because the adhesion between the scaly crystals is remarkably improved.

【0017】[0017]

【作用】本発明の構成によれば、酸化物超電導焼結体層
を酸化物系セラミックス焼結体で挟持することが最も重
要である。これに対して、酸化物超電導焼結体との複合
化により強度を高められる物質として、貴金属材料は延
性があり、強度が低く、しかも高価であるという問題が
あり、その他の金属では処理中に酸化物超電導焼結体中
へ金属元素が拡散し超電導特性を劣化させるという問題
がある。また、窒化珪素、炭化珪素、窒化アルミニウム
等の非酸化物系セラミックス焼結体では、酸化物超電導
焼結体との焼成条件が異なるために、焼成時に不具合が
生じたり、またホットフォージング処理した時に窒素や
炭素が超電導特性に悪影響を及ぼすことがあり、さらに
超電導体との接合強度が低いという問題がある。
According to the constitution of the present invention, it is most important that the oxide superconducting sintered body layer is sandwiched between the oxide ceramic sintered bodies. On the other hand, as a substance whose strength can be enhanced by complexing with an oxide superconducting sintered body, there is a problem that a noble metal material has ductility, low strength, and is expensive. There is a problem that the metal element diffuses into the oxide superconducting sintered body and deteriorates the superconducting characteristics. In addition, in non-oxide ceramic sintered bodies such as silicon nitride, silicon carbide and aluminum nitride, the firing conditions are different from those of the oxide superconducting sintered bodies, so that problems occur during firing or hot forging treatment is performed. At times, nitrogen and carbon may adversely affect the superconducting properties, and there is a problem that the bonding strength with the superconductor is low.

【0018】これに対して、酸化物系セラミックス焼結
体では、焼成雰囲気が酸化性雰囲気であり、焼成時や熱
処理時の雰囲気による悪影響がなく、また両者の成分の
拡散が生じても超電導特性を劣化させることがない。
On the other hand, in the case of the oxide ceramic sintered body, the firing atmosphere is an oxidizing atmosphere, and there is no adverse effect due to the atmosphere during firing or heat treatment. Does not deteriorate.

【0019】本発明によれば、酸化物超電導焼結体と酸
化物系セラミックス焼結体との間に金属層を介在させる
と、この金属自身の延性のために酸化物超電導焼結体中
の鱗片状結晶粒子が配向されるとともに圧縮され、酸化
物超電導焼結体の密度を高くすることができる。
According to the present invention, when a metal layer is interposed between the oxide superconducting sintered body and the oxide ceramic sintered body, the metal in the oxide superconducting sintered body is formed due to the ductility of the metal itself. The flaky crystal particles are oriented and compressed, and the density of the oxide superconducting sintered body can be increased.

【0020】それにより、鱗片状結晶同士の密着性が飛
躍的に向上するために酸化物超電導焼結体の臨界電流密
度Jcを更に高くすることが出来る。
As a result, the critical current density Jc of the oxide superconducting sintered body can be further increased since the adhesion between the flake crystals is remarkably improved.

【0021】しかも、酸化物超電導焼結体層と金属層が
接触しているため、雰囲気温度がオフセット温度(Tc
e)以上になったとき、臨界電流(Ic)より大きい電
流が流れたとき、雰囲気磁界が臨界磁界(Hc)より大
きくなったとき超電導体層がクエンチを起こすが、接触
する金属層がこれにとって代わり電流伝播の機能を奏す
る。金属層の電流伝播は酸化物超電導焼結体層のそれよ
りは劣るが、一時的なクエンチの間はこれで充分補うこ
とが出来る。さらに、金属層の放熱作用により電流の増
大に伴う酸化物超電導焼結体層自体の発熱が押さえられ
て超電導特性の破壊が未然に防止される。
In addition, since the oxide superconducting sintered body layer and the metal layer are in contact with each other, the ambient temperature becomes lower than the offset temperature (Tc
e) When the current exceeds the critical current (Ic), the superconductor layer quenches when the ambient magnetic field becomes larger than the critical magnetic field (Hc). Instead, it has the function of current propagation. The current propagation of the metal layer is inferior to that of the oxide superconducting sintered body layer, but this can be sufficiently compensated during the temporary quench. Furthermore, the heat dissipation of the metal layer suppresses the heat generation of the oxide superconducting sintered body layer itself due to an increase in current, thereby preventing the superconducting characteristics from being destroyed.

