JP2506225B2 - Precious metal-bismuth superconducting laminate - Google Patents

Precious metal-bismuth superconducting laminate

Info

Publication number
JP2506225B2
JP2506225B2 JP2175737A JP17573790A JP2506225B2 JP 2506225 B2 JP2506225 B2 JP 2506225B2 JP 2175737 A JP2175737 A JP 2175737A JP 17573790 A JP17573790 A JP 17573790A JP 2506225 B2 JP2506225 B2 JP 2506225B2
Authority
JP
Japan
Prior art keywords
noble metal
intermediate layer
layer
bismuth
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2175737A
Other languages
Japanese (ja)
Other versions
JPH0465341A (en
Inventor
均 吉田
均 酒井
善美 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2175737A priority Critical patent/JP2506225B2/en
Publication of JPH0465341A publication Critical patent/JPH0465341A/en
Application granted granted Critical
Publication of JP2506225B2 publication Critical patent/JP2506225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、貴金属−ビスマス系超電導積層体に関す
る。さらに詳しくは、ビスマス系超電導体層を貴金属基
板上に貴金属含有ビスマス含有複合酸化物中間層を介し
て積層した貴金属−ビスマス系超電導積層体に関する。
TECHNICAL FIELD The present invention relates to a noble metal-bismuth-based superconducting laminate. More specifically, it relates to a noble metal-bismuth superconducting laminate in which a bismuth superconductor layer is laminated on a noble metal substrate with a noble metal-containing bismuth-containing composite oxide intermediate layer interposed therebetween.

〔従来の技術〕[Conventional technology]

近年、酸化物超電導体は高い臨海温度(Tc)を示すこ
とで注目を集め、電力分野、核磁気共鳴コンピュータ断
層診断装置(MRI:Magnetic Resonace Imaging)、磁気
シールド等の各分野での用途が期待されている。酸化物
超電導体の中でもBi−Sr−Ca−Cu−O酸化物等のビスマ
ス系(以下、単にBi系とする。)超電導体は、特にTcが
より高くそれを利用する研究開発が盛んである。
In recent years, oxide superconductors have attracted attention due to their high critical temperature (Tc), and are expected to be used in various fields such as electric power, nuclear magnetic resonance computerized tomography (MRI: Magnetic Resonace Imaging), and magnetic shielding. Has been done. Among oxide superconductors, bismuth-based (hereinafter simply referred to as Bi-based) superconductors such as Bi-Sr-Ca-Cu-O oxides have a particularly high Tc, and research and development using them are actively conducted. .

