JP2557498B2 - Manufacturing method of linear superconducting material - Google Patents

Manufacturing method of linear superconducting material

Info

Publication number
JP2557498B2
JP2557498B2 JP63255479A JP25547988A JP2557498B2 JP 2557498 B2 JP2557498 B2 JP 2557498B2 JP 63255479 A JP63255479 A JP 63255479A JP 25547988 A JP25547988 A JP 25547988A JP 2557498 B2 JP2557498 B2 JP 2557498B2
Authority
JP
Japan
Prior art keywords
superconducting
raw material
material powder
cylinder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63255479A
Other languages
Japanese (ja)
Other versions
JPH01206518A (en
Inventor
進 山本
望 河部
知之 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63255479A priority Critical patent/JP2557498B2/en
Publication of JPH01206518A publication Critical patent/JPH01206518A/en
Application granted granted Critical
Publication of JP2557498B2 publication Critical patent/JP2557498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は長尺の焼結体よりなる超電導材の製造方法に
関するものである。より詳細には、特に複合酸化物系焼
結体材料を含む長尺超電導材の優れた超電導材を保持し
たまま、長尺超電導材の機械的強度を向上させる新規な
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a superconducting material made of a long sintered body. More specifically, the present invention relates to a novel method for improving the mechanical strength of a long superconducting material while retaining the excellent superconducting material of the long superconducting material containing a complex oxide-based sintered body material.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有
限な定常電流が流れているにも関わらず電位差が現れな
くなる。そこで、電力損失の全くない伝送媒体としての
超電導体の各種の応用が提案されている。
Conventional technology Under the superconducting phenomenon, a substance shows complete diamagnetism, and the potential difference disappears even though a finite steady current flows inside. Therefore, various applications of superconductors as transmission media without power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR、π中間子治療、高エネルギ
ー物理実験装置などの計測の分野等、極めて多くの分野
を挙げることができる。
That is, its application fields are power fields such as MHD power generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion vessels, and NMR as a super-sensitive sensor for magnetic fields, microwaves, radiation, etc. , Pion therapy, measurement fields such as high-energy physics experimental equipment, and so on.

また、ジョセフソン素子に代表されるエレクトロニク
スの分野でも、単に消費電力の低減のみならず、動作の
極めて高速な素子を実現し得る技術として期待されてい
る。
Further, in the field of electronics represented by Josephson devices, it is expected as a technique that can realize not only a reduction in power consumption but also an extremely fast operating device.

ところで、嘗て超電導は超低温下においてのみ観測さ
れる現象であった。即ち、従来の超電導材料として最も
高い超電導臨界温度Tcを有するといわれていたNb3Geに
おいても超電導臨界温度は23.2Kと極めて低く、これが
長時間に亘って超電導臨界温度の限界とされていた。
By the way, superconductivity was a phenomenon observed only at extremely low temperatures. That is, even in Nb 3 Ge, which was said to have the highest superconducting critical temperature Tc as a conventional superconducting material, the superconducting critical temperature was extremely low at 23.2 K, which was the limit of the superconducting critical temperature for a long time.

それ故、従来は、超電導現象を実現するために、沸点
が4.2Kの液体ヘリウムを用いて超電導材料をTc以下まで
冷却していた。しかしながら、液体ヘリウムの使用は、
液化設備を含めた冷却設備による技術的負担奈良並びに
コスト的負担が極めて大きく、超電導技術を実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconductivity phenomenon, the superconducting material has been cooled to Tc or less using liquid helium having a boiling point of 4.2K. However, the use of liquid helium has
The technical burden of Nara and the cost of the cooling equipment including the liquefaction equipment was extremely large, which hindered the practical application of superconducting technology.

ところが、最近になって、II a族元素あるいはIII a
族元素を含む複合酸化物焼結体が極めて高いTcで超電導
体となり得ることが報告され、非低温超電導体による超
電導技術の実用化が俄かに促進されようとしている。
However, recently, II a group elements or III a
It has been reported that a composite oxide sintered body containing a group element can be a superconductor with an extremely high Tc, and the practical application of the superconducting technology using a non-low temperature superconductor is being promoted.

これまでにも、複合酸化物系のセラミック材料が超電
導特性を示すということ自体は既に公知であり、例え
ば、米国特許第3,932,315号には、Ba−Pb−Bi系の複合
酸化物が超電導特性を示すということが記載されてお
り、さらに、特開昭60−173,885号公報にはBa−Bi系の
複合酸化物が超電導特性を示すということが記載されて
いる。しかし、これまでに知られていた上記の系の複合
酸化物のTcは10K以下であるので超電導現象を起こさせ
るには液体ヘリウム(沸点4.2K)を用いる以外なかっ
た。
So far, it is already known that the composite oxide-based ceramic material exhibits superconducting properties.For example, in U.S. Pat.No. 3,932,315, Ba-Pb-Bi-based composite oxides have superconducting properties. In addition, it is described in JP-A-60-173,885 that the Ba-Bi-based composite oxide exhibits superconducting properties. However, since the Tc of the above-described complex oxides of the above-mentioned system is 10 K or less, liquid helium (boiling point 4.2 K) has to be used for causing the superconducting phenomenon.