【0022】また、このような構造では、酸化物系セラ
ミックス焼結体に接する酸化物超電導焼結体の一部が溶
融し酸化物系セラミックス焼結体の界面に拡散またはガ
ラス層を形成するため、酸化物超電導焼結体と酸化物系
セラミックス焼結体間の接着強度が増し、酸化物超電導
焼結体と酸化物系セラミックス焼結体の一体構造物が作
製される。これにより、一体構造体の機械的強度が飛躍
的に向上する。
Further, in such a structure, a part of the oxide superconducting sintered body in contact with the oxide ceramic sintered body is melted to diffuse or form a glass layer at the interface of the oxide ceramic sintered body. As a result, the adhesive strength between the oxide superconducting sintered body and the oxide ceramic sintered body is increased, and an integrated structure of the oxide superconducting sintered body and the oxide ceramic sintered body is produced. Thereby, the mechanical strength of the integrated structure is dramatically improved.

【0023】また、本発明の構造体によれば、酸化物超
電導焼結体が外気にさらされないことにより、空気中の
水分等により酸化物超電導焼結体が分解劣化するのを防
ぐ。
Further, according to the structure of the present invention, since the oxide superconducting sintered body is not exposed to the outside air, it is possible to prevent the oxide superconducting sintered body from being decomposed and deteriorated by moisture in the air.

【0024】[0024]

【実施例】実施例1 原料粉末としてBi23、PbO、SrCO3、CaC
3、CuOの各粉末を各金属のモル比がBi:Pb:
Sr:Ca:Cu=1.93:0.36:2:3.1
7:4.25となるように秤量後、750〜810℃で
20時間仮焼し、粉砕して平均粒径5μmの低Tc相を
多量に含む仮焼粉末を得た。この仮焼粉末をφ12mm
の金型を用いて成形圧1ton/cm2で成形して厚み
約1mmの円板状成形体を得た。
EXAMPLES Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaC
Each powder of O 3 and CuO is mixed with a metal at a molar ratio of Bi: Pb:
Sr: Ca: Cu = 1.93: 0.36: 2: 3.1
After being weighed to 7: 4.25, it was calcined at 750 to 810 ° C for 20 hours and pulverized to obtain a calcined powder containing a large amount of a low Tc phase having an average particle size of 5 µm. This calcined powder is φ12mm
Was molded at a molding pressure of 1 ton / cm 2 by using the mold described above to obtain a disk-shaped molded body having a thickness of about 1 mm.

【0025】次に、上記成形体を大気中で840℃の温
度で150時間焼成したところ、比重2.0(アルキメ
デス法に基づく)の焼結体が得られた。また、組織観察
したところ、高Tc相の燐片状の結晶がランダムに配列
していた。
Next, the above compact was fired in the air at a temperature of 840 ° C. for 150 hours to obtain a sintered compact having a specific gravity of 2.0 (based on the Archimedes method). When the structure was observed, scaly crystals having a high Tc phase were randomly arranged.

【0026】一方、あらかじめ精選した純度99%以
上、粒径3μm以下のAl23と、その他の含有物とし
てSiO2、CaO、MgOそれぞれを磁器の組成比が
82:12:2:4となるように調合した。この調合原
料に酢酸ビニルを加え、アルミナボールを用いて16時
間湿式粉砕した。これを造粒後、成形し、得られた成形
体を1450〜1700℃で2時間保持し、対理論密度
比99%のAl23質焼結体を得た。
On the other hand, Al 2 O 3 having a purity of 99% or more and a particle size of 3 μm or less, which has been carefully selected in advance, and SiO 2 , CaO, and MgO as other inclusions, each having a porcelain composition ratio of 82: 12: 2: 4 It was prepared to be. Vinyl acetate was added to the prepared raw material, and wet pulverized for 16 hours using alumina balls. This was granulated and then molded, and the obtained molded body was kept at 1450 to 1700 ° C. for 2 hours to obtain an Al 2 O 3 sintered body having a theoretical density ratio of 99%.

【0027】次に、酸化物超電導焼結体を図3に従い、
焼結体の上下面に前記で得たアルミナ質焼結体製の厚み
0.5mmのプレートを配置し、このプレートを介して
焼結体に対して5ton/cm2の圧力で845℃の温
度でホットフォージング処理した。
Next, according to FIG.
A 0.5 mm thick plate made of the alumina sintered body obtained above was placed on the upper and lower surfaces of the sintered body, and a temperature of 845 ° C. was applied to the sintered body at a pressure of 5 ton / cm 2 through the plate. Hot forging treatment.

【0028】最終的に得られた焼結体に対してアルキメ
デス法により比重を調べるとともにX線回折測定を行
い、X線回折のチャートデータに基づき、下記数1から
(001)面の配向度fを求めた。
The specific gravity of the finally obtained sintered body is examined by the Archimedes method, and X-ray diffraction measurement is performed. Based on the X-ray diffraction chart data, the orientation degree f of the (001) plane is calculated from the following equation (1). I asked.