従来から、金属やセラミックス等の基板上に酸化物超
電導体層を形成して酸化物超電導体を構造体に利用する
ことが提案されている。金属基板上にBi系超電導体層を
形成する方法も各種提案され、また基板とBi系超電導体
層との反応性の問題から中間層も各種提案されている。
例えば特開昭63−305574号においては、アルミナ、ジル
コニア、銅等の基板と超電導体との間に超電導体と化学
的反応を起こさず、密着性のよい白金(Pt)、銀(A
g)、金(Au)等貴金属の中間層を介在させることが提
案されている。更に、特開平1−252533では、Ag、Au、
Pt等貴金属を基板としてその上にBi系超電導体層を積層
することが提案されている。
Conventionally, it has been proposed to use an oxide superconductor for a structure by forming an oxide superconductor layer on a substrate such as metal or ceramics. Various methods have been proposed for forming a Bi-based superconductor layer on a metal substrate, and various intermediate layers have also been proposed due to the problem of reactivity between the substrate and the Bi-based superconductor layer.
For example, in Japanese Patent Laid-Open No. 63-305574, platinum (Pt), silver (At), which has good adhesiveness, does not cause a chemical reaction with a superconductor between the substrate such as alumina, zirconia, and copper and the superconductor.
g), interposing an intermediate layer of noble metal such as gold (Au) is proposed. Furthermore, in JP-A-1-252533, Ag, Au,
It has been proposed to stack a Bi-based superconductor layer on a precious metal such as Pt as a substrate.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、Bi系超電導体とは化学的に安定とされる貴金
属の中間層を形成しても、Bi系超電導体の焼成温度が85
0〜960℃とかなり高温であるため、貴金属中間層と金属
基板間で剥離が生じ、Bi系超電導体と金属基板とが反応
し超電導特性が劣化したり、また、室温から900℃の熱
膨張係数20〜22×10-6/℃の貴金属と13〜14×10-6/℃の
Bi系超電導体とは、両者の密着性が良好で、貴金属の塑
性変形性により積層体形成されても、超電導特性を発現
させる液体窒素温度における急冷サイクルが繰り返され
るような冷却速度が大きい場合には、両者の大きな熱膨
張差により酸化物超電導体にクラックが生じる等の耐熱
衝撃性が劣る問題がある。
However, even if an intermediate layer of noble metal, which is chemically stable with the Bi-based superconductor, is formed, the firing temperature of the Bi-based superconductor is 85%.
Since it is a very high temperature of 0 to 960 ° C, peeling occurs between the precious metal intermediate layer and the metal substrate, the Bi-based superconductor reacts with the metal substrate to deteriorate the superconducting properties, and the thermal expansion from room temperature to 900 ° C. Coefficients of noble metal with a coefficient of 20-22 × 10 -6 / ° C and of 13-14 × 10 -6 / ° C
Bi-based superconductors have good adhesion to each other, and even when a laminated body is formed due to plastic deformation of noble metal, when the cooling rate is high so that the rapid cooling cycle at the liquid nitrogen temperature that develops superconducting properties is repeated. Has a problem that thermal shock resistance is inferior such as cracks in the oxide superconductor due to a large difference in thermal expansion between the two.

本発明は、貴金属基板上にBi系超電導体が積層形成さ
れた貴金属−Bi系超電導体において、貴金属基板とBi系
超電導体との熱膨張差による上記欠点を解消し耐熱衝撃
性に優れる貴金属−Bi系超電導体を提供することを目的
とする。
The present invention is a precious metal in which a Bi-based superconductor is laminated on a precious metal substrate-Bi-based superconductor, a precious metal excellent in thermal shock resistance by eliminating the above-mentioned drawbacks due to the difference in thermal expansion between the precious metal substrate and the Bi-based superconductor- The purpose is to provide a Bi-based superconductor.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、貴金属−ビスマス系超電導積層体で
あって、貴金属基板上に、該貴金属を20〜80容量%含有
し、厚さが20μm〜1mmであるビスマス系超電導体を構
成する複合酸化物中間層とビスマス系超電導体層が順次
形成されたことを特徴とする貴金属−ビスマス系超電導
積層体が提供される。
According to the present invention, there is provided a noble metal-bismuth-based superconducting laminate, which comprises a noble metal substrate containing 20 to 80% by volume of the noble metal and a composite oxide constituting a bismuth-based superconductor having a thickness of 20 μm to 1 mm. There is provided a noble metal-bismuth-based superconducting laminated body, in which an object intermediate layer and a bismuth-based superconducting layer are sequentially formed.

以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明の積層体の基板は、いわゆる貴金属であるAg、
Au、Pt、Pd(パラジウム)及びこれらの合金が用いら
れ、工業的にはAgが好適である。
The substrate of the laminate of the present invention is a so-called noble metal Ag,
Au, Pt, Pd (palladium) and their alloys are used, and Ag is industrially preferable.