ところが、1986年にベドノーツおよびミューラー等に
よって従来の金属系超電導材料よりも遥かに高いTcをも
つ超電導酸化物が発見されるにいたって、高温超電導の
可能性が大きく開けてきた(Z.Phys.B64,1986,9月、p18
9−193)。
However, in 1986, when Bednots and Muller et al. Discovered a superconducting oxide having a Tc much higher than that of conventional metal-based superconducting materials, the possibility of high-temperature superconductivity has greatly opened up (Z.Phys. B64, 1986, September, p18
9-193).

ベドノーツおよびミューラー等によって発見された酸
化物超電導体は、(La,Ba)2CuO4また(La,Sr)2CuO
4で、この酸化物超電導体は、K2NiF4型酸化物と呼ばれ
ているもので、これらの物質は従来から知られていたペ
ロブスカイト型超電導酸化物と結晶構造が似ているが、
そのTcは従来の超電導材料に比べて飛躍的に高い約30K
という値である。
The oxide superconductors discovered by Bednots and Mueller are (La, Ba) 2 CuO 4 and (La, Sr) 2 CuO.
4 ), this oxide superconductor is called K 2 NiF 4 type oxide, and these substances are similar in crystal structure to the conventionally known perovskite type superconducting oxide,
Its Tc is about 30K, which is dramatically higher than that of conventional superconducting materials.
Is the value.

更に、1987年2月になって、チュー等によって90Kク
ラスの臨界温度を示すBa−Y系の複合酸化物が発見され
たことが報道され、非低温超電導体実現の可能性が俄か
に高まっている。
Furthermore, in February 1987, it was reported that Chu and others discovered a Ba-Y-based complex oxide exhibiting a critical temperature in the 90K class, and the possibility of realizing a non-low temperature superconductor increased dramatically. ing.

しかしながら、これらの超電導材料は焼結体として得
られるので、一般的に脆く取り扱いに注意が必要であ
る。即ち、機械的なストレスによって容易に亀裂あるい
は折損を生じ、特に線材化した場合には極めて脆弱で実
際の利用には大きな制約が伴う。そこで、超電導焼結体
の原料粉末を金属筒体等に充填して加工することによっ
て、十分な機械的強度を有する超電導線材を作製する方
法が各種提案されている。
However, since these superconducting materials are obtained as a sintered body, they are generally fragile and require careful handling. That is, cracks or breakage easily occur due to mechanical stress, and it is extremely fragile especially when made into a wire rod, and there is a great limitation in practical use. Therefore, various methods have been proposed for manufacturing a superconducting wire having sufficient mechanical strength by filling a raw material powder of a superconducting sintered body into a metal cylinder or the like and processing it.

この方法は、組成加工に適した金属材料で作製した例
えば筒状の筒体に原料粉末を充填し、これを伸線あるい
は鍛造等の加工によって所望の形状に加工すると共に、
内部の原料粉末の密度を上げ、然る後に焼結して細いあ
るいは複雑な形状の焼結体製品を作製する方法である。
このような方法によって作製された超電導線材は、十分
な機械的強度を有するのみならず、超電導材料のクエン
チ時に金属筒体が電流のバイパス並びに放熱経路として
機能することから、超電導線材の作製等に極めて有効な
技術であると考えられる。
In this method, for example, a raw material powder is filled in a tubular body made of a metal material suitable for composition processing, and this is processed into a desired shape by processing such as wire drawing or forging,
This is a method of increasing the density of the raw material powder inside and then sintering it to produce a sintered product having a thin or complicated shape.
The superconducting wire produced by such a method has not only sufficient mechanical strength, but also when the superconducting material is quenched, the metal cylinder functions as a bypass and a heat dissipation path for the current. It is considered to be an extremely effective technology.

発明が解決しようとする課題 このような事情に鑑み、本発明者らは強度や靱性低下
の原因となる有機系粘着剤を使用せずに実用的に十分使
用できる程度に長手方向の寸法を断面方向の寸法に対し
て長く形成できる焼結セラミックス線の製造法として、
先に、1988年2月5日出願の米国特許出願第152,713
号、1988年2月29日出願の米国特許出願第161,480号、1
988年4月18日出願の米国特許出願第182,489号、1988年
5月2日出願の米国特許出願第189,366号および1988年
8月3日出願の米国特許出願第225,207号おいて、セラ
ミックス原料粉末を金属筒体、特にAgの筒体中に充填
し、該原料粉末を充填した金属筒体を金属加工した後、
焼結する方法を提案した。
DISCLOSURE OF THE INVENTION In view of such circumstances, the inventors of the present invention have a cross-section of the longitudinal dimension that can be practically and sufficiently used without using an organic pressure-sensitive adhesive that causes reduction in strength and toughness. As a method of manufacturing a sintered ceramic wire that can be formed longer than the dimension in the direction,
First, US Patent Application No. 152,713 filed on February 5, 1988.
No. 161,480, filed February 29, 1988, 1
In US patent application No. 182,489 filed on April 18, 988, US patent application No. 189,366 filed on May 2, 1988 and US patent application No. 225,207 filed on August 3, 1988, ceramic raw material powder A metal cylinder, in particular, in a Ag cylinder, and after metal working the metal cylinder filled with the raw material powder,
A method of sintering was proposed.

ところが、上述のように金属筒体に原料粉末を充填し
て焼結しても、焼結体が十分に高い超電導特性を示さな
い、即ち、焼結体のみをバルク状に作製した場合の特性
に到達しえない場合が多い。これは、筒体中に充填して
焼結するために、焼結体に含まれる酸素の制御が十分に
なされていないためであると考えられる。
However, even when the metal cylinder is filled with the raw material powder and sintered as described above, the sintered body does not exhibit sufficiently high superconducting properties, that is, the characteristics when only the sintered body is manufactured in a bulk shape. Often cannot reach. It is considered that this is because oxygen contained in the sintered body is not sufficiently controlled in order to fill the cylindrical body and sinter it.