【0029】[0029]

【数1】 (Equation 1)

【0030】さらに、上記焼結体について、抵抗法に基
づき、試料を液体窒素中で電流を徐々に高め、高圧端子
に1μV/cmの電圧が生じた時の電流値を臨界電流密
度Jcとして求め、同時に臨界温度Tcも測定した。結
果は表1に示した。
Further, for the above sintered body, the current was gradually increased in liquid nitrogen based on the resistance method, and the current value when a voltage of 1 μV / cm was generated at the high voltage terminal was determined as the critical current density Jc. At the same time, the critical temperature Tc was also measured. The results are shown in Table 1.

【0031】耐水性の試験として、65℃の湿中(95
%RH)に1時間放置した後の臨界温度Tc(aq)を
測定した。
As a test of water resistance, the sample was immersed in water at 65 ° C. (95%).
% RH) for 1 hour, and then the critical temperature Tc (aq) was measured.

【0032】比較例1 実施例1において、ホットフォージング処理時に酸化物
系セラミツクス焼結体を何ら用いない以外は、実施例1
と全く同様にして焼結体を作成し、同様に特性の評価を
行った。結果は表1に示した。
Comparative Example 1 Example 1 was repeated except that no oxide ceramic sintered body was used during the hot forging treatment.
A sintered body was prepared in exactly the same manner as described above, and the characteristics were evaluated in the same manner. The results are shown in Table 1.

【0033】比較例2 実施例1において、ホットフォージング処理時に酸化物
系セラミツクス焼結体を片面のみ用いる以外は、実施例
1と全く同様にして焼結体を作成し、同様に特性の評価
を行った。結果は表1に示した。
Comparative Example 2 A sintered body was prepared in exactly the same manner as in Example 1 except that only one side of the oxide ceramic sintered body was used during the hot forging treatment, and the characteristics were similarly evaluated. Was done. The results are shown in Table 1.

【0034】実施例2 実施例1において、ホットフォージング処理を、酸化物
超電導焼結体と酸化物系セラミックス焼結体との間に銀
製の厚み0.1mmのプレートを配置し、このプレート
を介して焼結体に対して1ton/cm2の圧力で82
0℃の温度で行った。
Example 2 In Example 1, the hot forging treatment was carried out by disposing a 0.1 mm thick silver plate between the oxide superconductive sintered body and the oxide ceramic sintered body. At a pressure of 1 ton / cm 2 to the sintered body through 82
Performed at a temperature of 0 ° C.

【0035】得られた焼結体に対して、実施例1と同様
に特性の評価を行った。結果は表1に示した。
The properties of the obtained sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0036】[0036]

【表1】 表1から明らかなように、酸化物超電導焼結体を酸化物
系セラミックス焼結体により挟持させた実施例1は、酸
化物超電導焼結体のみの比較例1や、片面のみに酸化物
系セラミックス焼結体をつけた比較例2に比べ、強度が
向上するばかりでなく、比重、配向度、Jc値、Tc値
のいずれにおいても優れている。さらに、ホットフォー
ジング処理に際して延性金属を焼結体と酸化物系セラミ
ックス焼結体の間に介在させた実施例2は配向度、Jc
値、Tc値のいずれにおいても、実施例1よりもさらに
優れた酸化物超電導焼結体を得ることができた。しかも
本発明品ではいずれも高湿度雰囲気中でも超電導特性の
劣化が見られず、優れた耐久性があることがわかった。
[Table 1] As is clear from Table 1, in Example 1 in which the oxide superconducting sintered body was sandwiched by the oxide ceramic sintered bodies, Comparative Example 1 in which only the oxide superconductive sintered body was used, Compared with Comparative Example 2 having a ceramic sintered body, not only the strength is improved, but also the specific gravity, the degree of orientation, the Jc value, and the Tc value are excellent. Further, in the hot forging treatment, in which the ductile metal was interposed between the sintered body and the oxide-based ceramics sintered body in Example 2, the degree of orientation, Jc
Regardless of the value and the Tc value, an oxide superconducting sintered body that was more excellent than that of Example 1 could be obtained. In addition, it was found that all of the products of the present invention did not show any deterioration in superconductivity even in a high-humidity atmosphere, and had excellent durability.

【0037】また、上記と同様にY23を3モル%含有
するZrO2質焼結体、およびMgO焼結体を用いて上
記実施例1と同様にして構造体を作成したところ、実施
例1と同様な傾向が見られた。
A structure was prepared in the same manner as in Example 1 using a ZrO 2 -based sintered body containing 3 mol% of Y 2 O 3 and a MgO sintered body in the same manner as described above. The same tendency as in Example 1 was observed.