本発明におけるBi系超電導体としては、組成が限定さ
れるものでなく、例えば低Tc相のBi2Sr2CaCu2Ox、高Tc
相のBi2Sr2CaCu3Oxに代表される組成、鉛(Pb)、アン
チモン(Sb)等を含有する組成、定比組成からずれた組
成、主要元素を他の元素で一部または全部置換した組成
等のいずれのBi系超電導体であってもよい。
The composition of the Bi-based superconductor in the present invention is not limited, and examples include low Tc phase Bi 2 Sr 2 CaCu 2 O x and high Tc.
Composition represented by Bi 2 Sr 2 CaCu 3 O x in phase, composition containing lead (Pb), antimony (Sb), etc., composition deviating from stoichiometric composition, main element partially or entirely with other elements Any Bi-based superconductor having a substituted composition may be used.

本発明においてBi系超電導体層は、Bi系超電導体原料
粉末、例えばビスマス、カルシウム、ストロンチウム及
び銅の金属酸化物,炭酸塩,水酸化物、金属アルコキシ
ド及び硝酸塩の粉末を焼成により酸化物超電導体を構成
するように配合した混合粉末、その混合粉末を800〜950
℃で仮焼したBi系超電導結晶相からなる粉末、混合粉末
を400〜800℃で仮焼し焼成により超電導特性を発現する
ようにした仮焼中間生成物粉末、混合粉末のフリット粉
末またはこれらの混合粉末等を用い、スプレー塗布法、
パウダー塗布法、ドクターブレード法、溶射法等の公知
のいずれの成形法によってもよい。
In the present invention, the Bi-based superconductor layer is a Bi-based superconductor raw material powder, for example, oxide superconductor obtained by firing powders of bismuth, calcium, strontium and copper metal oxides, carbonates, hydroxides, metal alkoxides and nitrates. Mixed powder that is compounded to form
Powder composed of Bi-based superconducting crystal phase calcined at ℃, mixed powder calcination intermediate product powder calcinated at 400 ~ 800 ℃ so as to develop superconducting properties, frit powder of mixed powder or these Using mixed powder, spray coating method,
Any known molding method such as a powder coating method, a doctor blade method, or a thermal spraying method may be used.

本発明においては、上記貴金属基板とその上に積層す
るBi系超電導体層との間に、Bi系超電導体を構成する複
合酸化物に基板に用いる貴金属を含有させ、貴金属−Bi
系超電導複合酸化物として中間層を形成する。
In the present invention, between the noble metal substrate and the Bi-based superconductor layer laminated thereon, the noble metal used for the substrate is contained in the composite oxide constituting the Bi-based superconductor, and the noble metal-Bi
An intermediate layer is formed as a superconducting composite oxide.

中間層のBi系超電導体を構成する複合酸化物とは、上
記Bi系超電導体の構成主成分のビスマス(Bi)、ストロ
ンチウム(Sr)、カルシウム(Ca)及び銅(Cu)を主成
分とする複合酸化物であり、Bi系超電導体層を形成する
Bi系超電導体組成と実質的に同一である。中間層に含有
する貴金属は、基板の貴金属と同一金属とするのが好ま
しいが、異なる貴金属、合金を用いてもよい。
The complex oxide that constitutes the Bi-based superconductor of the intermediate layer is mainly composed of bismuth (Bi), strontium (Sr), calcium (Ca), and copper (Cu), which are the main constituent components of the Bi-based superconductor. A complex oxide that forms a Bi-based superconductor layer
It has substantially the same composition as the Bi-based superconductor. The noble metal contained in the intermediate layer is preferably the same metal as the noble metal of the substrate, but different noble metals or alloys may be used.

本発明の上記中間層は、Bi系超電導体原料粉末に貴金
属単体または酸化物、硝酸塩等の化合物粉末として下記
と組成比率になるように、且つ貴金属がBi系超電導体組
成複合酸化物中に均一に分散するように添加混合した原
料粉末を用いて、Bi系超電導体層と同様に公知のいずれ
かの成形方法により形成することができる。
The intermediate layer of the present invention is a Bi-based superconductor raw material powder as a noble metal simple substance or an oxide, a compound powder such as a nitrate, so that the composition ratio is as follows, and the noble metal is uniform in the Bi-based superconductor composition composite oxide. Like the Bi-based superconductor layer, the raw material powder added and mixed so as to be dispersed can be formed by any known forming method.

