JP3281892B2 - Ceramic superconducting composite and manufacturing method thereof - Google Patents

Ceramic superconducting composite and manufacturing method thereof

Info

Publication number
JP3281892B2
JP3281892B2 JP12302393A JP12302393A JP3281892B2 JP 3281892 B2 JP3281892 B2 JP 3281892B2 JP 12302393 A JP12302393 A JP 12302393A JP 12302393 A JP12302393 A JP 12302393A JP 3281892 B2 JP3281892 B2 JP 3281892B2
Authority
JP
Japan
Prior art keywords
superconductor
ceramic
bismuth
magnesia
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12302393A
Other languages
Japanese (ja)
Other versions
JPH06328618A (en
Inventor
修一郎 下田
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
National Institute for Materials Science
Japan Science and Technology Corp
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute for Materials Science, Japan Science and Technology Corp, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12302393A priority Critical patent/JP3281892B2/en
Publication of JPH06328618A publication Critical patent/JPH06328618A/en
Application granted granted Critical
Publication of JP3281892B2 publication Critical patent/JP3281892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は機械的強度が高く、熱衝
撃特性に優れ、磁気シールド体などへの応用が可能なセ
ラミックス超電導複合体及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic superconducting composite having high mechanical strength, excellent thermal shock characteristics, and applicable to a magnetic shield or the like, and a method for producing the same.

【0002】[0002]

【従来の技術】超電導体、例えばセラミックス超電導体
は、機械的強度や熱衝撃性に劣るという欠点があり、ま
た高い臨界電流密度(Jc)を得るため、焼成時に部分
溶融させる必要があることからセラミックス超電導体を
金属、構造用セラミックス等の基材と組み合わせて複合
化することが試みられている。このうち金属の方がセラ
ミックスより大きさ、形状等の制約を受けにくいという
利点がある。
2. Description of the Related Art Superconductors, for example, ceramic superconductors, have the drawbacks of poor mechanical strength and thermal shock resistance, and must be partially melted during firing in order to obtain a high critical current density (Jc). Attempts have been made to combine ceramic superconductors with substrates such as metals and structural ceramics to form composites. Among them, metal has the advantage that it is less susceptible to restrictions such as size and shape than ceramics.

【0003】しかしながら、セラミックス超電導体は多
くの金属材料と反応し、超電導特性が低下することか
ら、金属基材とセラミックス超電導体との間に反応防止
を目的に中間層を形成する必要がある。
However, since the ceramic superconductor reacts with many metal materials and the superconductivity is deteriorated, it is necessary to form an intermediate layer between the metal substrate and the ceramic superconductor for the purpose of preventing the reaction.

【0004】例えばビスマス系超電導体の場合、特開平
4−199700号公報に示されるように、鉄−ニッケ
ル系合金の基板上に中間層として金、銀等の貴金属層を
熱間圧延により拡散接合して、複合基板を作製し、この
複合基板上にビスマス系超電導体を形成する方法が考案
されている。またビスマス系超電導体の場合、金及び銀
以外にマグネシアを用いても超電導特性が得られること
が知られている。
[0004] For example, in the case of a bismuth-based superconductor, as shown in Japanese Patent Application Laid-Open No. 4-199700, a noble metal layer such as gold or silver is diffusion-bonded as an intermediate layer on a substrate of an iron-nickel alloy by hot rolling. Then, a method of producing a composite substrate and forming a bismuth-based superconductor on the composite substrate has been devised. In the case of a bismuth-based superconductor, it is known that superconductivity can be obtained even when magnesia is used in addition to gold and silver.

【0005】[0005]

【発明が解決しようとする課題】超電導体を実用化する
場合、例えば磁気シールド体のような用途に用いる場
合、大型で三次元構造の超電導体が要求される。また金
属板、中間層及びセラミックス超電導体を複合化する場
合、問題となるのは、それぞれの熱膨張係数の不一致に
よるクラック、剥離、内部ひずみの発生、反応等による
超電導特性の低下である。熱膨張係数の不一致は、複合
化のための焼成及び熱処理時の冷却過程以外にも、超電
導状態を発現させるため、室温から液体窒素温度さらに
は20K乃至4.2Kに冷却する際にクラックや剥離の
発生をもたらし、形状、大きさなどが制約され、セラミ
ックス超電導体の実用化、応用の面で妨げとなってい
る。
When a superconductor is put into practical use, for example, used for a magnetic shield, a large-sized three-dimensional superconductor is required. In the case where the metal plate, the intermediate layer, and the ceramic superconductor are combined, a problem is a deterioration in superconductivity due to cracks, peeling, internal strain, reactions, and the like due to inconsistencies in the respective thermal expansion coefficients. The inconsistency in the coefficient of thermal expansion causes cracks and peeling during cooling from room temperature to liquid nitrogen temperature, and even 20K to 4.2K, in order to develop a superconducting state in addition to the cooling process during firing and heat treatment for complexing. And the shape and size are restricted, which hinders the practical application and application of ceramic superconductors.