即ち、高い超電導特性を発揮する超電導焼結体を作製
するには、その製造過程において酸素の含有量を極めて
精密に制御することが要求される。既知のバルク状超電
導焼結体材料の製造方法として有効であることが判明し
ている製造プロセスの一例を挙げると、 超電導焼結体の構成元素を含む化合物粉末(一般に
酸化物を用いる)を微細に粉砕して混合し、原料粉末と
する。
That is, in order to manufacture a superconducting sintered body that exhibits high superconducting properties, it is required to control the oxygen content in the manufacturing process extremely precisely. An example of a manufacturing process that has been found to be effective as a method for manufacturing a known bulk superconducting sintered body material is compound powder (generally using an oxide) containing the constituent elements of the superconducting sintered body. It is pulverized and mixed into raw powder.

得られた原料粉末を緻密に成形する。 The obtained raw material powder is compacted.

1気圧程度の酸素分圧下で、所定の温度に加熱して
焼結る。
Sintering is performed by heating to a predetermined temperature under an oxygen partial pressure of about 1 atm.

同様の酸素分圧下で300℃から400℃程度まで徐冷
し、この温度を数時間から十数時間保持する。
Under the same partial pressure of oxygen, the temperature is gradually cooled from 300 ° C to 400 ° C, and this temperature is maintained for several hours to ten and several hours.

室温まで冷却する。 Cool to room temperature.

これらのプロセスのうち、特にのアニール処理は、
得られる焼結体の酸素含有量に極めて密接な関係があ
り、材料に高い超電導特性を発揮させ、更にそれを安定
させるためには不可欠な処理であるとみられている。と
ころが、前述のように金属性の筒体に原料粉末を充填し
て焼結した場合には、焼結体を酸素雰囲気気に曝しなが
らアニールすることが困難であり、また焼結時にも雰囲
気による酸素の制御はできず、超電導線材の超電導特性
を低下させる原因となっていた。
Of these processes, the annealing treatment, in particular,
There is an extremely close relationship with the oxygen content of the obtained sintered body, and it is considered to be an indispensable treatment for making the material exhibit high superconducting properties and further stabilizing it. However, as described above, when the raw material powder is filled in the metal cylinder and sintered, it is difficult to anneal the sintered body while exposing it to an oxygen atmosphere, and the sintering also depends on the atmosphere. Oxygen cannot be controlled, which causes deterioration of superconducting properties of the superconducting wire.

また、金属筒体の材料をAgとすることによって、上述
のような問題を解決することが提案されている。即ち、
Agはその酸化還元反応によって擬似的に酸素を透過する
性質があり、これを金属筒体として用いることによって
焼結時あるいはアニール時の酸素制御を可能とするもの
である。しかしながら、Agは極めて高価な材料であり、
線材の工業的な製造には向かないという問題が有る。ま
た、筒体に原料粉末を充填して焼結する場合、焼結体の
十分な密度を実現するために、原料粉末を充填した筒体
を塑性加工する必要がある。しかしながら、筒体材料と
してAgを用いた場合、塑性加工に耐えられ、さらに塑性
加工後の原料粉末の高密度を維持できる強度を筒体に持
たせようとすると、Ag製筒体の厚さを筒体断面積の1/2
から1/3としなければならず、高価なAgを更に大量に使
用しなければならない。
Further, it has been proposed to solve the above problems by using Ag as the material of the metal tubular body. That is,
Ag has a property of artificially permeating oxygen due to its redox reaction, and by using this as a metal cylinder, it becomes possible to control oxygen during sintering or annealing. However, Ag is an extremely expensive material,
There is a problem that it is not suitable for industrial production of wire rods. Further, when the raw material powder is filled into the cylinder and is sintered, the cylinder filled with the raw material powder needs to be plastically worked in order to achieve a sufficient density of the sintered body. However, when Ag is used as the cylindrical material, the thickness of the Ag-made cylindrical body is reduced if the cylindrical body is to have strength capable of withstanding plastic working and maintaining the high density of the raw material powder after plastic working. 1/2 of cylindrical cross section
To 1/3, and more expensive Ag must be used.

そこで、本発明の目的は、上記従来技術の問題点を解
決し、高い臨界温度を有する焼結体超電導材料を実用的
な線材として製造することのできる新規な方法を提供す
ることにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel method capable of producing a sintered superconducting material having a high critical temperature as a practical wire rod.

課題を解決するための手段 即ち、本発明に従い、少なくとも1つの閉断面を有す
る金属の筒体の内部に原料粉末を充填し、該原料粉末を
充填した筒体を所望の形状に塑性加工し、次いで、該原
料粉末を充填した筒体を加熱することによって上記原料
粉末を焼結する行程を含む線状の超電導材を製造する方
法において、上記筒体が、Agによる形成された内筒と、
塑性加工に適し且つAgよりも引張強度の高い金属により
形成された外筒とを備えた複合クラッド筒体であり、上
記塑性加工後に前記外筒を除去した後に前記加熱処理を
実施して前記原料粉末を焼結することを特徴とする線状
超電導材の製造方法が提供される。
Means for Solving the Problems That is, according to the present invention, a raw material powder is filled inside a metal tubular body having at least one closed cross section, and the tubular body filled with the raw material powder is plastically worked into a desired shape, Then, in the method for producing a linear superconducting material including a step of sintering the raw material powder by heating the raw material powder-filled tubular body, the tubular body, an inner cylinder formed of Ag,
A composite clad cylindrical body having an outer cylinder formed of a metal that is suitable for plastic working and has a higher tensile strength than Ag, and the heat treatment is performed after the outer cylinder is removed after the plastic working There is provided a method for producing a linear superconducting material, which comprises sintering a powder.