本発明の中間層において、含有される貴金属は、形成
される中間層の貴金属−Bi系超電導複合酸化物中20〜80
容量%とする。中間層酸化物中の貴金属は、Bi系超電導
体組成の複合酸化物中に貴金属単体相として分散状態で
存在することになるが、貴金属が80容量%を超えると中
間層形成の際貴金属の融点以上の温度にて焼成収縮させ
ることになり基板の貴金属も溶融し形態を保持できなく
なり好ましくない。また20容量%未満の場合は、熱膨張
差を緩和するという中間層としての効果が少ない。
In the intermediate layer of the present invention, the noble metal contained is 20 to 80 in the noble metal-Bi-based superconducting composite oxide of the intermediate layer to be formed.
Volume% The noble metal in the oxide of the intermediate layer exists in a dispersed state as a single phase of the noble metal in the complex oxide of the Bi-based superconductor composition, but if the amount of the noble metal exceeds 80% by volume, the melting point of the noble metal when forming the intermediate layer. This will cause firing shrinkage at the above temperature, and the noble metal of the substrate will also be melted, and the morphology cannot be maintained, which is not preferable. On the other hand, when the content is less than 20% by volume, the effect as an intermediate layer of relaxing the difference in thermal expansion is small.

本発明の中間層の貴金属−Bi系超電導複合酸化物は、
含有する貴金属の容積率の増加に伴い、その熱膨張係数
がBi系超電導体の熱膨張係数値から貴金属の熱膨張係数
地へほぼ直線的に変化する。従って、耐熱衝撃性を最大
限に発揮させる必要がある場合には、貴金属基板とBi系
超電導層との間に、貴金属含有容積率がBi系超電導層方
向に連続して逓減する複数の中間層を形成して傾斜材料
構造の中間層とすることもできる。実用的には製造工程
の容易性から、貴金属含有容積率50%の中間層を1層形
成されるか、期間属基板側から貴金属が67容量%含有の
第一中間層、33容量%含有の第二中間層と形成し、第二
中間層上にBi系超電導層を形成するのが好ましい。
The noble metal-Bi-based superconducting composite oxide of the intermediate layer of the present invention is
As the volume ratio of the precious metal contained increases, the coefficient of thermal expansion changes almost linearly from the value of the coefficient of thermal expansion of the Bi-based superconductor to that of the precious metal. Therefore, when it is necessary to maximize the thermal shock resistance, a plurality of intermediate layers between the precious metal substrate and the Bi-based superconducting layer in which the precious metal-containing volume ratio is gradually reduced in the Bi-based superconducting layer direction. Can be formed as an intermediate layer of the graded material structure. Practically, due to the ease of the manufacturing process, one intermediate layer with a noble metal content volume ratio of 50% is formed, or the first intermediate layer with noble metal content of 67% by volume and 33% by volume of the noble metal substrate side. It is preferable to form the second intermediate layer and form the Bi-based superconducting layer on the second intermediate layer.