【0006】しかしながら従来の方法の場合、鉄−ニッ
ケル系合金基板と貴金属中間層を接合するためには、還
元雰囲気中の高温高圧下で行わなければならず、大型で
三次元構造の複合体の作製は困難であった。さらに、鉄
−ニッケル系合金と貴金属中間層の両者の熱膨張差によ
って、クラックや剥離が生じる可能性がある。
However, in the case of the conventional method, in order to bond the iron-nickel-based alloy substrate and the noble metal intermediate layer, the bonding must be performed under high temperature and high pressure in a reducing atmosphere. Fabrication was difficult. Furthermore, cracks and peeling may occur due to the difference in thermal expansion between the iron-nickel alloy and the noble metal intermediate layer.

【0007】なお、溶射法により、鉄−ニッケル系合金
表面に貴金属中間層を形成して複合基材を得る方法も考
えられるが、緻密な溶射膜が得られにくいため貴金属中
間層を厚くしなければならず、熱膨張係数の影響を大き
く受けることになる。
Although a method of forming a noble metal intermediate layer on the surface of an iron-nickel alloy by a thermal spraying method to obtain a composite base material can be considered, it is difficult to obtain a dense sprayed film, so that the noble metal intermediate layer must be thickened. It must be greatly affected by the coefficient of thermal expansion.

【0008】本発明は上記のような問題点のないセラミ
ックス超電導複合体及びその製造法を提供するものであ
る。
The present invention provides a ceramic superconducting composite free from the above problems and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の欠点
について種々検討した結果、機械的強度に優れる金属板
を用いる場合、該金属板の酸化防止あるいは該金属板と
セラミックス超電導体との反応防止のため、この両者の
間に設ける中間層の熱膨張係数を該金属板及びセラミッ
クス超電導体の熱膨張係数に近づけることが重要である
と考えた。
As a result of various studies on the above-mentioned drawbacks, the present inventors have found that, when a metal plate having excellent mechanical strength is used, the metal plate is prevented from being oxidized or the metal plate and the ceramic superconductor are connected. In order to prevent the reaction, it was considered important to make the thermal expansion coefficient of the intermediate layer provided between the two close to the thermal expansion coefficients of the metal plate and the ceramic superconductor.

【0010】例えばビスマス系超電導体の熱膨張係数が
約13×10-6/℃であるのに対し、鉄−ニッケル系合
金であるインコネルが約16×10-6/℃である。また
中間層として反応による超電導特性の低下が起きにくい
と考えられる銀が約21×10-6/℃、マグネシアが約
14×10-6/℃である。上記の熱膨張係数から中間層
としてマグネシアを用いれば好ましいと考えられるが、
本発明者らの実験によれば金属板を用いず銀基板上及び
マグネシア基板上にそれぞれ単独にビスマス系超電導体
を形成した場合、銀基板上の方が優れた超電導特性を示
す結果を得た。
For example, the thermal expansion coefficient of a bismuth-based superconductor is about 13 × 10 −6 / ° C., whereas that of Inconel, which is an iron-nickel alloy, is about 16 × 10 −6 / ° C. The intermediate layer has a silver content of about 21 × 10 −6 / ° C. and a magnesia of about 14 × 10 −6 / ° C., which are considered to be unlikely to cause a decrease in superconductivity due to the reaction. Although it is considered preferable to use magnesia as the intermediate layer from the above thermal expansion coefficient,
According to experiments performed by the present inventors, when a bismuth-based superconductor was independently formed on a silver substrate and a magnesia substrate without using a metal plate, a result showing superior superconducting characteristics on a silver substrate was obtained. .

【0011】即ち金属板とセラミックス超電導体との間
に該金属板の熱膨張係数に近く、さらに優れた超電導特
性が得られる中間層を設けることで熱歪に起因するクラ
ックの発生が抑制されることを見い出し、本発明を完成
するに至った。
That is, by providing an intermediate layer between the metal plate and the ceramic superconductor having a coefficient of thermal expansion close to that of the metal plate and further obtaining excellent superconducting characteristics, generation of cracks due to thermal strain is suppressed. This led to the completion of the present invention.

【0012】本発明は金属板とセラミックス超電導体層
との間に、銀及びマグネシアを含む混合物からなる中間
層を介在させたセラミックス超電導複合体並びに金属板
の表面に銀及びマグネシアを含む混合物の層を形成し、
さらに混合物の層の表面にセラミックス超電導体用材料
を積層した後焼成するセラミックス超電導複合体の製造
法に関する。
The present invention provides a ceramic superconducting composite in which an intermediate layer made of a mixture containing silver and magnesia is interposed between a metal plate and a ceramic superconductor layer, and a layer of a mixture containing silver and magnesia on the surface of the metal plate. To form
Furthermore, the present invention relates to a method for producing a ceramic superconducting composite in which a material for a ceramic superconductor is laminated on the surface of a layer of a mixture and then fired.

【0013】本発明で用いられるセラミックス超電導体
は、酸化物であれば特に制限はないが、イットリウム系
超電導体、ビスマス系超電導体、タリウム系超電導体等
を用いれば、臨界温度(以下Tcとする)が液体窒素温
度以上であるので好ましく、このうち本発明においては
ビスマス系超電導体が最も適している。
The ceramic superconductor used in the present invention is not particularly limited as long as it is an oxide. However, if a ceramic superconductor such as an yttrium-based superconductor, a bismuth-based superconductor, or a thallium-based superconductor is used, the critical temperature (hereinafter referred to as Tc) is obtained. Is preferable because the temperature is higher than the temperature of liquid nitrogen. Among them, bismuth-based superconductors are most suitable in the present invention.