作用 本発明による線状超電導材の製造方法は、閉断面を有
する金属製筒体の内部に原料粉末を充填し、原料粉末を
充填した筒体を塑性加工し、次いで、加熱して該原料粉
末を焼結する各工程を含む線状超電導材の製造製造方法
において、前記筒体をAgよりなる内筒と塑性加工に適し
且つAgよりも引張強度の高い金属よりなる外筒とによっ
て構成された複合クラッド筒体とし、この複合クラッド
筒体を塑性加工し、次いで、上記外側の金属製外筒を除
去した後に原料粉末を充填した上記のAgの内筒を加熱す
ることによって原料粉末を焼結することを特徴としてい
る。
Action The method for producing a linear superconducting material according to the present invention is such that a raw material powder is filled inside a metal tubular body having a closed cross section, the raw material powder-filled tubular body is plastically processed, and then the raw material powder is heated. In a manufacturing method of a linear superconducting material including each step of sintering, the cylindrical body is constituted by an inner cylinder made of Ag and an outer cylinder made of a metal suitable for plastic working and having a higher tensile strength than Ag. A composite clad cylinder is formed, the composite clad cylinder is plastically worked, and then the outer metal outer cylinder is removed, and then the Ag inner cylinder filled with the raw material powder is heated to sinter the raw material powder. It is characterized by doing.

本発明に従う上記線状超電導材の製造方法は、原料粉
末を充填する筒体をAg製の内筒と、Ag以外の塑性加工に
適した金属よりなる外筒とで構成された複合クラッド筒
体とし、塑性加工後に上記外筒を除去して焼結処理に付
することをその主要な特徴としている。
The method for producing a linear superconducting material according to the present invention is a composite clad cylindrical body composed of an inner cylinder made of Ag, which is a cylinder filled with raw material powder, and an outer cylinder made of a metal suitable for plastic working other than Ag. The main feature is that the outer cylinder is removed after the plastic working and subjected to the sintering treatment.

即ち、塑性加工時には十分な強度を有する外筒が原料
粉末並びにAg製の内筒を支持し、焼結時には、Ag酸素を
透過すること並びにAgが原料粉末を換言しないことを有
効に利用して原料粉末の酸素制御を有効に行うことによ
って、優れた特性を有する線状超電導材を製造すること
ができる。
That is, the outer cylinder having sufficient strength during plastic working supports the raw material powder and the inner cylinder made of Ag, and at the time of sintering, it effectively utilizes that Ag oxygen permeates and that Ag does not mean the raw material powder. By effectively controlling the oxygen of the raw material powder, it is possible to manufacture a linear superconducting material having excellent characteristics.

外筒の材料としては、塑性加工に適した材料であって
Agよりも引張強度の高い金属であれば従来公知のものを
いずれも適用できるが、特に産業上の利用を考慮する
と、鋼または鉄およびその合金、Niおよびの合金、Al合
金等が有利に使用できる。また、このような外筒を用い
た場合、塑性加工後の外筒の除去は、塩酸、硫酸または
硝酸等を用いて酸洗処理を行うことが容易でかつ有利で
ある。更に、長尺の線材等の場合は、前記原料粉末を充
填した筒体をコイル状にして後処理に付すことが好まし
い。
The material of the outer cylinder is suitable for plastic working.
Any conventionally known metal can be applied as long as it has a higher tensile strength than Ag, but steel or iron and its alloys, Ni and alloys, Al alloys, etc. are advantageously used in consideration of industrial use. it can. When such an outer cylinder is used, it is easy and advantageous to remove the outer cylinder after plastic working by performing a pickling treatment with hydrochloric acid, sulfuric acid, nitric acid or the like. Further, in the case of a long wire or the like, it is preferable that the cylindrical body filled with the raw material powder is formed into a coil and subjected to post-treatment.

尚、内筒の形状は、複数の平行な孔を有するものとす
ることもできる。この場合、完成後の超電導材におい
て、Ag製の内筒がクエンチ時の電流バイパス並びに放熱
路として、より高い性能を発揮するので有利である。
In addition, the shape of the inner cylinder may have a plurality of parallel holes. In this case, in the superconducting material after completion, the Ag inner cylinder is advantageous because it exhibits higher performance as a current bypass and a heat radiation path at the time of quenching.

また、本発明者等の知見によれば、焼結体の超電導材
料の場合、焼結体の密度がその材料の超電導臨界電流に
密接し関係しており、筒体に原料粉末を充填する際に
も、原料粉末を加圧して充填することが好ましい。
Further, according to the knowledge of the present inventors, in the case of the superconducting material of the sintered body, the density of the sintered body is closely related to the superconducting critical current of the material, and when filling the cylindrical body with the raw material powder. Also, it is preferable to pressurize and fill the raw material powder.