本発明の積層体において、貴金属基板は300μm〜1mm
の範囲の厚さが好ましい。300μm未満では基板として
の強度が不十分であり、1mmを超えた場合はコスト的に
実用的でない。Bi系超電導層の厚さは、100μm〜5mmの
範囲の厚さが好ましい。100μm未満では超電導特性の
発現が不十分となるおそれがあり、特に磁気シールド材
としては不適当である。5mmを超える場合はBi系超電導
層の焼結が均一に進行せず好ましくない。また貴金属−
Bi系超電導複合酸化物の中間層の厚さは、20μm〜1mm
の範囲とする。20μm未満では熱膨張差の緩和層として
の機能が不十分であり、1mmを超える場合は超電導層に
比し不十分に厚くなり好ましくない。中間層が複数層に
形成する場合は、各層は20μm以上にする必要がある
が、中間層全体としては上記のように1mm以下とするの
が好ましい。
In the laminated body of the present invention, the noble metal substrate is 300 μm to 1 mm.
A thickness in the range of is preferred. If it is less than 300 μm, the strength of the substrate is insufficient, and if it exceeds 1 mm, it is not practical in terms of cost. The Bi-based superconducting layer preferably has a thickness in the range of 100 μm to 5 mm. If it is less than 100 μm, the superconducting properties may be insufficiently expressed, and it is particularly unsuitable as a magnetic shield material. If it exceeds 5 mm, the sintering of the Bi-based superconducting layer does not proceed uniformly, which is not preferable. Also precious metals-
The thickness of the intermediate layer of Bi-based superconducting composite oxide is 20 μm to 1 mm.
Range. If it is less than 20 μm, the function as a layer for relaxing the difference in thermal expansion is insufficient, and if it exceeds 1 mm, it is unfavorably thick as compared with the superconducting layer. When the intermediate layer is formed of a plurality of layers, each layer needs to have a thickness of 20 μm or more, but the thickness of the entire intermediate layer is preferably 1 mm or less as described above.

本発明においては、上記のように貴金属金属基板上に
中間層原料による層を形成、焼成して、貴金属基板と中
間層を一体化後に、中間層上にBi系超電導体原料による
層を形成し、乾燥及び焼成して、金属基板、中間層及び
Bi系超電導層とが一体化された酸化物超電導積層体を得
ることができる。また、貴金属基板上に中間層とBi系超
電導層とを同時に焼成形成してもよい。更にまた、超電
導層にAgまたはAg2Oを、好ましくは0.5〜10重量%添加
して焼成することにより、より均質な超電導層を得るこ
とができる。
In the present invention, as described above, a layer of the intermediate layer raw material is formed on the precious metal metal substrate and fired to integrate the precious metal substrate and the intermediate layer, and then a layer of the Bi-based superconductor raw material is formed on the intermediate layer. , Dried and baked to obtain a metal substrate, an intermediate layer and
It is possible to obtain an oxide superconducting laminate in which the Bi-based superconducting layer is integrated. Further, the intermediate layer and the Bi-based superconducting layer may be formed on the noble metal substrate by firing at the same time. Furthermore, a more uniform superconducting layer can be obtained by adding Ag or Ag 2 O, preferably 0.5 to 10% by weight, to the superconducting layer and baking it.

本発明における焼成は、酸素または空気中の酸素含有
ガス雰囲気中で行う。焼成温度は、一般に860〜920℃が
好ましい。
The firing in the present invention is performed in an atmosphere of oxygen or an oxygen-containing gas in air. Generally, the firing temperature is preferably 860 to 920 ° C.

本発明の貴金属−Bi系超電導積層体は、貴金属基板上
に貴金属−Bi系超電導複合酸化物の中間層を形成し、そ
の中間層上にBi系超電導層を形成し一体化するもので、
中間層は、貴金属基板及び外表面に形成されるBi系超電
導層との双方に、相乗的に作用する。このため本発明の
酸化物超電導積層体は、金属基板上の各層が安定化さ
れ、超電導特性を発現させる液体窒素中への浸漬、取り
出しを繰り返して使用しても剥離やクラックが生じるこ
とがない。
The noble metal-Bi-based superconducting laminate of the present invention is one in which an intermediate layer of a noble metal-Bi-based superconducting composite oxide is formed on a noble metal substrate, and a Bi-based superconducting layer is formed on the intermediate layer to be integrated.
The intermediate layer acts synergistically on both the precious metal substrate and the Bi-based superconducting layer formed on the outer surface. Therefore, in the oxide superconducting laminate of the present invention, each layer on the metal substrate is stabilized, and peeling or cracking does not occur even if it is repeatedly used by dipping in liquid nitrogen for expressing superconducting properties and taking out. .