【0014】なお本発明において銀及びマグネシアの混
合物の層は、金属板とセラミックス超電導体層の間に形
成するために中間層と記載したが、金属板の片面に積層
してもよく、また両面に積層してもよく制限はない。
In the present invention, the layer of the mixture of silver and magnesia is described as an intermediate layer to be formed between the metal plate and the ceramic superconductor layer. However, the layer may be laminated on one side of the metal plate or on both sides. There is no limitation.

【0015】また中間層を形成する方法については特に
制限はないが、溶射法で行うことが好ましい。なお溶射
の方法はガス式、プラズマ式等を用いることができる。
該中間層の厚さは特に制限はないが、薄いと中間層を通
してセラミックス超電導体と金属板が反応し超電導特性
が低下しやすくなるため、50μm以上、望ましくは1
00μm〜600μmである。
The method of forming the intermediate layer is not particularly limited, but is preferably performed by a thermal spraying method. In addition, a gas type, a plasma type, or the like can be used as a thermal spraying method.
The thickness of the intermediate layer is not particularly limited, but if it is thin, the ceramic superconductor reacts with the metal plate through the intermediate layer, and the superconducting characteristics are apt to deteriorate.
It is from 00 μm to 600 μm.

【0016】金属板としてはSUS304、同310
S、ハステロイ、インコネル600、同625等の鉄−
ニッケル系合金板、ニッケルクロム鋼板、銀板等が用い
られる。
SUS304 and 310 are used as metal plates.
Iron such as S, Hastelloy, Inconel 600 and 625
A nickel-based alloy plate, a nickel chrome steel plate, a silver plate, or the like is used.

【0017】銀及びマグネシアを含む中間層の表面にセ
ラミックス超電導体用材料を積層する方法についても制
限はないが、溶射法、スクリーン印刷法、転写法、スプ
レーコート法、ディップコート法、グリーンシート積層
法等の方法で積層することができる。
The method of laminating the ceramic superconductor material on the surface of the intermediate layer containing silver and magnesia is not limited. However, thermal spraying, screen printing, transfer, spray coating, dip coating, green sheet lamination It can be laminated by a method such as a method.

【0018】焼成条件については特に制限はなく、従来
公知の方法で行うものとする。また必要に応じ焼成後に
熱処理が行われる。
The firing conditions are not particularly limited, and the firing is performed by a conventionally known method. If necessary, heat treatment is performed after firing.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。 実施例1 銀粉末(レアメタリック製、粒径44μm以下)及びマ
グネシア粉末(高純度化学研究所製、重質、フリーパウ
ダー、純度99.9%)が表1に示す割合になるように
秤量し、乳鉢で15分間混合して、銀とマグネシアの混
合粉末a及びbを得た。
Embodiments of the present invention will be described below. Example 1 Silver powder (manufactured by Rare Metallic, particle size: 44 μm or less) and magnesia powder (manufactured by Kojundo Chemical Laboratory, heavy, free powder, purity: 99.9%) were weighed so as to have the proportions shown in Table 1. And mixed in a mortar for 15 minutes to obtain mixed powders a and b of silver and magnesia.

【0020】[0020]

【表1】 [Table 1]

【0021】次に金属板として、寸法が縦50mm×横
50mm×厚さ1mmのインコネル600板をサンドブ
ラスト処理した後、図1に示すように該インコネル60
0板1の片側の面に、公知のブラズマ溶射法により、上
記で得た銀とマグネシアの混合粉末aを吹き付け、厚さ
が320μmの銀及びマグネシアを含む混合物からなる
中間層2を形成した超電導体形成用基材を得た。
Next, as a metal plate, an Inconel 600 plate having a size of 50 mm in length × 50 mm in width × 1 mm in thickness was subjected to sandblasting, and then, as shown in FIG.
The superconducting layer 2 is formed by spraying the mixed powder a of silver and magnesia obtained above on one surface of the zero plate 1 by a known plasma spraying method to form an intermediate layer 2 having a thickness of 320 μm and containing a mixture containing silver and magnesia. A body forming substrate was obtained.

【0022】一方ビスマス、ストロンチウム、カルシウ
ム及び銅の比率が原子比で2:2:1:2となるように
純度99.9%以上の酸化ビスマス(高純度化学研究所
製)913.29g、炭酸ストロンチウム(レアメタリ
ック製)578.71g、炭酸カルシウム(高純度化学
研究所製)196.17g及び酸化第二銅(高純度化学
研究所製)311.82gを秤量し、超電導体用原料粉
とした。
On the other hand, 913.29 g of bismuth oxide (manufactured by Kojundo Chemical Laboratories) having a purity of 99.9% or more so that the ratio of bismuth, strontium, calcium and copper becomes 2: 2: 1: 2 in atomic ratio, 578.71 g of strontium (manufactured by Rare Metallic), 196.17 g of calcium carbonate (manufactured by Kojundo Chemical Lab.), And 311.82 g of cupric oxide (manufactured by Kojundo Chemical Lab.) Were used as raw material powder for superconductors. .