本発明の方法における“塑性加工”とは、従来金属材
料に対して実施されていた圧延加工、伸線加工、鍛造加
工等をいずれも含み、その実施手段としては、この伸線
加工の場合には、ダイス、ローラダイス、圧延ロール、
スウェージングユニット、押打機を用いることができ、
また、鍛造加工の場合にはスウェイジング、圧延ロール
等を用いることができる。
"Plastic working" in the method of the present invention includes any of the rolling, wire drawing, forging, etc. that have been conventionally carried out on a metal material, and the means for carrying out this is in the case of this wire drawing. , Dies, roller dies, rolling rolls,
You can use swaging unit and pusher,
In the case of forging, swaging, rolling rolls, etc. can be used.

本発明の方法も最も有利に適用できる超電導材料とし
ては、ペロブスカイト系の結晶構造を有する複合酸化物
焼結体超電導材料が挙げられ、特に〔Ba−Y−Cu〕系、
〔Ba−La−Cu〕系、〔Sr−La−Cu〕系の複合酸化物につ
いて優れた特性が確認されている。また、本発明者等
は、〔Ba−Y−Ho〕系についても優れた特性を確認して
いる。これらの複合酸化物は、一般に下記の式: (α1-xβ)γyOz 〔但し、元素αは、周期律表II a族に含まれる元素であ
り、 元素βは、周期律表III a族に含まれる元素であり、 元素γは、周期律表I b、II b、III b、IV aまたはVI
II a族に含まれる元素であり、x、y、zは、それぞれ x=0.1〜0.9、 y=1.0〜4.0、 1≦z≦5 を満たす数である) で示される組成を有し、液体窒素温度以上という極めて
高い温度領域で超電導現象を示す。
The superconducting material to which the method of the present invention can be most advantageously applied includes a complex oxide sintered body superconducting material having a perovskite crystal structure, and particularly [Ba-Y-Cu] system,
Excellent properties have been confirmed for [Ba-La-Cu] -based and [Sr-La-Cu] -based composite oxides. Further, the present inventors have confirmed excellent characteristics also for the [Ba-Y-Ho] system. These complex oxides are generally represented by the following formula: (α 1-x β x ) γ y O z [where the element α is an element included in Group IIa of the periodic table, and the element β is a periodic table Table IIIa is an element included in Group a, and element γ is Ib, IIb, IIIb, IVa or VI of the periodic table.
II is an element contained in the group a, x, y, and z each have a composition represented by x = 0.1 to 0.9, y = 1.0 to 4.0, and 1 ≦ z ≦ 5) It exhibits superconductivity in the extremely high temperature range above the nitrogen temperature.

更に具体的には、上記元素αがBaまたはSrであり、上
記元素βがY、La、Gd、Dy、Ho、Er、Tm、YbおよびLuよ
りなる群の中から選択された少なくとも一つの元素であ
り、上記元素γがCuである複合酸化物層が挙げられる。
More specifically, the element α is Ba or Sr, and the element β is at least one element selected from the group consisting of Y, La, Gd, Dy, Ho, Er, Tm, Yb and Lu. And a complex oxide layer in which the element γ is Cu.

上記元素αとβの原子比は上記αおよびβの種類に応
じて適宣選択できる。例えば、Ba−Y、Ba−La、Sr−La
系の場合にはそれぞれ以下の比を満足することが好まし
い。
The atomic ratio of the elements α and β can be appropriately selected depending on the types of α and β. For example, Ba-Y, Ba-La, Sr-La
In the case of a system, it is preferable to satisfy the following ratios.

Y/(Y+Ba): 0.06〜0.94、 好ましくは0.1 〜0.4 Ba/(La+Ba): 0.04〜0.96、 好ましくは0.08〜0.45 Sr/(La+Sr): 0.03〜0.95、 好ましくは0.05〜0.1 上記の元素の組合せの中で、特に、本発明によって形
成可能な複合酸化物層としては、例えば、以下に例示し
たY−Ba−Cu−O系、La−Ba−Cu−O系およびLa−Sr−
Cu−O系の複合酸化物層が挙げられる: Y1Ba2Cu3O7-x、Ho1Ba2Cu3O7-x、 Lu1Ba2Cu3O7-x、Sm1Ba2Cu3O7-x、 Nd1Ba2Cu3O7-x、Gd1Ba2Cu3O7-x、 Eu1Ba2Cu3O7-x、Er1Ba2Cu3O7-x、 Dy1Ba2Cu3O7-x、Tm1Ba2Cu3O7-x、 Yb1Ba2Cu3O7-x、La1Ba2Cu3O7-x. (La,Sr)2CuO4-x 〔但し、xは0<x<1を満たす数である〕 上記酸化物はペロブスカイト型酸化物または擬似ペロ
ブスカイト型酸化物であることが好ましい。尚、擬似ペ
ロブスカイトとはペロブスカイトに類似した構造をい
い、例えば酸素欠損ペロブスカイト型、オルソロンビッ
ク型等を含むものである。
Y / (Y + Ba): 0.06 to 0.94, preferably 0.1 to 0.4 Ba / (La + Ba): 0.04 to 0.96, preferably 0.08 to 0.45 Sr / (La + Sr): 0.03 to 0.95, preferably 0.05 to 0.1 Combination of the above elements Among them, as the complex oxide layer that can be formed according to the present invention, for example, the following Y-Ba-Cu-O system, La-Ba-Cu-O system and La-Sr- system are exemplified.
Cu-O-based composite oxide layer may be mentioned: Y 1 Ba 2 Cu 3 O 7-x, Ho 1 Ba 2 Cu 3 O 7-x, Lu 1 Ba 2 Cu 3 O 7-x, Sm 1 Ba 2 Cu 3 O 7-x , Nd 1 Ba 2 Cu 3 O 7-x , Gd 1 Ba 2 Cu 3 O 7-x , Eu 1 Ba 2 Cu 3 O 7-x , Er 1 Ba 2 Cu 3 O 7-x , Dy 1 Ba 2 Cu 3 O 7-x , Tm 1 Ba 2 Cu 3 O 7-x , Yb 1 Ba 2 Cu 3 O 7-x , La 1 Ba 2 Cu 3 O 7-x . (La, Sr) 2 CuO 4-x [where x is a number satisfying 0 <x <1] The above oxide is preferably a perovskite type oxide or a pseudo perovskite type oxide. The pseudo perovskite has a structure similar to that of the perovskite, and includes, for example, oxygen-deficient perovskite type, orthorombic type, and the like.