【0038】[0038]

【発明の効果】以上、詳述した通り、本発明によれば、
酸化物超電導焼結体を酸化物系セラミツクス焼結体によ
り挟持することにより、超電導焼結体に対して特性的に
影響を及ぼすことなく、構造体としての高強度化を達成
することができ、また酸化物超電導焼結体の結晶粒子の
配向度を高めるとともに高密度化が達成できるために高
臨界温度を有し且つ臨界電流密度が極めて高い酸化物超
電導焼結体を含んだ構造体を得ることができる。また耐
水性にも優れることから、あらゆる環境下での使用が可
能であり、例えば磁気シールド部材等の構造体として適
用することができる。
As described above, according to the present invention,
By sandwiching the oxide superconducting sintered body with the oxide ceramic sintered body, it is possible to achieve high strength as a structure without affecting the characteristics of the superconducting sintered body, In addition, a structure containing an oxide superconducting sintered body having a high critical temperature and an extremely high critical current density can be obtained because the degree of orientation of the crystal grains of the oxide superconducting sintered body can be increased and densification can be achieved. be able to. Further, since it is excellent in water resistance, it can be used in any environment and can be applied as a structure such as a magnetic shield member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物超電導構造体を示す断面図であ
る。
FIG. 1 is a sectional view showing an oxide superconducting structure of the present invention.

【図2】本発明の酸化物超電導構造体の他の例を示す断
面図である。
FIG. 2 is a sectional view showing another example of the oxide superconducting structure of the present invention.

【図3】本発明の図1に示した酸化物超電導構造体を作
成する方法を説明するための図である。
FIG. 3 is a view for explaining a method for producing the oxide superconducting structure shown in FIG. 1 of the present invention.

【図4】本発明の図2に示した酸化物超電導構造体を作
成する方法を説明するための図である。
FIG. 4 is a view for explaining a method for producing the oxide superconducting structure shown in FIG. 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超電導焼結体 2、3 酸化物系セラミックス焼結体 6、7 金属層 DESCRIPTION OF SYMBOLS 1 Oxide superconducting sintered compact 2, 3 Oxide ceramic sintered compact 6, 7 Metal layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 H01B 12/00 - 12/16 H01B 13/00 CA(STN) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01G 1/00 H01B 12/00-12/16 H01B 13/00 CA (STN) JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくともCuを含有する複合酸化物から
なり、C軸方向に配向してなる酸化物超電導焼結体を酸
化物系セラミックス焼結体により挟持したことを特徴と
する酸化物超電導構造体。
1. An oxide superconducting structure comprising an oxide superconducting sintered body made of a composite oxide containing at least Cu and oriented in the C-axis direction, sandwiched by an oxide ceramic sintered body. body.
【請求項2】少なくともCuを含有する複合酸化物から
なるとともにC軸方向に配向してなる酸化物超電導焼結
体を延性を有する金属層を介して酸化物系セラミックス
焼結体により挟持してなる酸化物超電導構造体。
2. An oxide superconducting sintered body made of a composite oxide containing at least Cu and oriented in the C-axis direction is sandwiched by an oxide ceramic sintered body via a ductile metal layer. Oxide superconducting structure.
JP25079691A 1991-09-30 1991-09-30 Oxide superconducting structure Expired - Fee Related JP3187089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25079691A JP3187089B2 (en) 1991-09-30 1991-09-30 Oxide superconducting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25079691A JP3187089B2 (en) 1991-09-30 1991-09-30 Oxide superconducting structure

Publications (2)

Publication Number Publication Date
JPH0585724A JPH0585724A (en) 1993-04-06
JP3187089B2 true JP3187089B2 (en) 2001-07-11

Family

ID=17213178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25079691A Expired - Fee Related JP3187089B2 (en) 1991-09-30 1991-09-30 Oxide superconducting structure

Country Status (1)

Country Link
JP (1) JP3187089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961240B2 (en) * 1995-08-25 1999-10-12 工業技術院長 Oxide superconductor / High strength ceramic laminated current lead

Also Published As

Publication number Publication date
JPH0585724A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
EP0356722B1 (en) Oxide superconductor and method of producing the same
US5081070A (en) Superconducting circuit board and paste adopted therefor
JP3187089B2 (en) Oxide superconducting structure
EP0290271B1 (en) Superconducting circuit board and process of manufacturing it
JP2922740B2 (en) Oxide superconducting magnetic shield
JPH0764560B2 (en) Layered copper oxide
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JPH054803A (en) Production of oxide superconductive structure
JP2599387B2 (en) Ceramic superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
JPH07232960A (en) Production of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2506225B2 (en) Precious metal-bismuth superconducting laminate
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
KR950007088B1 (en) Bi-sr-ca-cu-o section target for superconductive thin film
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH09143000A (en) Joining method of oxide superconductor
JPH06128050A (en) Superconducting composite material and its production
JPH08231279A (en) Production of bi-containing superconducting joined body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees