JPS63310951A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPS63310951A
JPS63310951A JP14468887A JP14468887A JPS63310951A JP S63310951 A JPS63310951 A JP S63310951A JP 14468887 A JP14468887 A JP 14468887A JP 14468887 A JP14468887 A JP 14468887A JP S63310951 A JPS63310951 A JP S63310951A
Authority
JP
Japan
Prior art keywords
composite oxide
substrate
superconductor
manufacturing
plasma flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14468887A
Other languages
Japanese (ja)
Inventor
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14468887A priority Critical patent/JPS63310951A/en
Publication of JPS63310951A publication Critical patent/JPS63310951A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit a superconductor over a large area at a high rate by jetting particles of Y-Ba-Cu-O type composite oxide on a substrate with a plasma flame. CONSTITUTION:Particles of composite oxide contg. an element A (Sc, Y or a lanthanoid) an, element B (an alkaline earth element such as Ba or Ca), Cu and oxygen are prepd. The composite oxide particles having 0.1mum-1mm particle size are mixed into a plasma flame and jetted on a substrate to deposite the composite oxide on the substrate and to produce a superconductor. The pref. molar ratio of the elements A, B to Cu [(A+B)/Cu] is 0.5-2.5. The superconductor consisting of the composite oxide particles bonded to one another without changing the state of the particles can be deposited on the substrate over a large area at a high rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導体の製造方法に関するものである。特
に化合物超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound superconductors.

従来の技術 高温超電導体として、ム16型2元系化合物として窒化
ニオブ(NbN )やゲルマニウムニオブ(Wb 5G
e )などが知られていたが、これらの材料の超電導転
移温度はたかだか24°にであった。一方、ペロプスカ
イト系3元化合物は、さらに高い転移温度が期待され、
Ba−La−Cu−0系の高温超電導体が提案された(
 J 、G 、 Bednorz andK、ム、Mu
ller、ツァイト シュリフト フェアフィジーク(
Ze tshrift furphysik B)−C
Ona6n8ea Matter 64.189−19
3(1986))。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (Wb5G) are used as M16 type binary compounds.
e), etc., but the superconducting transition temperature of these materials was at most 24°. On the other hand, peropskite-based ternary compounds are expected to have even higher transition temperatures,
A high-temperature superconductor based on Ba-La-Cu-0 was proposed (
J., G., Bednorz and K., Mu.
ller, Zeit Schrift Fairphysik (
B)-C
Ona6n8ea Matter 64.189-19
3 (1986)).

さらに、Y−Ba−Cu−0系がより高温の超電導材料
であることが、最近提案された。(文献)(M、に、W
u等、フィジカル レビュー レターズ(Physic
al Revievr Letters ) Mol 
、58 ff19゜Y−Ba−Cu−0系の材料の超電
導機構の詳細は明らかではないが、転移温度が液体窒素
温度以上に高くなる可能性があり、高温超電導体として
従来の2元系化合物より、よシ有望な特性か期待される
Furthermore, it has recently been proposed that the Y-Ba-Cu-0 system is a higher temperature superconducting material. (Literature) (M, Ni, W
U, etc., Physical Review Letters (Physic
al Review Letters) Mol
, 58 ff19゜The details of the superconducting mechanism of Y-Ba-Cu-0-based materials are not clear, but the transition temperature may be higher than the liquid nitrogen temperature, making it difficult to use conventional binary compounds as high-temperature superconductors. More promising properties are expected.

発明が解決しようとする問題点 しかしながら、Y −Ba −Cu−0系の材料は、現
在の技術では焼結という過程でしか形成できないため、
セラミックの粉末あるいはブロックの形状でしか得られ
ない。一方、この種の材料を電線等に実用化する場合、
薄膜状にエピタキシャル成長させる方法だと高速に形成
することは極めて困難であった。
Problems to be Solved by the Invention However, Y-Ba-Cu-0 based materials can only be formed through the process of sintering using current technology.
It is only available in ceramic powder or block form. On the other hand, when this kind of material is put to practical use in electric wires, etc.
It is extremely difficult to form a thin film epitaxially at high speed.

本発明者らは、この種の材料の粒子をプラズマ火炎によ
シ付着させると、高温超電導体が形成されることを発見
し、これにもとづいて新規な超電導体の製造方法を発見
した。
The present inventors have discovered that high-temperature superconductors are formed when particles of this type of material are deposited in a plasma flame, and based on this discovery, a novel method for manufacturing superconductors has been discovered.

問題点を解決するだめの手段 本発明の製造方法で形成する超電導体の基本構成は、ム
元素、B元素、Cu、酸素を含むたとえば0.1μmな
いし1Hの粒子径の複合酸化物の粒子をプラズマ火炎中
に混入し、基体表面に向けて噴射することにより、基体
上に複合酸化物を鍍着させることを特徴とする。本発明
者らは、この種の超電導体が、基体上に複合酸化物を鍍
着させることにより形成されることを見い出し発見に至
ったものである。ここにムはSc、Yおよびランタン系
元素(原子番号57−71)のうち少なくとも一種、B
はBe 、 Mg、 Ca、 Sr、BaなどIla族
元素のうち少なくとも一種を示す。
Means for Solving the Problems The basic composition of the superconductor formed by the manufacturing method of the present invention is that particles of a composite oxide containing Mu element, B element, Cu, and oxygen and having a particle size of, for example, 0.1 μm to 1H are used. The composite oxide is mixed into a plasma flame and sprayed toward the surface of the substrate, thereby depositing the composite oxide on the substrate. The present inventors have discovered that this type of superconductor can be formed by plating a composite oxide onto a substrate. Here, M is at least one of Sc, Y, and lanthanum-based elements (atomic number 57-71), B
represents at least one kind of Ila group elements such as Be, Mg, Ca, Sr, and Ba.

作用 本発明にかかる超電導体の製造方法は、超電導体を含む
複合酸化物の粒子を、プラズマ火炎を用いて基体上に薄
膜化している所に大きな特色がある。すなわち、ム元素
、B元素、 Cu を含む複合酸化物の粒子を、プラズ
マ火炎という数千度のガス流体とともに基体上に噴射し
た場合、粒子径が0.1μm未満だと蒸発するか溶融し
てしまいム元素、B元素、Cuのアモルファス状態の酸
化物となり、その後熱処理しても超電導現象を示すもの
でなかった。また粒子径が11111fより大きいと超
電導現象を示しても超電導転移温度での臨界電流が実用
化できないほど小さかった。しかし、本発明者らは、ム
元素、B元素、Cu、酸素を含む粒子径0.1μmない
し1mmの複合酸化物の粒子を用いた場合のみ、基体上
に複合酸化物の粒子状態を維持しながらかつ粒子どう・
しを結合することを確認し、すぐれた超電導現象を確認
するにいたった。
Function: The method for producing a superconductor according to the present invention is characterized in that particles of a composite oxide containing a superconductor are formed into a thin film on a substrate using plasma flame. In other words, when particles of a composite oxide containing Mu elements, B elements, and Cu are injected onto a substrate together with a plasma flame, which is a gas fluid at several thousand degrees Celsius, if the particle diameter is less than 0.1 μm, they will evaporate or melt. It became an amorphous oxide of Shitam element, B element, and Cu, and did not exhibit superconductivity even after subsequent heat treatment. Furthermore, when the particle size is larger than 11111f, even if a superconducting phenomenon is exhibited, the critical current at the superconducting transition temperature is too small to be put to practical use. However, the present inventors have found that the particle state of the composite oxide can be maintained on the substrate only when using particles of the composite oxide containing Mu element, B element, Cu, and oxygen and having a particle size of 0.1 μm to 1 mm. However, how about the particles?
This led to the confirmation of the excellent superconducting phenomenon.

したがって本発明を用いていることにより、従来の焼結
で粉末またはブロックしか得られてなかった超電導体を
非常に高速かつ大面積に堆積することが実現できる。
Therefore, by using the present invention, it is possible to deposit superconductors, which could only be obtained in powder or blocks through conventional sintering, at a very high speed and over a large area.

実施例 本発明の実施例を図面とともに説明する。以下の説明に
おいては、ム元素、B元素、Coを含む複合酸化物の一
例として、Y −Ba −Cu−0系のものとする。
Embodiments An embodiment of the present invention will be described with reference to the drawings. In the following description, a Y-Ba-Cu-0-based compound oxide is used as an example of a composite oxide containing Mu element, B element, and Co.

原料として、BaCO3,1205、CuOの粉末を用
い、Y、Ba、Cuのモル比率を1 :2:3にして混
合した。この混合した粉末を900℃18時間焼成して
、Y−Ba−Ou−0系の複合酸化物を形成した。その
後、複合酸化物を粉砕して、粒子径を0.1μm未満、
0.1〜1μm、1μ鳳〜10μ翼。
Powders of BaCO3, 1205 and CuO were used as raw materials and mixed at a molar ratio of Y, Ba and Cu of 1:2:3. This mixed powder was fired at 900°C for 18 hours to form a Y-Ba-Ou-0 based composite oxide. Thereafter, the composite oxide is pulverized to a particle size of less than 0.1 μm.
0.1 to 1 μm, 1 μm to 10 μm wing.

10μ!11〜100μm 、 100μ!It〜1f
l 、 1 、TIより大きいものと6グループに分類
した。
10μ! 11~100μm, 100μ! It~1f
It was classified into 6 groups: those larger than l, 1, and TI.

これらの複合酸化物の結晶性を調べてみると、どの粒子
径のグループにも、従来超電導現象を示す複合酸化物と
同等の結晶性を示した。
When we investigated the crystallinity of these composite oxides, we found that all particle size groups exhibited crystallinity comparable to that of conventional composite oxides that exhibit superconducting phenomena.

装置の概略を第1図にて説明する。ムrのプラズマ火炎
16を発生するため、Cuの電極間22゜23に20K
Wの電力を印加した。この時ムr流量は101/m ト
した。ムrのプラズマ火炎16中に、複合酸化物の粒子
16を混入させるため、プラズマ火炎の外部より、31
17mの搬送用ガス1了としてムrを用いて、1sf/
mの複合酸化物の粒子を火炎中に混入した。Cuの陽極
22から基体11まで距離を31とし、基体11上の複
合酸化物の鍍着する位置での雰囲気のガス18を、酸素
を用い、ガス圧76 o Torrとした。基体11は
Cu線を用い、基体温度は、4oo℃とした。
The outline of the apparatus will be explained with reference to FIG. In order to generate a plasma flame 16 with a high temperature, 20K was applied between the Cu electrodes at 22°23.
A power of W was applied. At this time, the flow rate was 101/m2. In order to mix the composite oxide particles 16 into the plasma flame 16 of 31.degree. from the outside of the plasma flame,
Using Mr as the carrier gas for 17m, 1sf/
m composite oxide particles were mixed into the flame. The distance from the Cu anode 22 to the substrate 11 was set to 31, and the atmosphere gas 18 at the position where the composite oxide was plated on the substrate 11 was oxygen and the gas pressure was set to 76 o Torr. The substrate 11 was made of Cu wire, and the substrate temperature was 40°C.

以上の条件で、粒子径を6グループに分けた複合酸化物
を基体11上に鍍着した。鍛着時間10分間で膜厚10
0μmとなり、付着率60チで粒子径によらなかった。
Under the above conditions, composite oxides whose particle sizes were divided into six groups were plated onto the substrate 11. Film thickness: 10 in forging time of 10 minutes
The particle diameter was 0 μm, and the adhesion rate was 60 cm, regardless of the particle size.

義理後、酸素の雰囲気中で800’02時間熱処理し、
3〜4時間かけて徐冷した。
After finishing, it was heat treated in an oxygen atmosphere for 800'02 hours.
It was slowly cooled over 3 to 4 hours.

以上のようにして形成した複合酸化物12を液体窒素温
度(、−196℃)での四端子法による定電流(21、
A)での電圧を測定した。
The composite oxide 12 formed as described above was applied with constant current (21,
The voltage at A) was measured.

その結果、粒子径0.1μm未満の場合、複合酸化物は
アモルファス状で、超電導現象を示さなかった。粒子径
が1mmより大きい場合、数Vの電圧を示し、一種の抵
抗体となった。粒子径0.1μmないし1謂の場合のみ
、殆んど電圧を示さなかった。とくに粒子径1μ曹ない
し100μm の場合、電流を数ムとしても電圧は殆ん
ど示すことなく超電導現象を示すことを確認した。また
、超電導現象を示した複合酸化物における超電導転移温
度は90°にであった。
As a result, when the particle size was less than 0.1 μm, the composite oxide was amorphous and did not exhibit superconductivity. When the particle size was larger than 1 mm, it exhibited a voltage of several volts and became a kind of resistor. Almost no voltage was exhibited only when the particle diameter was 0.1 μm to 1 μm. In particular, it was confirmed that when the particle size is 1 μm to 100 μm, superconductivity is exhibited with almost no voltage even when the current is several μm. Further, the superconducting transition temperature of the composite oxide that exhibited superconducting phenomenon was 90°.

以上の現象の詳細は明らかでないが、複合酸化物の粒子
中に超電導体が存在し、この超電導体がプラズマ火炎中
を通過することにより、表面層の一部が溶融して基体上
に付着して、超電導体を維持しながら、他の超電導体と
結合する。この際、粒子径が0.1μ−未満であれば、
粒子全体が溶融するか蒸発してしまうため、基体上の複
合酸化物はアモルファス状となったと思われる。このよ
うに結合した超電導体どうしが、電気的導通を示すよう
になり、複合酸化物全体として超電導現象を確認したと
思われる。この際、粒子径1mmより大きい場合、超電
導体どうしの電気的導通する領域が小さいため、極少の
電流量で臨界電流に達してしまい、超電導から常電導を
示す状態へ移行したと思われる。
Although the details of the above phenomenon are not clear, there is a superconductor in the particles of the composite oxide, and when this superconductor passes through the plasma flame, part of the surface layer melts and adheres to the substrate. Then, while maintaining the superconductor, it combines with other superconductors. At this time, if the particle size is less than 0.1μ,
It is thought that the composite oxide on the substrate became amorphous because the entire particle melted or evaporated. The superconductors bonded in this way began to exhibit electrical conduction, and it seems that the superconducting phenomenon was confirmed for the composite oxide as a whole. At this time, when the particle size is larger than 1 mm, the electrically conductive region between the superconductors is small, so a critical current is reached with a very small amount of current, and it is thought that the state shifts from superconductivity to normal conductivity.

ここで、複合酸化物中の、Y 、 Ba 、 Cjuの
モル比率を1 :2:3としたが、本発明者らは、モル
比率を詳細に調べただけでなく、ム元素、B元素につい
ても行った。その結果ム元素、B元素、Cuのモル比率
を ム+B O,S≦   ≦2.6 Cu すれば、超電導現象を確認した。
Here, the molar ratio of Y, Ba, and Cju in the composite oxide was set to 1:2:3, but the present inventors not only investigated the molar ratio in detail, but also investigated the I also went there. As a result, a superconducting phenomenon was confirmed when the molar ratio of Mu element, B element, and Cu was set to Mu + B O, S≦≦2.6 Cu.

ここでは、不活性ガスとしてムτ を用いてプラズマ火
炎16を形成したが、他にHe、Ne、16.Krを単
一にまた混合してもよい。流量も不活性ガスの場合、5
ないし201/mであれば、複合酸化物12を付着させ
ることが可能となり、6117m 未満の流量であれば
、ガス温度が高くなりすぎて、複合酸化物12の固溶体
を形成し、また2 017mより大きいと基体11上に
付着することはなかった。陽極22から基体11までの
距離は、3ないし2oa/lの場合に超電導現象を確認
した。201より大きくなると臨界電流が急激に減少し
た。
Here, the plasma flame 16 was formed using Mu τ as an inert gas, but other gases such as He, Ne, 16. Kr may be used singly or in a mixture. If the flow rate is inert gas, 5
If the flow rate is between 201/m and 201/m, it becomes possible to deposit the composite oxide 12, and if the flow rate is less than 6117m, the gas temperature will become too high and a solid solution of the composite oxide 12 will be formed. If it was too large, it would not adhere to the substrate 11. Superconductivity was confirmed when the distance from the anode 22 to the substrate 11 was 3 to 2 oa/l. When the value became larger than 201, the critical current decreased rapidly.

プラズマ火炎1eとして、窒素、酸素、水素。Nitrogen, oxygen, and hydrogen as plasma flame 1e.

炭酸ガスの単一もしくは混合を用いてもよく、この のような多厘子分qスは、不活性ガスより温度傾斜がゆ
るやかであり、低温度のガス己度になるので、流量が1
0ないし501/MiI4すると超電導現象を確認した
Single carbon dioxide gas or a mixture of carbon dioxide gases may be used, and such multi-molecule qs has a gentler temperature gradient than inert gases and has a lower temperature gas temperature, so the flow rate is less than 1.
0 to 501/MiI4, a superconducting phenomenon was confirmed.

陽極22から基板11までの距離10ないし30画にす
ると付着率60%以上であり、101未満だと複合酸化
物12はアモルファス化し、30αより大きいと臨界電
流が急激に減少した。
When the distance from the anode 22 to the substrate 11 was 10 to 30, the adhesion rate was 60% or more, when it was less than 101, the composite oxide 12 became amorphous, and when it was greater than 30α, the critical current decreased rapidly.

複合酸化物12の粒子を搬送するガスとして、ムrを用
いたが、その他の不活性ガスまたは、窒素、酸素、水素
、炭酸ガス単一または混合を用いてもよく、複合酸化物
12と反応しないガスであれば何でもよい。またガス流
量は2ないしsgz=で超電導現象を示す。流量を2(
1/m未満にすると複合酸化物の粒子15の搬送が不安
定となるので、鍛着された複合酸化物12中にアモルフ
ァス状態のものが観察され、超電導現象を確認できなか
った。また5 1/i より多く流すと、基体上に一種
の抵抗体が形成された。
Although Mr was used as the gas for transporting the particles of the composite oxide 12, other inert gases or nitrogen, oxygen, hydrogen, or carbon dioxide gas alone or in combination may be used, and the gas may react with the composite oxide 12. Any gas will do as long as it does not. Further, a superconducting phenomenon is exhibited at a gas flow rate of 2 to sgz=. Increase the flow rate to 2 (
If it is less than 1/m, the transport of the composite oxide particles 15 becomes unstable, so that an amorphous state was observed in the forged composite oxide 12, and no superconducting phenomenon could be confirmed. Moreover, when more than 5 1/i was flowed, a kind of resistor was formed on the substrate.

雰囲気ガスとして純酸素ガスを用いたが、不活性ガスま
たは、空気、炭酸ガスでもよく、複合酸化物12を還元
しないガスであれば何でもよい。
Although pure oxygen gas is used as the atmospheric gas, it may be an inert gas, air, carbon dioxide gas, or any gas that does not reduce the composite oxide 12.

雰囲気ガスのガス圧は10TOττないし760Tor
rであれば、超電導現象を確認した。10TOττ未満
では、プラズマ火炎1eが直接基体を加熱して複合酸化
物12の固溶化となり、76゜Torrよシ大きいとほ
とんど基体上に付着することはなかった。
The gas pressure of the atmospheric gas is 10TOττ to 760 Torr.
If r, superconducting phenomenon was confirmed. When the temperature was less than 10 TOrr, the plasma flame 1e directly heated the substrate and the composite oxide 12 became a solid solution, and when the temperature was greater than 76° Torr, it hardly adhered to the substrate.

プラズマ火炎中に複合酸化物を1s 17m供給したが
、5ないし309/mの範囲であれば、超電導現象を確
認し、臨界電流も数にム〜に達した。
Although 17 m of composite oxide was supplied into the plasma flame for 1 s, a superconducting phenomenon was confirmed within the range of 5 to 309/m, and the critical current reached several MU.

複合酸化物を69/i未満であれば、形成された複合酸
化物はアモルファス状態を示し、超電導現象は確認でき
なかった。複合酸化物を309/misより多く供給す
ると、形成された複合酸化物は、一種の抵抗体となった
When the composite oxide was less than 69/i, the formed composite oxide exhibited an amorphous state, and no superconducting phenomenon was observed. When the complex oxide was supplied at a rate greater than 309/mis, the formed complex oxide became a kind of resistor.

プラズマ火炎を作るため、電極に電圧を印加してプラズ
マ火炎を形成した。ここで電極の材質としてCuを用い
だが、非常にスパッタされやすい。
To create a plasma flame, a voltage was applied to the electrodes to form a plasma flame. Although Cu is used here as the material of the electrode, it is extremely susceptible to sputtering.

陰極にム元素、B元素少なくとも一種または合金を用い
てもよく、さらに導電性を示すム元素、B元素、Cuを
含む複合酸化物であれば、複合酸化物の粒子の供給源と
なる効果を示した。また非常に高温となる陽極にCu、
ム元素、B元素少なくとも一種または合金さらに導電性
を示す五元素、B元素、 Cuを含む複合酸化物を用い
ることにより、Mo、W  のような耐高温材料の陽極
より、臨界電流において一桁近く差を生じた。これは、
複合酸化物の粒子とともに複合酸化物の構成原子が破着
時に付着するので、粒子どうしの結合を増加させている
ものと思われる。
At least one type of Mu element, B element, or an alloy may be used for the cathode, and if it is a composite oxide containing Mu element, B element, and Cu that exhibits conductivity, it can have the effect of serving as a source of composite oxide particles. Indicated. In addition, Cu is used for the anode, which becomes extremely high temperature.
By using a composite oxide containing at least one type of Mo element, B element, or an alloy, as well as five conductive elements, B element, and Cu, the critical current is nearly an order of magnitude higher than that of an anode made of high temperature resistant materials such as Mo and W. It made a difference. this is,
It is thought that the constituent atoms of the composite oxide adhere to the particles of the composite oxide at the time of fracture, increasing the bonding between the particles.

本実施例では、基体温度を400℃で行ったが、100
℃々いし900℃であれば超電導現象を示した。100
℃未満であれば、基板上の複合酸化物は一種の抵抗体と
なり、900℃よシ高いと、アモルファス状態であった
。さらに基体温度を200℃ないし700”Cにすると
、臨界電流も数KA/dに達した。
In this example, the substrate temperature was 400°C, but 100°C
Superconductivity was observed at temperatures ranging from 10 to 900 degrees Celsius. 100
If the temperature was below 900°C, the composite oxide on the substrate became a kind of resistor, and if it was higher than 900°C, it was in an amorphous state. Further, when the substrate temperature was increased from 200° C. to 700″C, the critical current reached several KA/d.

本実施例では、複合酸化物の粒子16をプラズマ火炎1
6の外部より搬送用ガス17によって供給したが、搬送
用ガスを用いることなくプラズマ火炎16外部よシ粒子
16のみを供給することにより、プラズマ火炎の大きさ
に制限されること永く大面積の鍛着をすることができた
。また、不活性ガスまたは多原子分子のうち少なくとも
一種のガスとともに複合酸化物の粒子16を同時に供給
してプラズマ火炎を形成すると、任意の位置に容易に超
電導体を形成することができた。
In this example, the composite oxide particles 16 are exposed to the plasma flame 1.
However, by supplying only the external particles 16 to the plasma flame 16 without using a carrier gas, it is possible to forge a large area for a long time due to the limitation of the size of the plasma flame. I was able to get dressed. In addition, when the composite oxide particles 16 were simultaneously supplied with at least one type of gas among an inert gas or polyatomic molecules to form a plasma flame, a superconductor could be easily formed at an arbitrary position.

本実施例において、プラズマ火炎16で基体11上に複
合酸化物12を形成したのちに、酸化性雰囲気中で熱処
理を行ったが、熱処理を行なわなくとも、超電導現象は
確認できた。しかし、熱処理することにより、超電導転
移温度での臨界電流を一桁以上増加させることを確認し
た。また、熱処理の手段として、不活性ガスまたは酸素
、炭酸ガス、空気等の酸化性ガスのうち少なくとも一種
を用いて、プラズマ火炎を用いても基体を加熱して行っ
た熱処理と同等の効果を確認した。複合酸化物12を基
体11上に形成する場合、基体11は数100℃の高温
で形成し、超電導例えば液体窒素温度(−196℃)の
低温で動作させるため、特に基体11と複合酸化物の被
膜12との密着性が悪くなり、しばしば被膜12が破損
されることを本発明者らは、詳細な基体の熱的特性を各
種の材質について調べた結果、基体の線膨張係数1O−
6(1/C)であれば、上記被膜の破損がなく、実用さ
れることを確認した、例えばαく10−6の石英ガラス
を基体に用いると、被膜12は無数の亀裂が入シネ連続
な被膜となり、実用に供しないことを本発明者らは確認
した。
In this example, after forming the composite oxide 12 on the substrate 11 with plasma flame 16, heat treatment was performed in an oxidizing atmosphere, but the superconducting phenomenon was confirmed even without heat treatment. However, we confirmed that heat treatment increases the critical current at the superconducting transition temperature by more than an order of magnitude. In addition, we confirmed that the same effect as the heat treatment performed by heating the substrate was confirmed by using at least one type of inert gas or oxidizing gas such as oxygen, carbon dioxide, or air as a means of heat treatment, and by using plasma flame. did. When the composite oxide 12 is formed on the substrate 11, the substrate 11 is formed at a high temperature of several hundred degrees Celsius, and superconductivity is operated at a low temperature, for example, liquid nitrogen temperature (-196 degrees Celsius), so in particular, the substrate 11 and the composite oxide are The present inventors found that the adhesion with the coating 12 deteriorates and the coating 12 is often damaged.As a result of investigating the detailed thermal characteristics of the substrate for various materials, the inventors found that the linear expansion coefficient of the substrate is 1O-
6 (1/C), it has been confirmed that the above-mentioned coating will not be damaged and can be used in practical use. For example, if quartz glass with α × 10-6 is used as the substrate, the coating 12 will have countless cracks and will not be continuous. The present inventors have confirmed that the resulting film is unsuitable for practical use.

さらに、本発明者らは、第2図の基体11に機能性から
見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the base body 11 shown in FIG. 2 in terms of functionality.

すなわち基体11として、Ou 、 Ni、 、 Ti
 、 Mo 。
That is, as the base 11, Ou, Ni, Ti
, Mo.

Ta、W、Mn、Fe等の金属のあるいはこれらの金属
元素を含んだ合金、例えばニクロム、ステンレスなどが
有効であること本発明者らは確認した。
The present inventors have confirmed that metals such as Ta, W, Mn, and Fe or alloys containing these metal elements, such as nichrome and stainless steel, are effective.

さらに、基体11上に耐熱被膜を形成すると、超電導転
移温度での臨界電流の増加することを確認した。
Furthermore, it was confirmed that when a heat-resistant coating was formed on the base 11, the critical current at the superconducting transition temperature increased.

耐熱被膜として窒化物としては例えばTiN 。As a nitride for the heat-resistant coating, for example, TiN is used.

TaN 、 Mol 、 NbN 、 WN 、 Mn
Nなどが、炭化物としてはTaC、TiC、NbC、M
oO、WC、MnCなどが、酸化物としてはNbO,T
iO,TaO,ムβ0゜ZrO,TOなどが有効である
ことを本発明者らは確認した。
TaN, Mol, NbN, WN, Mn
N, etc., but carbides such as TaC, TiC, NbC, M
oO, WC, MnC, etc., but NbO, T as oxides
The present inventors have confirmed that iO, TaO, β0°ZrO, TO, etc. are effective.

これらの耐熱被膜の効果は、基体11上に複合酸化物1
2の粒子の破着の時、粒子と基体11と固溶化を防ぐも
のと思われる。
The effect of these heat-resistant coatings is that the composite oxide 1 on the base 11
It is thought that this prevents the particles from forming a solid solution with the substrate 11 when they break and adhere.

また結晶性の高い複合酸化物の被膜12を基体11の表
面13に形成させるためには、単結晶の基体が有効であ
る。本発明者らは詳細に最適基体材料を調べた結果、基
体11として、酸化マグネシウム、サファイア(α−ム
rhos)+スピネル。
Further, in order to form the highly crystalline complex oxide coating 12 on the surface 13 of the substrate 11, a single crystal substrate is effective. The inventors of the present invention investigated the optimal substrate material in detail and found that the substrate 11 was magnesium oxide, sapphire (α-rhos) + spinel.

チタン酸ストロンチウム、シリコン、ガリウム砒素等の
単結晶が有効であることを確認した。もつとも、これは
表面13に効果的に結晶性の高い被膜12を成長させる
ためのものであるから、少なくとも基体表面13が単結
晶であればよい。
It was confirmed that single crystals such as strontium titanate, silicon, and gallium arsenide are effective. However, since this is for effectively growing a highly crystalline coating 12 on the surface 13, it is sufficient if at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所謂
焼結磁器が有効であることを確認するとともに、最適の
磁器材料を見い出した。すなわち、磁器基体として、ア
ルミナ、酸化マグネシウム、酸化デルコニウム、ステア
タイト、ホルステライト、ベリリア、スピネル等が基体
の加工等、超電導被膜12の基体11への密着性が最適
であることを本発明者らは確認した。この場合も単結晶
と同様に、基体の表面さえこの種の磁器で構されている
とよい。複合酸化物12を基体11に形成する場合、本
実施例ではCu線を用いて行ったが、破着前のCu線の
前処理で複合酸化物の臨界電流で一桁近くも差の生じる
ことを、本発明者らは発見した。
The present inventors have confirmed that so-called sintered porcelain is more effective as a base material than a single crystal when processing this type of superconductor into an arbitrary shape, such as a cylinder, and have also found the most suitable porcelain material. I found it. That is, the present inventors have found that alumina, magnesium oxide, derconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 through processing of the substrate, etc. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals. When forming the composite oxide 12 on the substrate 11, Cu wire was used in this example, but the pretreatment of the Cu wire before breaking caused a difference of nearly one order of magnitude in the critical current of the composite oxide. The present inventors discovered.

すなわち、伸銅線を化学的にエツチングして破着すると
、エツチングしないものに比べると、臨界電流の低下が
あった。本発明者らは、他の成形加工されたCu線やC
u板についても調べた結果、引出法、押出法そして圧延
法等によるものでも、エツチングされた方が、臨界電流
の低下がみられた。また成形加工法による違いでは、伸
銅線が他の成形加工に比べ最大の臨界電流を得た。これ
は、成形加工時に電子顕微鏡で観察されないほど小さな
きすが生じ、破着の際このきすに沿って複合酸化物が形
成しさらに複合酸化物どうしの結合もなされたものと思
われる。また、酸化マグネシウム。
That is, when a copper wire is chemically etched and broken, the critical current decreases compared to a wire that is not etched. The present inventors have developed other molded Cu wires and C
As a result of examining U-plates, it was found that the critical current was lower when etched, regardless of the drawing method, extrusion method, or rolling method. Regarding the differences in forming methods, the rolled copper wire obtained the highest critical current compared to other forming processes. This seems to be because scratches so small that they cannot be observed with an electron microscope are created during the molding process, and composite oxides are formed along these scratches during bonding, and furthermore, the composite oxides are bonded to each other. Also magnesium oxide.

サファイア、シリコン等の単結晶基体や、アルミナ、ス
テアタイト、スピネル等の磁器材料においても上記と同
様な現象を確認できた。
The same phenomenon as described above was also confirmed in single crystal substrates such as sapphire and silicon, and in ceramic materials such as alumina, steatite, and spinel.

この種の人−B−Cu−0系複合酸化物の超電導体の構
成光素人およびBの変化による超電導特性の変化の詳細
は明らかではない。ただムは、3価、Bは2価を示して
いるのは事実ではある。五元素としてYについて例をあ
げて説明したが、ScやLa 、さらにランタン系列の
元素(原子番号57〜71)でも、超電導転移温度が変
化する程度で本質的な発明の特性を変えるものではない
The details of changes in superconducting properties due to changes in the constituent light and B of this kind of superconductor of B-Cu-0 based composite oxide are not clear. However, it is true that M indicates trivalence and B indicates divalence. The explanation has been given using Y as an example of the five elements, but Sc, La, and even lanthanum series elements (atomic numbers 57 to 71) change the superconducting transition temperature, but do not change the essential characteristics of the invention. .

また、B元素においても、Sr、 Ca、 Ba等ff
a族元素の変化は超電導転移温度を10°に程度変化さ
せるが、本質的に本発明の特性を変えるものでない。
Also, in B elements, Sr, Ca, Ba, etc.ff
Although the change in the group a element changes the superconducting transition temperature by about 10°, it does not essentially change the characteristics of the present invention.

発明の効果 本発明にかかる超電導体の製造方法は、超電導体を含む
複合酸化物の粒子を、プラズマ火炎を用いて基体上に薄
膜化している所に大きな特色がある。すなわち、ム元素
、B元素、Cuを含む複合酸化物の粒子を、プラズマ火
炎という数千度のガス流体とともに基体上に噴射した場
合、蒸発するか溶融してしまいム元素、B元素、 Cu
のアモルファス状態の酸化物となり、その後熱処理して
も超電導現象を示すものはなかった。しかし、本発明者
らは人元素、B元素、 Cu 、酸素を含む粒子径0.
1μmないし1mmの複合酸化物の粒子を用いた場合の
み、基体上に複合酸化物の粒子状態を維持しながらかつ
粒子どうしを結合することを確認し、超電導現象も確認
した。加えて11rIl以下の粒子を用いているので、
1電導体を大面積かつ高速に堆積することは容易に可能
となる。
Effects of the Invention The method for producing a superconductor according to the present invention is characterized in that particles of a composite oxide containing a superconductor are formed into a thin film on a substrate using plasma flame. That is, when particles of a composite oxide containing Mu element, B element, and Cu are injected onto a substrate together with a gas fluid at several thousand degrees Celsius called plasma flame, the Mu element, B element, and Cu will evaporate or melt.
It became an amorphous oxide, and even after subsequent heat treatment, no superconducting phenomenon was observed. However, the present inventors have determined that the particles containing human element, B element, Cu, and oxygen have a particle size of 0.
It was confirmed that only when composite oxide particles of 1 μm to 1 mm were used, the particles were bonded together while maintaining the composite oxide particle state on the substrate, and superconductivity was also confirmed. In addition, since particles of 11 rIl or less are used,
It becomes easily possible to deposit one conductor over a large area and at high speed.

したがって本発明を用いていることにより、従来の焼結
で粉末またはブロックしか得られてなかった超電導体を
非常に高速かつ大面積に堆積することが実現できる。
Therefore, by using the present invention, it is possible to deposit superconductors, which could only be obtained in powder or blocks through conventional sintering, at a very high speed and over a large area.

以上の説明のごとく本発明の超電導体の製造方法による
と、例えば金属の線状に薄膜状で形成するので、焼結体
の粉末やブロックと異なり、超電導体の電カケープルや
コイルの製造に実用される。
As explained above, according to the method for manufacturing a superconductor of the present invention, it is formed in the form of a thin film in the form of a metal line, so unlike powder or blocks of sintered bodies, it is practical for manufacturing superconductor cables and coils. be done.

特にこの種の化合物超電導体の転移温度が室温になる可
能性もあり、実用化される範囲は広く、本発明の工業的
価値は高い。
In particular, there is a possibility that the transition temperature of this type of compound superconductor is room temperature, so the range of practical application is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導体の製造方法に用い
る装置概略図、第2図は本発明の超電導体の製造方法で
形成した超電導体の基本構成図である。 11・・・・・基体、12・・・・・複合酸化物、16
・・・・・・プラズマ火炎、15・・・・・複合酸化物
の粒子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名j!
!1  口 第2図 121づ一合一一ンイと2や? ! 11基体
FIG. 1 is a schematic diagram of an apparatus used in a superconductor manufacturing method according to an embodiment of the present invention, and FIG. 2 is a basic configuration diagram of a superconductor formed by the superconductor manufacturing method of the present invention. 11...Substrate, 12...Composite oxide, 16
...Plasma flame, 15...Composite oxide particles. Name of agent: Patent attorney Toshio Nakao and one other personj!
! 1 Mouth 2nd figure 121 zu one go one one ini and 2? ! 11 bases

Claims (1)

【特許請求の範囲】 (1)A元素、B元素、Cu、酸素を含む0.1μmな
いし1mmの粒子径の複合酸化物の粒子をプラズマ火炎
中に混入し、基体に向けて噴射し、前記複合酸化物を前
記基体上に鍍着させることを特徴とする超電導体の製造
方法。ここでA元素はSc、Yおよびランタン系元素(
原子番号57〜71)のうち少なくとも一種、B元素は
アルカリ土類元素のうち少なくとも一種の元素を示す。 (2)A元素、B元素、Cu、酸素を含む複合酸化物を
焼成し、前記複合酸化物の粒子径を1μmないし100
μmにしたことを特徴とする特許請求の範囲第1項記載
の超電導体の製造方法。 (3)焼成された複合酸化物のA元素、B元素、Cuの
モル比率が0.5≦(A+B)/Cu≦2.5としたこ
とを特徴とする特許請求の範囲第2項記載の超電導体の
製造方法。(4)基体上に複合酸化物を形成された後、
熱処理を行ったことを特徴とする特許請求の範囲第1項
記載の超電導体の製造方法。 (5)プラズマ火炎として、Ar、He、Ne、Kr、
Xe等の単原子分子の不活性ガスを少なくとも一種用い
ることを特徴とする特許請求の範囲第1項記載の超電導
体の製造方法。 (6)プラズマ火炎として、窒素、酸素、水素、炭酸ガ
ス等の多原子分子ガスを少なくとも一種用いることを特
徴とする特許請求の範囲第1項記載の超電導体の製造方
法。 (7)プラズマ火炎中に流量5ないし20l/minの
不活性ガスを含むことを特徴とした特許請求の範囲第5
項記載の超電導体の製造方法。 (8)プラズマ火炎中に流量10ないし20l/min
の多原子分子ガスを含むことを特徴とする特許請求の範
囲第6項記載の超電導体の製造方法。 (9)不活性または多原子分子ガスのうち少なくとも一
種の中に、複合酸化物の粒子を混入して、プラズマ火炎
を形成したことを特徴とする特許請求の範囲第5項又は
第6項記載の超電導体の製造方法。 (10)プラズマ火炎の外部より、複合酸化物の粒子を
混入し基板上に向けて噴射させることを特徴とする特許
請求の範囲第1項記載の超電導体の製造方法。 (11)プラズマ火炎の外部より、流量2ないし5l/
minのAr、He、Ne、Kr、Xe等の不活性ガス
または酸素、窒素、水素、炭酸ガス等の多原子分子ガス
のうち少なくとも一種のガスを用いて複合酸化物の粒子
を搬送させ、前記プラズマ火炎中に前記複合酸化物の粒
子を混入させたことを特徴とする特許請求の範囲第1項
記載の超電導体の製造方法。 (12)基体上に複合酸化物の鍍着する位置の雰囲気の
ガスとしてHe、Ar、Ne、Kr、Xe等の不活性ガ
スを少なくとも一種用いたことを特徴とする特許請求の
範囲第1項記載の超電導体の製造方法。 (13)雰囲気のガスとして、10ないし760Tor
rのガス圧の範囲で酸素、炭酸ガス、空気等の酸化性の
ガスを少なくとも一種用いたことを特徴とする特許請求
の範囲第1項記載の超電導体の製造方法。 (14)基体として、線熱膨張率α>10^−^6(1
/℃)の材質を用いたことを特徴とする特許請求の範囲
第1項記載の超電導体の製造方法。 (15)基体として、酸化マグネシウム、サファイア(
α−Al_2O_3)、スピネル、チタン酸ストロンチ
ウム、シリコン、ガリウム砒素等の単結晶の少なくとも
一種を用いたことを特徴とする特許請求の範囲第1項記
載の超電導体の製造方法。 (16)基体として、アルミナ、酸化マグネシウム、酸
化ヂルコニウム、ステアタイト、ホルステライト、ベリ
リア、スピネル等の磁器を用いたことを特徴とする特許
請求の範囲第1項記載の超電導体の製造方法。 (17)基体に、Cu、Ni、Ti、Mo、Nb、Ta
、W、Mn、Fe等の金属のうちの一種あるいはこれら
の金属を含んだ合金例えばステンレスを用いたことを特
徴とする特許請求の範囲第1項記載の超電導体の製造方
法。 (18)基体の表面に、耐熱被膜を形成した後、複合酸
化物を付着させることを特徴とする特許請求の範囲第1
項記載の超電導体の製造方法。 (19)耐熱被膜を金属の酸化物、窒化物、炭化物で構
成したことを特徴とする特許請求の範囲第1項記載の超
電導体の製造方法。 (20)基体を、Ni、Ti、Mo、Nb、Ta、W、
Mnのうちの少なくとも一種か、これらの金属を含んだ
合金で構成し、複合酸化物を付着させる前に、前記基体
の表面を酸化、窒化あるいは炭化させることを特徴とす
る特許請求の範囲第1項記載の超電導体の製造方法。 (21)5〜30g/minの複合酸化物の粒子を、プ
ラズマ火炎中に混入させることを特徴とする特許請求の
範囲第1項記載の超電導体の製造方法。 (22)少なくとも一対の電極間に電圧を印加し、A元
素、B元素、Cuのうち少なくとも一種による陰極を用
いて、プラズマ火炎を発生させたことを特徴とする特許
請求の範囲第1項記載の超電導体の製造方法。 (23)陰極の材質として、導電性のA元素、B元素、
Cuを含む複合酸化物を用いたことを特徴とする特許請
求の範囲第1項記載の超電導体の製造方法。 (24)陽極の材質として、A元素、B元素、Cuのう
ち少なくとも一種を用いたことを特徴とする特許請求の
範囲第1項記載の超電導体の製造方法。 (25)陽極の材質として、導電性のA元素、B元素、
Cuを含む複合酸化物を用いたことを特徴とする特許請
求の範囲第1項記載の超電導体の製造方法。 (26)基体温度を、100℃ないし900℃にしたこ
とを特徴とする特許請求の範囲第1項記載の超電導体の
製造方法。 (27)基体温度を200℃ないし700℃にしたこと
を特徴とする特許請求の範囲第1項記載の超電導体の製
造方法。 (28)基体上に複合酸化物を形成した後、酸化性雰囲
気中で熱処理したことを特徴とする特許請求の範囲第1
項記載の超電導体の製造方法。 (29)熱処理を行なう方法として、熱処理用プラズマ
火炎を用いることを特徴とする特許請求の範囲第1項記
載の超電導体の製造方法。 (30)不活性ガスのうち少なくとも一種を用いた鍍着
するためのプラズマ火炎において、陽極から基体までの
距離を3ないし20cmにしたことを特徴とする特許請
求の範囲第5項記載の超電導体の製造方法。 (31)多原子分子のガスのうち少なくとも一種を用い
た鍍着するためのプラズマ火炎において、陽極から基体
までの距離を10ないし30cmにしたことを特徴とす
る特許請求の範囲第6項記載の超電導体の製造方法。
[Scope of Claims] (1) Particles of a composite oxide containing element A, element B, Cu, and oxygen and having a particle size of 0.1 μm to 1 mm are mixed into a plasma flame and injected toward the substrate, and the A method for producing a superconductor, comprising depositing a composite oxide on the substrate. Here, element A is Sc, Y, and lanthanum-based elements (
Element B represents at least one element among alkaline earth elements (atomic numbers 57 to 71). (2) Calcinate a composite oxide containing element A, element B, Cu, and oxygen, and reduce the particle size of the composite oxide to 1 μm to 100 μm.
The method for manufacturing a superconductor according to claim 1, wherein the superconductor is made to have a diameter of μm. (3) The molar ratio of element A, element B, and Cu in the fired composite oxide is set to 0.5≦(A+B)/Cu≦2.5. Method for manufacturing superconductors. (4) After forming the composite oxide on the substrate,
The method for manufacturing a superconductor according to claim 1, wherein the superconductor is subjected to heat treatment. (5) As plasma flame, Ar, He, Ne, Kr,
The method for producing a superconductor according to claim 1, characterized in that at least one inert gas of monoatomic molecules such as Xe is used. (6) The method for manufacturing a superconductor according to claim 1, characterized in that at least one type of polyatomic molecular gas such as nitrogen, oxygen, hydrogen, carbon dioxide, etc. is used as the plasma flame. (7) Claim 5 characterized in that the plasma flame contains inert gas at a flow rate of 5 to 20 l/min.
A method for producing a superconductor as described in Section 1. (8) Flow rate of 10 to 20 l/min in plasma flame
7. The method for producing a superconductor according to claim 6, characterized in that the superconductor comprises a polyatomic molecular gas of: (9) A plasma flame is formed by mixing composite oxide particles into at least one type of inert or polyatomic molecular gas to form a plasma flame. A method for manufacturing superconductors. (10) A method for manufacturing a superconductor according to claim 1, characterized in that particles of the composite oxide are mixed into the plasma flame from outside and injected onto the substrate. (11) From the outside of the plasma flame, the flow rate is 2 to 5 l/
The particles of the composite oxide are transported using at least one kind of gas selected from among an inert gas such as Ar, He, Ne, Kr, and Xe, or a polyatomic molecular gas such as oxygen, nitrogen, hydrogen, and carbon dioxide, and the 2. The method of manufacturing a superconductor according to claim 1, wherein particles of the composite oxide are mixed into a plasma flame. (12) Claim 1, characterized in that at least one inert gas such as He, Ar, Ne, Kr, or Xe is used as the atmosphere gas at the position where the composite oxide is plated on the substrate. A method for manufacturing the superconductor described. (13) Atmosphere gas: 10 to 760 Torr
The method for producing a superconductor according to claim 1, characterized in that at least one oxidizing gas such as oxygen, carbon dioxide, or air is used at a gas pressure in the range of r. (14) As a substrate, linear thermal expansion coefficient α>10^-^6(1
2. The method for manufacturing a superconductor according to claim 1, wherein a material having a temperature of (15) Magnesium oxide, sapphire (
The method for manufacturing a superconductor according to claim 1, characterized in that at least one of single crystals such as α-Al_2O_3), spinel, strontium titanate, silicon, and gallium arsenide is used. (16) The method for producing a superconductor according to claim 1, wherein porcelain such as alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia, or spinel is used as the substrate. (17) Cu, Ni, Ti, Mo, Nb, Ta on the substrate
2. The method of manufacturing a superconductor according to claim 1, wherein one of metals such as , W, Mn, and Fe, or an alloy containing these metals, such as stainless steel, is used. (18) Claim 1, characterized in that after forming a heat-resistant coating on the surface of the substrate, the composite oxide is attached.
A method for producing a superconductor as described in Section 1. (19) The method for manufacturing a superconductor according to claim 1, wherein the heat-resistant coating is made of a metal oxide, nitride, or carbide. (20) The substrate is Ni, Ti, Mo, Nb, Ta, W,
Claim 1: The substrate is made of at least one type of Mn or an alloy containing these metals, and the surface of the substrate is oxidized, nitrided, or carbonized before the composite oxide is attached. A method for producing a superconductor as described in Section 1. (21) A method for producing a superconductor according to claim 1, characterized in that particles of the composite oxide are mixed at a rate of 5 to 30 g/min into a plasma flame. (22) A plasma flame is generated by applying a voltage between at least a pair of electrodes and using a cathode made of at least one of element A, element B, and Cu. A method for manufacturing superconductors. (23) As the material of the cathode, conductive element A, element B,
The method for manufacturing a superconductor according to claim 1, characterized in that a composite oxide containing Cu is used. (24) The method for manufacturing a superconductor according to claim 1, characterized in that at least one of element A, element B, and Cu is used as the material of the anode. (25) As the material of the anode, conductive element A, element B,
The method for manufacturing a superconductor according to claim 1, characterized in that a composite oxide containing Cu is used. (26) The method for manufacturing a superconductor according to claim 1, characterized in that the substrate temperature is 100°C to 900°C. (27) A method for manufacturing a superconductor according to claim 1, characterized in that the substrate temperature is 200°C to 700°C. (28) Claim 1, characterized in that the composite oxide is formed on the substrate and then heat-treated in an oxidizing atmosphere.
A method for producing a superconductor as described in Section 1. (29) The method for manufacturing a superconductor according to claim 1, characterized in that a plasma flame for heat treatment is used as the method for performing the heat treatment. (30) The superconductor according to claim 5, characterized in that in a plasma flame for plating using at least one type of inert gas, the distance from the anode to the substrate is 3 to 20 cm. manufacturing method. (31) In the plasma flame for plating using at least one type of gas of polyatomic molecules, the distance from the anode to the substrate is set to 10 to 30 cm. Method for manufacturing superconductors.
JP14468887A 1987-06-10 1987-06-10 Production of superconductor Pending JPS63310951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14468887A JPS63310951A (en) 1987-06-10 1987-06-10 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14468887A JPS63310951A (en) 1987-06-10 1987-06-10 Production of superconductor

Publications (1)

Publication Number Publication Date
JPS63310951A true JPS63310951A (en) 1988-12-19

Family

ID=15367946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14468887A Pending JPS63310951A (en) 1987-06-10 1987-06-10 Production of superconductor

Country Status (1)

Country Link
JP (1) JPS63310951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125855A (en) * 1988-11-02 1990-05-14 Mitsubishi Metal Corp Manufacture of superconducting ceramic film by plasma flame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125855A (en) * 1988-11-02 1990-05-14 Mitsubishi Metal Corp Manufacture of superconducting ceramic film by plasma flame

Similar Documents

Publication Publication Date Title
US5071828A (en) Process for the production of a crystal-oriented surface layer of a ceramic high temperature superconductor
EP0286289B1 (en) A method of preparing a superconducting oxide and superconducting oxide metal composites
JPH029717A (en) Method for producing a superconductive oxide film on a substrate of silicon and silicon dioxide
JPS63224116A (en) Manufacture of thin film superconductor
JPH0797455B2 (en) Method for forming superconducting layer on substrate
JP2563315B2 (en) Superconductor wire and method of manufacturing the same
JPS63239742A (en) Manufacture for film superconductor
JPS63310951A (en) Production of superconductor
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH01208327A (en) Production of thin film of superconductor
US4981839A (en) Method of forming superconducting oxide films using zone annealing
Zhang et al. Preparation and properties of superconducting Bi–Sr–Ca–Cu–O thin films on polycristalline silver substrates by organometallic chemical vapor deposition
JP2702711B2 (en) Manufacturing method of thin film superconductor
Maiti et al. Coating of superconducting. 123 compound on silver substrate by electrophoretic technique
US5786306A (en) Synthesis of high TC superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys
JPH0365502A (en) Preparation of superconductive thin film
JPH01111718A (en) Process for forming superconductive thin film
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JPH02125854A (en) Manufacture of bi-type oxide superconducting film
JP2615079B2 (en) Superconducting film manufacturing method
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH01220872A (en) Oxide base superconductive material
JPH04179004A (en) Oxide superconductive tape conductor
JPH07106896B2 (en) Superconductor
US5798034A (en) Process for the preparation of a superconductor material of the mixed oxide type