このような焼結体超電導材料は、この複合酸化物を構
成する元素の化合物の粉末を焼結することによって得ら
れ、本発明の方法においても同様に各化合物粉末の混合
物を原料粉末として用いることできる。しかしながら、
焼結体の組成を精密に制御するためには、予め各化合物
混合物を焼成して複合酸化物焼成体を得、これを粉砕し
た焼成体粉末を原料粉末とすることが好ましい。何故な
らば、後者の方法では、焼成体が既に超電導複合酸化物
の組成を構成しているので、最終的に均質で高い特性を
示す超電導焼結体が得られる。
Such a sintered body superconducting material is obtained by sintering the powder of the compound of the element that constitutes this composite oxide, and also in the method of the present invention, the mixture of each compound powder is used as the raw material powder. it can. However,
In order to precisely control the composition of the sintered body, it is preferable that each compound mixture is fired in advance to obtain a composite oxide fired body, and the fired body powder obtained by crushing this is used as the raw material powder. Because, in the latter method, since the fired body has already constituted the composition of the superconducting composite oxide, a superconducting sintered body having a homogeneous and high characteristic is finally obtained.

焼結の際の加熱温度は、860℃から970℃の温度範囲で
あることが好ましい。焼結温度がこの範囲を越えた場合
は、焼結体中に固溶相が生じ、超電導特性に好ましい結
晶構造が形成されない。また、加熱温度が上記範囲に達
しない場合は、十分な焼結反応が起こらず、やはり超電
導物質が形成されない。
The heating temperature during sintering is preferably in the temperature range of 860 ° C to 970 ° C. If the sintering temperature exceeds this range, a solid solution phase occurs in the sintered body, and a crystal structure that is favorable for superconducting properties cannot be formed. Further, if the heating temperature does not reach the above range, a sufficient sintering reaction does not occur and the superconducting substance is not formed.

また、本発明者等の知見によれば、優れた特性を発揮
する複合酸化物系超電導材料を製造するには、特にその
酸素含有量の制御が重要であり、これは、焼結時の雰囲
気が1気圧程度の分圧の酸素を含むことと、焼結後に焼
結体を同じ雰囲気中で300から400℃で5時間以上保持す
ることが有効であることを見出している。前述のよう
に、本発明に従う方法によって作製する超電導線材の筒
体を形成するAg酸素を透過する性質があるので、上述の
ような焼結体に対する処理には特に有効である。
Further, according to the knowledge of the present inventors, in order to produce a complex oxide superconducting material exhibiting excellent characteristics, it is particularly important to control the oxygen content thereof, which is the atmosphere at the time of sintering. It has been found that it is effective to contain oxygen at a partial pressure of about 1 atm and to hold the sintered body at 300 to 400 ° C. for 5 hours or more in the same atmosphere after sintering. As described above, since it has a property of permeating Ag oxygen forming the tubular body of the superconducting wire produced by the method according to the present invention, it is particularly effective for the treatment of the above-mentioned sintered body.

本発明において使用可能な上記以外の複合酸化物系超
電導材料としては、一般式: D4(E1-q,CaqmCunOp+r 〔但し、DはBiまたはT1であり、 Eは、DがBiのときはSrであり、DがT1のときはBaであ
り、 mは、6≦m≦10を満たす数であり、 nは、4≦n≦8を満たす数であり、 p=(6+2m+2n)/2であり、 qは、0<q<1を満たす数であり、 rは、−2≦r≦2を満たす数を表す〕 で表される組成を主とした複合酸化物超電導体層が挙げ
られる。
Examples of complex oxide-based superconducting materials other than the above that can be used in the present invention include the general formula: D 4 (E 1-q , Ca q ) m Cu n O p + r [wherein D is Bi or T 1, E is Sr when D is Bi, Ba when D is T1, m is a number satisfying 6 ≦ m ≦ 10, and n is a number satisfying 4 ≦ n ≦ 8 , P = (6 + 2m + 2n) / 2, q is a number satisfying 0 <q <1, and r is a number satisfying −2 ≦ r ≦ 2] An oxide superconductor layer is mentioned.

さらに具体的には、下記の系が挙げられる: Bi2Sr2Ca2Cu3O10-xまたは Bi4Sr4Ca4Cu6O2(10-x) Tl2Ba2Ca2Cu3O10-xまたは Tl2Ba4Ca4Cu6O2(10-x) 〔但し、Xは−2≦x≦2を満たす数である〕 以下に実施例を挙げて本発明をより具体的に詳述する
が、以下に開示するものは本発明の一実施例に過ぎず、
本発明の技術的範囲を何ら限定するものではない。
More specific examples include the following systems: Bi 2 Sr 2 Ca 2 Cu 3 O 10-x or Bi 4 Sr 4 Ca 4 Cu 6 O 2 (10-x) Tl 2 Ba 2 Ca 2 Cu 3 O 10-x or Tl 2 Ba 4 Ca 4 Cu 6 O 2 (10-x) [where X is a number satisfying −2 ≦ x ≦ 2] The present invention will be described more specifically with reference to Examples below. Although described in detail, what is disclosed below is only one embodiment of the present invention,
The technical scope of the present invention is not limited in any way.

実施例 純度99.9%のBaO粉末と、純度99.9%のY2O3粉末と、
純度99.99%のCuO粉末とをY:Ba:Cuの原子比が1:2:3とな
るように混合して、乳鉢で摩砕し粉末混合物を得た。こ
の混合物を成形し、1気圧の酸素分圧下で940℃/15時間
予備焼成し、得られた焼成体を再び乳鉢で粉砕した。以
下、〔成形→焼成→粉砕〕の一連の処理を同じ条件で3
回繰り返し、最終的に粒径10μm以下の焼成体粉末を得
てこれを原料粉末とした。なお、各焼成処理後の冷却時
には、各回ともに焼成と同じ雰囲気下で徐冷し、350℃
で10時間保持した後に室温まで冷却した。
Example BaO powder having a purity of 99.9%, Y 2 O 3 powder having a purity of 99.9%,
CuO powder having a purity of 99.99% was mixed so that the atomic ratio of Y: Ba: Cu was 1: 2: 3, and ground in a mortar to obtain a powder mixture. This mixture was molded and pre-baked at 940 ° C./15 hours under an oxygen partial pressure of 1 atm, and the obtained baked product was ground again in a mortar. Hereafter, a series of processes of [molding → baking → crushing] is performed under the same conditions.
Repeated times, finally a fired body powder having a particle size of 10 μm or less was obtained and used as a raw material powder. In addition, at the time of cooling after each firing process, each time it is slowly cooled in the same atmosphere as the firing, 350 ℃
The temperature was maintained for 10 hours and then cooled to room temperature.

一方、筒体として、肉厚1.0mm、外径6mmの筒体を用意
した。この筒体は、肉厚0.2mmのAg製内筒と肉厚0.8mmの
0.4%炭素鋼の外筒とから形成された複合クラッド材で
ある。
On the other hand, a cylinder having a wall thickness of 1.0 mm and an outer diameter of 6 mm was prepared as the cylinder. This cylinder consists of a 0.2 mm thick Ag inner cylinder and a 0.8 mm thick inner cylinder.
A composite clad material formed from an outer cylinder of 0.4% carbon steel.

また、肉厚1.0mm、外径6mmのAg、Cu、0.4%炭素鋼の
パイプを、それぞれ比較試料、、として用意し、
後述する工程で線状超電導材を作成した。
Also, pipes made of Ag, Cu, and 0.4% carbon steel with a wall thickness of 1.0 mm and an outer diameter of 6 mm were prepared as comparative samples, respectively.
A linear superconducting material was created in the process described below.

各筒体に前述の原料粉末を充填し、パイプの両端を封
じた後に、外径が各々3.2mmとなるまでダイスを用いて
伸線した。
Each of the cylinders was filled with the above-mentioned raw material powder, and after sealing both ends of the pipe, wire drawing was performed using a die until the outer diameter was 3.2 mm.

本発明に従って、複合クラッド材を用いた試料につい
ては、伸線後に塩酸を用いた酸洗によって外筒を除去し
た。こうして得られた各線材を、940℃で10時間加熱し
徐冷した。尚、冷却に際して、各試料の降温を350℃で
一旦冷却を停止し、10時間のこの温度を保持した後に室
温まで積極的に冷却した。
According to the present invention, with respect to the sample using the composite clad material, the outer cylinder was removed by pickling with hydrochloric acid after wire drawing. Each wire rod thus obtained was heated at 940 ° C. for 10 hours and then gradually cooled. During cooling, the temperature of each sample was temporarily stopped at 350 ° C., the temperature was kept for 10 hours, and then the sample was positively cooled to room temperature.

得られた線材から、各々長さ3cmの試料を切り取り、
この試料からAg製筒体を研磨により除去した後に、芯材
の両端にAuペーストにより電極を付け、液体窒素によっ
て冷却して電気抵抗が完全に零となることを確認した。
続いて、ヒータによって試料の温度を徐々に上げ、電気
抵抗が常態と等しくなる温度Tcを測定した。
From the obtained wire rod, cut a sample with a length of 3 cm,
After removing the Ag cylindrical body from this sample by polishing, electrodes were attached to both ends of the core material with Au paste, and it was confirmed that the electrical resistance became completely zero by cooling with liquid nitrogen.
Subsequently, the temperature of the sample was gradually raised by the heater, and the temperature Tc at which the electric resistance became equal to the normal state was measured.

尚、測定は、クライオスタット中で直流4点プローブ
法で行い、温度測定はキャリブレーション済みのAu(F
e)−Ag熱電対を用いて行った。測定結果を第1表に示
す。
In addition, the measurement is performed by the DC 4-point probe method in the cryostat, and the temperature measurement is performed by the calibrated Au (F
e) -Ag thermocouple. The measurement results are shown in Table 1.