〔実施例〕〔Example〕

以下、本発明を実施例により、さらに詳しく説明す
る。但し、本発明は、下記実施例に限定されるものでな
い。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

実施例 Bi2O3,SrCO3,CaCO3及びCuOの粉末を1:2:1:2のモル比
で調合し、蒸溜水中で混合した後、800℃で10時間空気
中で仮焼し、エタノール中ZrO2玉石で15時間粉砕し、主
たる結晶相がBi2Sr2CaCuOy相であるBi系超電導体仮焼粉
末にAg粉末を容積率で33%添加した組成物(A)と67%
添加した組成物(B)をイソプロピルアルコールを用い
てスラリー(A)及び(B)を作成した。
Examples Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO powders were prepared in a molar ratio of 1: 2: 1: 2, mixed in distilled water, and then calcined in air at 800 ° C. for 10 hours, A composition (A) in which 33% by volume of Ag powder was added to Bi-based superconductor calcined powder whose main crystal phase was Bi 2 Sr 2 CaCuO y phase after crushing with ZrO 2 boulder in ethanol for 15 hours and 67%
The added composition (B) was made into slurries (A) and (B) using isopropyl alcohol.

Ag製の厚さ500μmで直径100mm、高さ450mmの円筒基
板の外側表面に上記スラリー(A)を用いてスプレー塗
布法にて焼結後の厚さが200μmとなるように膜成形
し、酸素ガス雰囲気下、860℃で30分間焼成して焼結さ
せ中間層(A)を形成した。
A cylindrical substrate having a thickness of 500 μm, a diameter of 100 mm and a height of 450 mm was formed on the outer surface of the cylindrical substrate by spray coating using the above slurry (A) so that the thickness after sintering was 200 μm. The intermediate layer (A) was formed by firing at 860 ° C. for 30 minutes in a gas atmosphere and sintering.

次いで、上記中間層(A)上にスラリー(B)を用い
て同様に膜成形し、酸素ガス雰囲気下、895℃で30分間
焼成して焼結させ中間層(B)を形成した。得られた中
間層(A)及び(B)からなる中間層の厚さは、総計40
0μmであった。
Then, the slurry (B) was used to form a film on the intermediate layer (A) in the same manner, and the intermediate layer (B) was sintered by firing at 895 ° C. for 30 minutes in an oxygen gas atmosphere to form the intermediate layer (B). The total thickness of the obtained intermediate layers consisting of the intermediate layers (A) and (B) is 40
It was 0 μm.

更に、上記で得られた中間層上に、前記と同様のBi系
超電導体仮焼粉末のイソプロピルアルコールスラリーを
用いてスプレー塗布成形し、酸素ガス雰囲気下、885℃
で30分部分溶融した後、降温速度1℃/分で850℃まで
徐冷し、850℃で15時間、その後窒素雰囲気中、400℃で
10時間熱処理した。得られたBi系超電導層の厚さは500
μmであった。
Furthermore, on the intermediate layer obtained above, spray coating using the same Bi-based superconductor calcined powder isopropyl alcohol slurry as above, under an oxygen gas atmosphere, 885 ° C.
After partially melting for 30 minutes, gradually cool to 850 ° C at a temperature decrease rate of 1 ° C / minute, and at 850 ° C for 15 hours, then in a nitrogen atmosphere at 400 ° C
Heat treated for 10 hours. The thickness of the obtained Bi-based superconducting layer is 500.
μm.

上記のようにして得られた円筒貴金属−Bi系超電導積
層体の磁気シールド能を、第1図に概要説明図を示した
磁気シールド能測定装置を用いて測定した。第1図にお
いて、液体窒素容器1内に液体窒素を満たし、得られた
積層体2を液体窒素中に浸漬して積層体が液体窒素温度
に達した後に、容器1の外側に配設した電磁石3で外部
磁場を印加して、円筒積層体内に配置したガウスメータ
4でバックグランドより増加し始める最大外部磁場を磁
気シールド能として測定した。その後、円筒積層体2を
室内大気中に瞬時に取り出し、室温になるまで放置した
後、再び液体窒素中に浸漬急冷する冷熱サイクルを繰り
返し、磁気シールド能を測定した。
The magnetic shield ability of the cylindrical noble metal-Bi-based superconducting laminate obtained as described above was measured using the magnetic shield ability measuring apparatus whose schematic explanatory view is shown in FIG. In FIG. 1, after filling the liquid nitrogen container 1 with liquid nitrogen and immersing the obtained laminated body 2 in liquid nitrogen to reach the liquid nitrogen temperature, the electromagnet arranged outside the container 1 An external magnetic field was applied at 3 and the maximum external magnetic field that started to increase from the background was measured as the magnetic shield ability by the Gauss meter 4 arranged in the cylindrical laminated body. After that, the cylindrical laminated body 2 was immediately taken out into the indoor atmosphere, allowed to stand until it reached room temperature, and then the cooling and heating cycle of immersing in the liquid nitrogen and rapidly cooling was repeated to measure the magnetic shielding ability.

この結果の冷熱サイクルによる磁気シールド能の変化
を第1表に示した。
Table 1 shows the changes in the magnetic shielding ability as a result of the cooling / heating cycle.

比較例 実施例と同様のAg製の円筒体に中間層を形成すること
なく、実施例と同様にして500μmのBi系超電導層を形
成した積層体を作製して、同様に冷熱サイクルによる磁
気シールド能の変化を測定した。その結果を第1表に示
した。
Comparative Example A laminated body in which a 500 μm Bi-based superconducting layer was formed in the same manner as in the example without forming an intermediate layer in the same Ag cylindrical body as in the example, and the magnetic shield by the thermal cycle was similarly prepared. The change in Noh was measured. The results are shown in Table 1.

上記実施例及び比較例より明らかなように、本発明の
中間層を形成して得た貴金属−Bi系超電導積層体は冷熱
サイクルの繰り返しにおいても、磁気シールド能が減少
することなく安定して超電導特性を発現することが分か
る。
As is clear from the above-mentioned Examples and Comparative Examples, the noble metal-Bi-based superconducting laminate obtained by forming the intermediate layer of the present invention is stable in superconducting state without decreasing magnetic shielding ability even during repeated cooling and heating cycles. It can be seen that the characteristics are exhibited.

〔発明の効果〕〔The invention's effect〕

本発明は、貴金属基板上に貴金属を含有するBi系超電
導体を構成する複合酸化物の貴金属含有Bi系超電導複合
酸化物の中間層を形成し、その上にBi系超電導層を形成
させ貴金属−Bi系物超電導積層体とするもので、貴金属
基板と中間層、中間層とBi系超電導層の各層間の密着性
が良く、冷熱サイクルに対する耐熱衝撃性が高く、急冷
等の冷熱サイクルの繰り返しにおいても超電導特性が劣
化することなく良好な超電導特性が得られる。
The present invention forms an intermediate layer of a noble metal-containing Bi-based superconducting composite oxide of a complex oxide that constitutes a Bi-based superconductor containing a noble metal on a noble metal substrate, and forms a Bi-based superconducting layer on it. It is a Bi-based superconducting laminated body, with good adhesion between the noble metal substrate and the intermediate layer, and between the intermediate layer and the Bi-based superconducting layer, and has high thermal shock resistance against cooling and heating cycles, and in repeated cooling and cooling cycles such as rapid cooling. Also, good superconducting properties can be obtained without degrading the superconducting properties.