【0023】上記の超電導体用原料粉を樹脂製ポット内
に樹脂製ボール及びイオン交換水と共に充てんし、毎分
60回転の条件で60時間湿式混合した。乾燥後混合物
を銀板上に乗せ820℃で12時間仮焼して、超電導体
用仮焼粉を得た。該仮焼粉を粗粉砕し、さらに樹脂製ポ
ット内にジルコニアボール及び酢酸エチルと共に充てん
し、毎分60回転の条件で24時間湿式粉砕した。これ
を乾燥して平均粒径5〜7μmのビスマス系超電導体用
粉末A(以下超電導体用粉末Aとする)を得た。
The raw material powder for a superconductor was filled in a resin pot together with a resin ball and ion-exchanged water, and was wet-mixed at 60 rpm for 60 hours. After drying, the mixture was placed on a silver plate and calcined at 820 ° C. for 12 hours to obtain a calcined powder for a superconductor. The calcined powder was roughly pulverized, further filled in a resin pot together with zirconia balls and ethyl acetate, and wet pulverized at 60 rpm for 24 hours. This was dried to obtain bismuth-based superconductor powder A having an average particle size of 5 to 7 μm (hereinafter referred to as superconductor powder A).

【0024】得られた超電導体用粉末A100重量部に
有機結合剤としてアクリル樹脂(デュポン製、♯520
0)を70重量部、可塑剤としてフタル酸エステル系樹
脂(三菱モンサント製、D−160)を2.5重量部及
び1,1,1−トリクロロエタン(和光純薬工業製、和
光一級)を150重量部添加し、均一に混合して超電導
体用スラリーを得た。該超電導体用スラリーを、ベーカ
アプリケータを用いて、ポリエステル製フィルム(東レ
製)上にキャスティングし、60℃で10時間乾燥後、
フィルムから剥して厚さが100μmの超電導体用グリ
ーンシート(超電導体用材料)を得た。
An acrylic resin (manufactured by DuPont, # 520) was used as an organic binder in 100 parts by weight of the obtained superconductor powder A.
0) of 70 parts by weight, 2.5 parts by weight of a phthalate resin (D-160, manufactured by Mitsubishi Monsanto) as a plasticizer and 150 parts of 1,1,1-trichloroethane (Wako Pure Chemical Industries, Wako first grade). Parts by weight were added and uniformly mixed to obtain a superconductor slurry. The slurry for superconductor was cast on a polyester film (manufactured by Toray Industries Inc.) using a baker applicator, and dried at 60 ° C. for 10 hours.
By peeling off from the film, a superconductor green sheet (material for superconductor) having a thickness of 100 μm was obtained.

【0025】次に先に得た超電導体形成用基材の中間層
2の上面に上記で得た超電導体用グリーンシートを60
℃で30MPaの条件で熱圧着して、超電導体用グリー
ンシート積層基材を得た。上記で得た超電導体用グリー
ンシート積層基材を大気中で500℃までは30℃/時
間の速度で昇温し、ついで100℃/時間の速度で88
5℃まで昇温し、885℃で15分間保持した後、85
5℃まで5℃/時間の速度で降温し、さらに、100℃
/時間の速度で室温まで冷却して、膜厚が32μmのセ
ラミックス超電導体層3を形成した複合体を得た。
Next, on the upper surface of the intermediate layer 2 of the substrate for forming a superconductor obtained above, the green sheet for a superconductor obtained above was
Thermocompression bonding was performed at 30 ° C. at 30 ° C. to obtain a green sheet laminated substrate for a superconductor. The green sheet laminated substrate for superconductor obtained above is heated in air at a rate of 30 ° C./hour up to 500 ° C. and then at a rate of 100 ° C./hour.
After the temperature was raised to 5 ° C and held at 885 ° C for 15 minutes, 85
The temperature was lowered to 5 ° C at a rate of 5 ° C / hour.
After cooling to room temperature at a rate of / hour, a composite having the ceramic superconductor layer 3 having a thickness of 32 µm was obtained.

【0026】次に上記で得た複合体を窒素気流中で、7
00℃で15時間熱処理してビスマス系セラミックス超
電導複合体を得た。得られたビスマス系セラミックス超
電導複合体について四端子法でTc及び臨界電流密度
(以下Jcとする)を測定した結果、Tcは91Kで、
77Kにおけるゼロ磁場でのJcは1.9×107A/
2であった。また液体窒素温度〜20℃のヒートサイ
クル試験を10サイクル行ったがクラックの発生は認め
られなかった。
Next, the complex obtained above is placed in a nitrogen stream at 7
Heat treatment was performed at 00 ° C. for 15 hours to obtain a bismuth-based ceramic superconducting composite. As a result of measuring the Tc and critical current density (hereinafter referred to as Jc) of the obtained bismuth-based ceramic superconducting composite by a four-terminal method, Tc was found to be 91 K.
Jc at zero magnetic field at 77 K is 1.9 × 10 7 A /
m 2 . A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed 10 times, but no crack was found.

【0027】実施例2 金属板として、寸法が縦50mm×横50mm×厚さ1
mmのSUS310S板をサンドブラスト処理した後、
図2に示すように該SUS310S板4の表面(上下
面)全体に公知のプラズマ溶射法によって、実施例1で
得た銀とマグネシアの混合粉末bを吹き付け、片側の面
の厚さが300μmの銀及びマグネシアを含む混合物か
らなる中間層2を形成した、超電導体形成用基材を得
た。
Example 2 As a metal plate, the dimensions were 50 mm length × 50 mm width × 1 thickness.
mm SUS310S plate after sandblasting,
As shown in FIG. 2, the mixed powder b of silver and magnesia obtained in Example 1 was sprayed on the entire surface (upper and lower surfaces) of the SUS310S plate 4 by a known plasma spraying method, and the thickness of one side was 300 μm. A substrate for forming a superconductor in which the intermediate layer 2 made of a mixture containing silver and magnesia was formed was obtained.

【0028】次に実施例1で得た超電導体用仮焼粉を乳
鉢で粉砕した後、大気中で850℃で10時間熱処理し
た。これを乳鉢で粉砕した後、分級を行い、粒径が30
〜150μmに調整したビスマス系超電導体用粉末B
(以下超電導体用粉末Bとする)を得た。
Next, the calcined powder for superconductor obtained in Example 1 was pulverized in a mortar and heat-treated at 850 ° C. for 10 hours in the air. This is crushed in a mortar, and then classified to obtain a particle size of 30.
Bismuth-based superconductor powder B adjusted to ~ 150 µm
(Hereinafter referred to as superconductor powder B).

【0029】上記の超電導体用粉末Bを、先に得た超電
導体形成用基材に公知のプラズマ溶射法によって吹き付
けた後、実施例1と同様の条件で焼成して、膜厚が60
μmのセラミックス超電導体層3を形成した複合体を得
た。
The above-mentioned superconductor powder B was sprayed on the previously-obtained base material for forming a superconductor by a known plasma spraying method, and then fired under the same conditions as in Example 1 to obtain a film having a thickness of 60%.
A composite having the ceramic superconductor layer 3 of μm was obtained.

【0030】次に上記で得た複合体を実施例1と同様の
条件で熱処理してビスマス系セラミックス超電導複合体
を得た。得られたビススマ系セラミックス超電導複合体
について四端子法でTc及びJcを測定した結果、Tc
は89Kで、77Kにおけるゼロ磁場でのJcは0.9
×107A/m2であった。また液体窒素温度〜20℃の
ヒートサイクル試験を10サイクル行ったがクラックの
発生は認められなかった。
Next, the composite obtained above was heat-treated under the same conditions as in Example 1 to obtain a bismuth-based ceramic superconducting composite. As a result of measuring Tc and Jc of the obtained bismuth-based ceramic superconducting composite by a four-terminal method,
Is 89K, and Jc at zero magnetic field at 77K is 0.9.
× 10 7 A / m 2 . A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed 10 times, but no crack was found.

【0031】実施例3 金属板として、実施例1と同様のサンドブラスト処理し
たインコネル600板を用い、ついで該金属板の表面
(上下面)全体に公知のプラズマ溶射法によって、実施
例1で得た銀とマグネシアの混合粉末aを吹き付け、片
側の面の厚さが320μmの銀及びマグネシアを含む混
合物からなる中間層を形成した、超電導体形成用基材を
得た。
Example 3 As a metal plate, an Inconel 600 plate subjected to the same sand blast treatment as in Example 1 was used, and the entire surface (upper and lower surfaces) of the metal plate was obtained in Example 1 by a known plasma spraying method. A mixed powder a of silver and magnesia was sprayed to obtain a substrate for forming a superconductor in which an intermediate layer made of a mixture containing silver and magnesia having a thickness on one side of 320 μm was formed.

【0032】次に実施例1で得た超電導体用粉末A10
0重量部に対し、有機結合剤としてエチルセルロース
(和光純薬工業製、45cp)を5重量部及び有機溶剤
としてテルピネオール(和光純薬工業製、試薬一級)を
30重量部添加し、均一に混練してビスマス系超電導体
用ペーストを得た。
Next, the powder A10 for superconductor obtained in Example 1
To 0 parts by weight, 5 parts by weight of ethyl cellulose (45 cp, manufactured by Wako Pure Chemical Industries) as an organic binder and 30 parts by weight of terpineol (reagent first grade, Wako Pure Chemical Industries) as an organic solvent were added and uniformly kneaded. Thus, a paste for a bismuth-based superconductor was obtained.

【0033】この後先に得た超電導体形成用基材の中間
層の上面に、上記で得たビスマス系超電導体用ペースト
をディップコート法により塗布し、乾燥後、実施例1と
同様の条件で焼成して、膜厚が30μmのセラミックス
超電導体層を形成した複合体を得た。
Thereafter, the bismuth-based superconductor paste obtained above was applied to the upper surface of the intermediate layer of the base material for forming a superconductor obtained earlier by dip coating, dried, and dried under the same conditions as in Example 1. To obtain a composite having a ceramic superconductor layer having a thickness of 30 μm.

【0034】次に上記で得た複合体を実施例1と同様の
条件で熱処理してビスマス系セラミックス超電導複合体
を得た。得られたビスマス系セラミックス超電導複合体
について四端子法でTc及びJcを測定した結果、Tc
は92Kで、77Kにおけるゼロ磁場でのJcは2.2
×107A/m2であった。また液体窒素温度〜20℃の
ヒートサイクル試験を10サイクル行ったがクラックの
発生は認められなかった。
Next, the composite obtained above was heat-treated under the same conditions as in Example 1 to obtain a bismuth-based ceramic superconducting composite. As a result of measuring Tc and Jc of the obtained bismuth-based ceramic superconducting composite by a four-terminal method,
Is 92K, and Jc at zero magnetic field at 77K is 2.2.
× 10 7 A / m 2 . A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed 10 times, but no crack was found.

【0035】実施例4 金属板として、寸法が縦50mm×横50mm×厚さ1
mmの銀板をサンドブラスト処理した後、図3に示すよ
うに、該銀板5の片側の面に公知のプラズマ溶射法によ
って、実施例1で得た銀とマグネシアの混合粉末bを吹
き付け、厚さが100μmの銀及びマグネシアを含む混
合物からなる中間層2を形成した、超電導体形成用基材
を得た。
Example 4 As a metal plate, the dimensions were 50 mm long × 50 mm wide × 1 thickness.
3 mm, the mixed powder b of silver and magnesia obtained in Example 1 was sprayed onto one surface of the silver plate 5 by a known plasma spraying method, as shown in FIG. A substrate for forming a superconductor, on which an intermediate layer 2 made of a mixture containing silver and magnesia having a thickness of 100 μm was formed.

【0036】次に上記で得た超電導体形成用基材の中間
層2の上面に、実施例1で得た超電導体用スラリーをス
プレーコート法により塗布し、乾燥後、実施例1と同様
の条件で焼成して、膜厚が30μmのセラミックス超電
導体層3を形成した複合体を得た。
Next, the slurry for the superconductor obtained in Example 1 was applied to the upper surface of the intermediate layer 2 of the base material for forming a superconductor obtained above by a spray coating method, dried, and then dried in the same manner as in Example 1. The composite was fired under the conditions to form the ceramic superconductor layer 3 having a thickness of 30 μm.

【0037】次に上記で得た複合体を実施例1と同様の
条件で熱処理してビスマス系セラミックス超電導複合体
を得た。得られたビスマス系セラミックス超電導複合体
について四端子法でTc及びJcを測定した結果、Tc
は92Kで、77Kにおけるゼロ磁場でのJcは2.1
×107A/m2であった。また液体窒素温度〜20℃の
ヒートサイクル試験を10サイクル行ったが、クラック
の発生は認められなかった。
Next, the composite obtained above was heat-treated under the same conditions as in Example 1 to obtain a bismuth-based ceramic superconducting composite. As a result of measuring Tc and Jc of the obtained bismuth-based ceramic superconducting composite by a four-terminal method,
Is 92K, and Jc at zero magnetic field at 77K is 2.1.
× 10 7 A / m 2 . A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed for 10 cycles, but no crack was observed.

【0038】実施例5 ビスマス、鉛、ストロンチウム、カルシウム及び銅の比
率が原子比で1.8:0.3:1.8:2:3となるよ
うに純度99.9%以上の酸化ビスマス(高純度化学研
究所製)704.3g、一酸化鉛(高純度化学研究所
製)112.46g、炭酸ストロンチウム(レアメタリ
ック製)446.28g、炭酸カルシウム(高純度化学
研究所製)336.18g及び酸化第二銅(高純度化学
研究所製)400.78gを秤量し、超電導体用原料粉
とした。
EXAMPLE 5 Bismuth oxide having a purity of 99.9% or more (bismuth, lead, strontium, calcium, and copper was adjusted to have an atomic ratio of 1.8: 0.3: 1.8: 2: 3). 704.3 g, high purity chemical laboratory, 112.46 g lead monoxide (high purity chemical laboratory), 446.28 g strontium carbonate (rare metallic), 336.18 g calcium carbonate (high purity chemical laboratory) And 400.78 g of cupric oxide (manufactured by Kojundo Chemical Laboratory) were weighed to obtain a raw material powder for a superconductor.

【0039】次に上記の超電導体用原料粉を樹脂製ポッ
ト内に樹脂製ボール及びイオン交換水と共に充てんし、
毎分60回転の条件で60時間湿式混合した。乾燥後混
合物を800℃で12時間仮焼して超電導体用仮焼粉を
得た。該仮焼粉を粗粉砕し、さらに樹脂製ポット内にジ
ルコニアボール及び酢酸エチルと共に充てんし、毎分6
0回転の条件で60時間湿式粉砕した。
Next, the raw material powder for a superconductor was filled in a resin pot together with a resin ball and ion-exchanged water.
The wet mixing was performed at 60 rpm for 60 hours. After drying, the mixture was calcined at 800 ° C. for 12 hours to obtain a calcined powder for a superconductor. The calcined powder is roughly pulverized, and further filled in a resin pot together with zirconia balls and ethyl acetate.
The wet pulverization was performed for 60 hours under the condition of 0 rotation.

【0040】乾燥後、820℃で20時間熱処理し、つ
いで該熱処理粉を粗粉砕し、さらに樹脂製ポット内にジ
ルコニアボール及び酢酸エチルと共に充てんし、毎分6
0回転の条件で24時間湿式粉砕した。これを乾燥して
平均粒径が4〜6μmのビスマス系超電導体用粉末C
(以下超電導体用粉末Cとする)を得た。
After drying, the mixture is heat-treated at 820 ° C. for 20 hours, then the heat-treated powder is coarsely pulverized, and further filled in a resin pot together with zirconia balls and ethyl acetate.
The wet pulverization was performed for 24 hours under the condition of 0 rotation. This is dried to obtain a bismuth-based superconductor powder C having an average particle size of 4 to 6 μm.
(Hereinafter referred to as superconductor powder C).

【0041】得られた超電導体用粉末C100重量部に
対し、有機結合剤としてエチルセルロース(和光純薬工
業製、45cp)を5重量部及び有機溶剤としてテルピ
ネオール(和光純薬工業製、試薬一級)を30重量部添
加し、均一に混練してビスマス系超電導体用ペーストを
得た。
To 100 parts by weight of the obtained superconductor powder C, 5 parts by weight of ethylcellulose (45 cp, manufactured by Wako Pure Chemical Industries) as an organic binder and terpineol (first-class reagent, Wako Pure Chemical Industries, Ltd.) as an organic solvent were used. 30 parts by weight were added and uniformly kneaded to obtain a bismuth-based superconductor paste.

【0042】次に実施例2で得た超電導体形成用基材の
中間層の上面に上記で得たビスマス系超電導体用ペース
トをスクリーン印刷法により塗布し、乾燥後、大気中で
300℃までは50℃/時間の速度で昇温し、ついで1
00℃/時間の速度で840℃まで昇温し、840℃で
96時間保持した後、100℃/時間の速度で室温まで
冷却して、膜厚が100μmのセラミックス超電導体層
を形成したビスマス系超電導複合体を得た。
Next, the bismuth-based superconductor paste obtained above was applied to the upper surface of the intermediate layer of the base material for forming a superconductor obtained in Example 2 by a screen printing method, dried and then heated to 300 ° C. in the air. Is heated at a rate of 50 ° C./hour,
A bismuth-based material in which a ceramic superconductor layer having a thickness of 100 μm is formed by heating to 840 ° C. at a rate of 00 ° C./hour, holding at 840 ° C. for 96 hours, and cooling to room temperature at a rate of 100 ° C./hour. A superconducting composite was obtained.

【0043】得られたビスマス系超電導複合体について
四端子法でTc及びJcを測定した結果、Tcは102
Kで、77Kにおけるゼロ磁場でのJcは1.0×10
7A/m2であった。また液体窒素温度〜20℃のヒート
サイクル試験を10サイクル行ったが、クラックの発生
は認められなかった。
Tc and Jc of the obtained bismuth-based superconducting composite were measured by a four-terminal method.
At K, the Jc at zero field at 77K is 1.0 × 10
It was 7 A / m 2 . A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed for 10 cycles, but no crack was observed.

【0044】比較例1 実施例1のマグネシアと銀の混合粉末に代えて銀の粉末
のみを用いた以外は実施例1と同様の工程を経て厚さが
310μmの銀の層を形成した超電導体形成用基材を得
た。以下実施例1と同様の工程を経て膜厚が35μmの
セラミックス超電導体層を形成したビスマス系セラミッ
クス超電導複合体を得た。
Comparative Example 1 A superconductor having a 310 μm-thick silver layer formed through the same process as in Example 1 except that only the silver powder was used instead of the mixed powder of magnesia and silver of Example 1. A substrate for forming was obtained. A bismuth-based ceramic superconducting composite having a ceramic superconductor layer having a thickness of 35 μm was obtained through the same steps as in Example 1 below.

【0045】得られたビスマス系セラミックス超電導複
合体について四端子法でTc及びJcを測定した結果、
Tcは89Kで、77Kにおけるゼロ磁場でのJcは
0.6×107A/m2であった。また液体窒素温度〜2
0℃のヒートサイクル試験を行ったところ9サイクル目
にクラックが発生した。
As a result of measuring the Tc and Jc of the obtained bismuth-based ceramic superconducting composite by a four-terminal method,
Tc was 89K, and Jc at zero magnetic field at 77K was 0.6 × 10 7 A / m 2 . Liquid nitrogen temperature ~ 2
When a heat cycle test at 0 ° C. was performed, cracks occurred at the ninth cycle.

【0046】比較例2 実施例2のマグネシアと銀の混合粉末に代えてマグネシ
アの粉末のみを用いた以外は実施例2と同様の工程を経
て厚さが320μmのマグネシアの層を形成した超電導
体形成用基材を得た。
Comparative Example 2 A superconductor formed of a magnesia layer having a thickness of 320 μm through the same steps as in Example 2 except that only magnesia powder was used instead of the mixed powder of magnesia and silver of Example 2. A substrate for forming was obtained.

【0047】以下実施例3と同様の工程を経て膜厚が3
0μmのセラミックス超電導体層を形成した、ビスマス
系セラミックス超電導複合体を得た。得られたビスマス
系セラミックス超電導複合体について四端子法でTc及
びJcを測定した結果、Tcは88Kで、77Kにおけ
るゼロ磁場でのJcは0.4×107A/m2であった。
また液体窒素温度〜20℃のヒートサイクル試験を行っ
たが、クラックの発生は認められなかった。
Thereafter, through the same steps as in Example 3, the film thickness becomes 3
A bismuth-based ceramic superconducting composite having a 0 μm ceramic superconductor layer formed thereon was obtained. As a result of measuring the Tc and Jc of the obtained bismuth-based ceramic superconducting composite by a four-terminal method, Tc was 88 K, and Jc in a zero magnetic field at 77 K was 0.4 × 10 7 A / m 2 .
A heat cycle test at a temperature of liquid nitrogen to 20 ° C. was performed, but no crack was observed.

【0048】[0048]

【発明の効果】本発明になるセラミックス超電導複合体
は、焼成及び焼成によって一体化した後並びに熱処理後
の冷却過程又は室温と液体窒素温度のヒートサイクル試
験においてもクラック、剥離等が発生せず、また超電導
特性も低下せず、工業的に極めて好適な超電導複合体で
ある。
The ceramic superconducting composite according to the present invention is free from cracks, peeling, etc. even after being integrated by firing and firing, and also in a cooling process after heat treatment or a heat cycle test between room temperature and liquid nitrogen temperature. In addition, the superconducting composite does not deteriorate in superconductivity and is industrially extremely suitable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例になるビスマス系セラミック
ス超電導複合体の断面図である。
FIG. 1 is a cross-sectional view of a bismuth-based ceramic superconducting composite according to one embodiment of the present invention.

【図2】本発明の他の一実施例になるビスマス系セラミ
ックス超電導複合体の断面図である。
FIG. 2 is a sectional view of a bismuth-based ceramic superconducting composite according to another embodiment of the present invention.

【図3】本発明の他の一実施例になるビスマス系セラミ
ックス超電導複合体の断面図である。
FIG. 3 is a sectional view of a bismuth-based ceramic superconducting composite according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 インコネル600板 2 中間層 3 セラミックス超電導体層 4 SUS310S板 5 銀板 DESCRIPTION OF SYMBOLS 1 Inconel 600 board 2 Intermediate layer 3 Ceramic superconductor layer 4 SUS310S board 5 Silver board

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01G 29/00 ZAA C01G 29/00 ZAA // B32B 7/02 105 B32B 7/02 105 (72)発明者 下田 修一郎 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 (72)発明者 山名 章三 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 審査官 小石 真弓 (56)参考文献 特開 昭63−274018(JP,A) 特開 平4−349187(JP,A) 特開 平2−160545(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 15/00 - 15/20 C01G 1/00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI C01G 29/00 ZAA C01G 29/00 ZAA // B32B 7/02 105 B32B 7/02 105 (72) Inventor Shuichiro Shimoda Hitachi, Ibaraki Hitachi Chemical Industry Co., Ltd.Ibaraki Research Center 4-3-1, Hitachi Chemical Co., Ltd. (72) Inventor Shozo Yamana 4-3-1, Higashimachi, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd.Ibaraki Research Center Examiner Mayumi Koishi (56) References JP-A-63-274018 (JP, A) JP-A-4-349187 (JP, A) JP-A-2-160545 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name ) B32B 15/00-15/20 C01G 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属板とセラミックス超電導体層との間
に銀及びマグネシアを含む混合物からなる中間層を介在
させたセラミックス超電導複合体。
1. A ceramic superconducting composite in which an intermediate layer made of a mixture containing silver and magnesia is interposed between a metal plate and a ceramic superconductor layer.
【請求項2】 金属板の表面に銀及びマグネシアを含む
混合物の層を形成し、さらに混合物の層の表面にセラミ
ツクス超電導体用材料を積層した後焼成することを特徴
とするセラミックス超電導複合体の製造法。
2. A ceramic superconducting composite, comprising: forming a layer of a mixture containing silver and magnesia on the surface of a metal plate; laminating a material for ceramics superconductor on the surface of the layer of the mixture; Manufacturing method.
【請求項3】 銀及びマグネシアを含む混合物の層が溶
射法で形成された請求項2記載のセラミックス超電導複
合体の製造法。
3. The method for producing a ceramic superconducting composite according to claim 2, wherein the layer of the mixture containing silver and magnesia is formed by thermal spraying.
JP12302393A 1993-05-26 1993-05-26 Ceramic superconducting composite and manufacturing method thereof Expired - Lifetime JP3281892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12302393A JP3281892B2 (en) 1993-05-26 1993-05-26 Ceramic superconducting composite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12302393A JP3281892B2 (en) 1993-05-26 1993-05-26 Ceramic superconducting composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06328618A JPH06328618A (en) 1994-11-29
JP3281892B2 true JP3281892B2 (en) 2002-05-13

Family

ID=14850313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12302393A Expired - Lifetime JP3281892B2 (en) 1993-05-26 1993-05-26 Ceramic superconducting composite and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3281892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016258B8 (en) * 2008-03-29 2010-04-22 Zenergy Power Gmbh High-temperature superconductor layer arrangement and method for its production

Also Published As

Publication number Publication date
JPH06328618A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JPH06128050A (en) Superconducting composite material and its production
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH09263971A (en) Superconducting composite body and its production
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JP3187089B2 (en) Oxide superconducting structure
JP2597704B2 (en) Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same
JPH1012938A (en) Manufacture of high-temperature superconducting composite
JP2905493B2 (en) Method for producing oxide high-temperature superconductor
JPH04349186A (en) Oxide superconductor composite and its manufacture
JPH087674A (en) Manufacture of oxide superconductive complex
JP2703227B2 (en) Superconductor device
JPH09263972A (en) Oxide superconducting laminated body
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JPH04317482A (en) Oxide superconductor composite material and its production
JPH01109613A (en) Manufacture of oxide superconductor
JPH04314534A (en) Composite material of oxide superconductor and its manufacture
JPH04349188A (en) Oxide superconductor composite and its manufacture
JP2506225B2 (en) Precious metal-bismuth superconducting laminate
JP2012022851A (en) Manufacturing method of oxide superconductor thick film, oxide superconductor, magnetic field shield, and superconduction current limiter
JPH04349185A (en) Oxide superconductor composite and its manufacture
JPH08116098A (en) Oxide superconducting composite and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term