また更に、焼結前の試料と抵抗速度後の試料とについ
てそれぞれ焼結体の密度を測定し、塑性加工の効果を調
べた。密度の測定は、ダイフロン含浸比重測定法によっ
て得た焼結体の体積で、試料の重量を割ることによって
求めた。
Furthermore, the density of the sintered body was measured for each of the sample before sintering and the sample after the resistance velocity, and the effect of plastic working was investigated. The density was measured by dividing the weight of the sample by the volume of the sintered body obtained by the diflon impregnation specific gravity measurement method.

発明の効果 以上詳述のように、本発明の方法によれば、強度に優
れた外筒と、酸素透過性を有するAg製の内筒よりなる筒
体を使用することによって、有効な組成加工と精密な酸
素制御を両立させ、優れた特性を発揮する線状超電導材
を製造することができる。
Effects of the Invention As described above in detail, according to the method of the present invention, an effective composition processing is achieved by using a cylindrical body composed of an outer cylinder having excellent strength and an Ag inner cylinder having oxygen permeability. It is possible to manufacture a linear superconducting material that achieves excellent characteristics by satisfying both precise oxygen control.

また、こうして製造された超電導材は、超電導焼結体
がAg製筒体中に保護されているので、雰囲気による劣化
が防止されていると共に、十分な機械的強度を有してお
り、線材として実用的に利用することができる。従っ
て、高く安定したTcを有する超電導材として、線材ある
いは小部品に広く利用することができる。
Further, the superconducting material produced in this way, since the superconducting sintered body is protected in the Ag cylinder, deterioration due to the atmosphere is prevented, and it has sufficient mechanical strength, and as a wire rod. It can be used practically. Therefore, it can be widely used for wire rods or small parts as a superconducting material having a high and stable Tc.

更に、高価なAgの使用が内筒に限られるので、製品コ
ストも低減することができる。
Furthermore, since the use of expensive Ag is limited to the inner cylinder, the product cost can be reduced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも1つの閉断面を有する金属の筒
体の内部に原料粉末を充填し、該原料粉末を充填した筒
体を所望の形状に塑性加工し、次いで、該原料粉末を充
填した筒体を加熱することによって上記原料粉末を焼結
する行程を含む線状の超電導材を製造する方法におい
て、 上記筒体が、Agにより形成された内筒と、塑性加工に適
し且つAgよりも引張強度の高い金属により形成された外
筒とを備えた複合クラッド筒体であり、上記塑性加工後
に前記外筒を除去した後に前記加熱処理を実施して前記
原料粉末を焼結することを特徴とする線状超電導材の製
造方法。
1. A raw material powder is filled into a metal cylinder having at least one closed cross section, the cylinder filled with the raw material powder is plastically worked into a desired shape, and then the raw material powder is filled. In a method for producing a linear superconducting material including a step of sintering the raw material powder by heating a cylindrical body, the cylindrical body is an inner cylinder formed of Ag, and suitable for plastic working and more than Ag. A composite clad cylinder body having an outer cylinder formed of a metal having high tensile strength, wherein the heat treatment is performed after the outer cylinder is removed after the plastic working, and the raw material powder is sintered. And a method for producing a linear superconducting material.
JP63255479A 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material Expired - Lifetime JP2557498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255479A JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25496587 1987-10-09
JP62-254965 1987-10-09
JP63255479A JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Publications (2)

Publication Number Publication Date
JPH01206518A JPH01206518A (en) 1989-08-18
JP2557498B2 true JP2557498B2 (en) 1996-11-27

Family

ID=26541947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255479A Expired - Lifetime JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Country Status (1)

Country Link
JP (1) JP2557498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685910B2 (en) * 1989-07-26 1997-12-08 古河電気工業株式会社 Manufacturing method of oxide superconducting conductor
JPH04292816A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of bismuth-based oxide superconductive wire

Also Published As

Publication number Publication date
JPH01206518A (en) 1989-08-18

Similar Documents

Publication Publication Date Title
KR970004554B1 (en) Apparatus and systems comprising a superconductive body and method for producing such body
JP2754564B2 (en) Method for producing superconducting composite
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
US5470821A (en) Superconductors having continuous ceramic and elemental metal matrices
JP2557498B2 (en) Manufacturing method of linear superconducting material
JP2514690B2 (en) Superconducting wire manufacturing method
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
CA2024806C (en) Method of producing ceramics-type superconductor wire
EP0308326A1 (en) A process for producing an elongated superconductor
JP2519742B2 (en) Manufacturing method of superconducting material
JPH01163922A (en) Manufacture of linear superconductive material
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH01283713A (en) Manufacture of linear superconductive material
JPS63307622A (en) Manufacture of superconductive wire
Abe Formation and shaping of BSCCO superconductors by melt-casting into metallic Ag-and Cu-pipes
JPH01279508A (en) Manufacture of linear superconductive material
JPH01279509A (en) Manufacture of linear superconductive material
JPH01279510A (en) Manufacture of linear superconductive material
JP2519741B2 (en) Manufacturing method of superconducting material
JPH01279512A (en) Manufacture of linear superconductive material
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JPH01163914A (en) Manufacture of oxide superconductive wire
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH01279513A (en) Manufacture of linear superconductive material
JP2590370B2 (en) Superconducting material and manufacturing method thereof