【図面の簡単な説明】 第1図は本発明の基金属−Bi系超電導積層体の磁気シー
ルド能測定装置の一例を示す概要説明図である。 1……液体窒素容器 2……貴金属−Bi系超電導積層体 3……電磁石、4……ガウスメータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view showing an example of an apparatus for measuring magnetic shielding ability of a base metal-Bi based superconducting laminate of the present invention. 1 ... Liquid nitrogen container 2 ... Noble metal-Bi-based superconducting laminated body 3 ... Electromagnet, 4 ... Gauss meter

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】貴金属−ビスマス系超電導積層体であっ
て、貴金属基板上に、該貴金属を20〜80容量%含有し、
厚さが20μm〜1mmであるビスマス系超電導体を構成す
る複合酸化物中間層と、ビスマス系超電導体層が順次形
成されたことを特徴とする貴金属−ビスマス系超電導積
層体。
1. A noble metal-bismuth-based superconducting laminate, comprising 20 to 80% by volume of the noble metal on a noble metal substrate,
A noble metal-bismuth-based superconducting laminate, wherein a bismuth-based superconducting layer having a thickness of 20 μm to 1 mm and forming a bismuth-based superconductor and a bismuth-based superconducting layer are sequentially formed.
【請求項2】該貴金属が該中間層内に貴金属単体相とし
て分散状態で存在する請求項(1)記載の貴金属−ビス
マス系超電導積層体。
2. The noble metal-bismuth superconducting laminate according to claim 1, wherein the noble metal is present in the intermediate layer in a dispersed state as a noble metal simple phase.
【請求項3】該貴金属がAgである請求項(1)又は
(2)記載の貴金属−ビスマス系超電導積層体。
3. The noble metal-bismuth superconducting laminate according to claim 1, wherein the noble metal is Ag.
JP2175737A 1990-07-03 1990-07-03 Precious metal-bismuth superconducting laminate Expired - Fee Related JP2506225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175737A JP2506225B2 (en) 1990-07-03 1990-07-03 Precious metal-bismuth superconducting laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175737A JP2506225B2 (en) 1990-07-03 1990-07-03 Precious metal-bismuth superconducting laminate

Publications (2)

Publication Number Publication Date
JPH0465341A JPH0465341A (en) 1992-03-02
JP2506225B2 true JP2506225B2 (en) 1996-06-12

Family

ID=16001368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175737A Expired - Fee Related JP2506225B2 (en) 1990-07-03 1990-07-03 Precious metal-bismuth superconducting laminate

Country Status (1)

Country Link
JP (1) JP2506225B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201819A (en) * 1989-01-31 1990-08-10 Toshiba Corp Compound superconductive material and manufacture thereof

Also Published As

Publication number Publication date
JPH0465341A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
US5096878A (en) Method for production of bi-containing superconducting ceramics laminates
EP0393932B1 (en) Superconducting structure for magnetic shielding
JP2506225B2 (en) Precious metal-bismuth superconducting laminate
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JP3512825B2 (en) Method for producing metal-oxide superconductor composite material
JP3187089B2 (en) Oxide superconducting structure
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JP2866503B2 (en) Manufacturing method of oxide superconducting structure
JP2922740B2 (en) Oxide superconducting magnetic shield
JPH09263971A (en) Superconducting composite body and its production
JPH0825249B2 (en) Bismuth superconducting-precious metal laminate
JPH0661682A (en) Supperconducting magnetic shield
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JPH0825248B2 (en) Oxide superconducting laminate and method for producing the same
JPS63276820A (en) Manufacture of oxide superconductor
JPH09263972A (en) Oxide superconducting laminated body
JPH0494015A (en) Ceramic superconductive conductor
JPH06183742A (en) Superconducting composite and its production
JPH07232960A (en) Production of oxide superconductor
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
Krasil'nikov et al. Preparation of Thick LaCu 1–x Ni x O 2.5+ δ Films Exhibiting a High-Temperature Metal–Semiconductor Transition
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JPH1012938A (en) Manufacture of high-temperature superconducting composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees