JPH01279510A - Manufacture of linear superconductive material - Google Patents

Manufacture of linear superconductive material

Info

Publication number
JPH01279510A
JPH01279510A JP63110003A JP11000388A JPH01279510A JP H01279510 A JPH01279510 A JP H01279510A JP 63110003 A JP63110003 A JP 63110003A JP 11000388 A JP11000388 A JP 11000388A JP H01279510 A JPH01279510 A JP H01279510A
Authority
JP
Japan
Prior art keywords
material powder
raw material
superconducting
oxygen
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63110003A
Other languages
Japanese (ja)
Inventor
Susumu Yamamoto
進 山本
Nozomi Kawabe
望 河部
Tomoyuki Awazu
知之 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63110003A priority Critical patent/JPH01279510A/en
Publication of JPH01279510A publication Critical patent/JPH01279510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To facilitate manufacture of sintered superconductive material as a wire in practical application having high critical temp. by accommodating Au2O3 in a metal cylinder together with material powder in a manufacturing process, in which material powder is sintered in the metal cylinder. CONSTITUTION:Au2O3 dissolves at a temp. over 160 deg.C and emits oxygen to supply oxygen to the material powder which is required at the time of sintering. A plasticible metal cylinder is used with one end closed, and wire stretching or forging turns it into required form while the material powder is held in the cylinder at an appropriate density. Prior to filling of material powder, the Au2O3 is attached to the inner surface of the metal cylinder, and it is desirable that the substance produced after supply of oxygen does not react with the sintered substance. By this method, a wire can be manufactured practically in which a sintered substance having high superconductivity is accommodated in a metal cylinder having substantial mechanical strength and plasticity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複合酸化物系の超電導材料による線材あるいは
長尺材の製造方法に関する。より詳細には、特に焼結体
超電導材料について、実用的な機械的強度を付与すると
共に、この材料が本来有する優れた超電導特性を有効に
保持し得る新規な線状焼結体製品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing wire rods or elongated materials using composite oxide superconducting materials. More specifically, a method for manufacturing a novel linear sintered product that can impart practical mechanical strength to a sintered superconducting material and effectively retain the excellent superconducting properties inherent in this material. Regarding.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種の応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR。
That is, its application fields include power fields such as MHD generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. .

π中間子治療、高エネルギー物理実験装置などの計測の
分野等、極めて多くの分野を挙げることができる。
There are many fields that can be mentioned, such as pi-meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度(以下、Tcと記載する)を有すると
いわれていたNb3GeにおいてもTcは23.2 K
と極めて低く、これが長期間に亘って超電導臨界温度の
限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, even in Nb3Ge, which is said to have the highest superconducting critical temperature (hereinafter referred to as Tc) among conventional superconducting materials, Tc is 23.2 K.
This was considered to be the limit of superconducting critical temperature for a long time.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて太き(、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely heavy technical and cost burden due to cooling equipment, including liquefaction equipment (which has been an obstacle to the practical application of superconducting technology).

ところが、近年に到ってIIa族元素あるいはII[a
族元素を含む複合酸化物焼結体が極めて高いTcで超電
導体となり得ることが報告され、非低温超電導体による
超電導技術の実用化が俄かに促進されようとしている。
However, in recent years, group IIa elements or II[a
It has been reported that a composite oxide sintered body containing group elements can become a superconductor at an extremely high Tc, and the practical application of superconducting technology using non-low temperature superconductors is suddenly being promoted.

既に報告されている例では、K2NiF4型等のペロブ
スカイト系の結晶構造を有すると考えられるCLa −
Ba −Cu )系、〔La −5r−[’u )系あ
るいは(Ba−Y−Co1系の複合酸化物が、液体窒素
温度以上の温度領域で超電導減少の兆候を示すことが報
告されている。
In already reported examples, CLa - which is thought to have a perovskite crystal structure such as K2NiF4 type
It has been reported that complex oxides based on Ba-Cu), [La-5r-['u], or (Ba-Y-Co1) show signs of reduced superconductivity in the temperature range above liquid nitrogen temperature. .

しかしながら、これらの超電導材料は、一般に焼結体と
して得られるので、脆く取り扱いに注意が必要である。
However, since these superconducting materials are generally obtained as sintered bodies, they are brittle and must be handled with care.

即ち、機械的な負荷によって容易に亀裂あるいは折損を
生じ、特に長尺化した場合には極めて脆弱で、実際の利
用には大きな制約が伴う。そこで、超電導焼結体の原料
粉末を金属筒体等に充填して加工することによって、十
分な機械的強度を有する超電導線材を作製する方法が各
種提案されている。
That is, it easily cracks or breaks due to mechanical loads, and is extremely brittle, especially when it is made long, and its practical use is severely restricted. Therefore, various methods have been proposed for producing a superconducting wire having sufficient mechanical strength by filling a metal cylinder or the like with raw material powder for a superconducting sintered body and processing it.

この方法は、組成加工に適した金属材料で作製した例え
ば筒状の外筒部材に原料粉末を充填し、これを伸線ある
いは鍛造等の加工によって所望の形状に加工すると共に
、内部の原料粉末の密度を上げ、然る後に焼結して細い
あるいは複雑な形状の焼結体製品を作製する方法である
。このような方法によって作製された超電導線材は、金
属性の鞘体によって十分な機械的強度を付与されるのみ
ならず、超電導材料のクエンチ時に金属鞘体が電流のバ
イパス並びに放熱経路として機能することから、超電導
線材の作製等に極めて有効な技術であると考えられてい
る。
In this method, a cylindrical outer cylinder member made of a metal material suitable for compositional processing is filled with raw material powder, and this is processed into a desired shape by wire drawing or forging. This is a method of increasing the density of sintered materials and then sintering them to produce sintered products with thin or complex shapes. The superconducting wire produced by this method not only has sufficient mechanical strength due to the metal sheath, but also has the metal sheath function as a current bypass and a heat dissipation path when the superconducting material is quenched. Therefore, it is considered to be an extremely effective technology for producing superconducting wires.

発明が解決しようとする課題 ところが、上述のように金属筒体に原料粉末を充填して
焼結しても、焼結体が十分に高い超電導特性を示さない
、即ち、焼結体のみをバルク状に作製した場合の特性に
達しえない場合がある。これは、筒体中に充填して焼結
するために、焼結体に含まれる酸素の制御が十分になさ
れていないためであると考えられる。
Problem to be Solved by the Invention However, even if a metal cylinder is filled with raw material powder and sintered as described above, the sintered body does not exhibit sufficiently high superconducting properties. In some cases, the characteristics cannot be achieved when the material is manufactured in a similar shape. This is thought to be because the oxygen contained in the sintered body is not sufficiently controlled because it is filled into the cylinder and sintered.

本発明者等の知見によれば、高い超電導特性を発揮する
超電導焼結体を作製するには、その製造過程において酸
素の含有量を極めて精密に制御することが要求される。
According to the findings of the present inventors, in order to produce a superconducting sintered body that exhibits high superconducting properties, it is required to extremely precisely control the oxygen content in the manufacturing process.

既知のバルク状超電導焼結体材料の製造方法として有効
であることが判明している製造プロセスの一例を挙げる
と、■ 超電導焼結体の構成元素を含む化合物粉末(一
般に酸化物あるいは炭酸塩を用いる)を微細に粉砕して
混合し、原料粉末とする。
An example of a manufacturing process that has been found to be effective as a known method for manufacturing bulk superconducting sintered materials is: ) is finely ground and mixed to obtain raw material powder.

■ 得られた原料粉末を緻密に成形する。■ The obtained raw material powder is compactly molded.

■ 酸素含有雰囲気下で所定の温度に加熱して焼結する
■ Sinter by heating to a predetermined temperature in an oxygen-containing atmosphere.

■ 酸素含有雰囲気下で300℃以上の温度で数時間乃
至十数時間熱処理する。
(2) Heat treatment is performed at a temperature of 300° C. or higher in an oxygen-containing atmosphere for several hours to more than ten hours.

これらのプロセスを通じて、特に焼結あるいは熱処理時
の雰囲気の含有酸素制御は、得られる焼結体の酸素含有
量に極めて密接な関係があり、材料に高い超電導特性を
発揮させ、更にそれを安定させるためには精密な制御が
不可欠である。
Through these processes, controlling the oxygen content in the atmosphere, especially during sintering or heat treatment, is extremely closely related to the oxygen content of the resulting sintered body, allowing the material to exhibit high superconducting properties and further stabilizing it. Precise control is essential for this purpose.

ところが、前述のように金属性の筒体に原料粉末を充填
して焼結した場合には、焼結体を酸素雰囲気に曝しなが
ら焼結あるいは熱処理することが困難であり、超電導線
材の超電導特性の向上を妨げる原因となっていた。
However, when a metallic cylinder is filled with raw material powder and sintered as described above, it is difficult to sinter or heat-treat the sintered body while exposing it to an oxygen atmosphere, which affects the superconducting properties of the superconducting wire. This was a factor that hindered the improvement of

このような問題に対して、金属筒体の材料をAgとする
ことが提案されている。即ち、Agはその酸化還元反応
1巳よって擬似的に酸素を透過する性質があり、これを
金属筒体として用いることによって焼結時あるいは熱処
理時の酸素制御を可能とするものである。しかしながら
、この方法によっても、Ag製の筒体を透過した酸素に
よって特性が改善されるのは、充填された原料粉末の表
面付近のみであり、従って、得られた超電導焼結体の断
面全体が有効に優れた特性を発揮するわけではない。
To solve this problem, it has been proposed to use Ag as the material of the metal cylinder. That is, Ag has the property of pseudo-permeating oxygen due to its oxidation-reduction reaction, and by using it as a metal cylinder, it is possible to control oxygen during sintering or heat treatment. However, even with this method, the properties are only improved near the surface of the filled raw material powder by the oxygen that has passed through the Ag cylinder, and therefore the entire cross section of the superconducting sintered body obtained is It does not necessarily exhibit excellent characteristics effectively.

従って、臨界温度のみならず臨界電流密度等の点で優れ
た特性が得られない。
Therefore, excellent characteristics not only in critical temperature but also in critical current density cannot be obtained.

また、Agは極めて高価な材料であり、工業的に製造す
る線材の材料に相応しくないという問題があると共に、
上述のようなAgの性質が、逆に完成後の線材からの酸
素の離脱あるいは酸化を防止できないという新たな問題
も生じており、何らかの対策が求められている。
In addition, Ag is an extremely expensive material and is not suitable as a material for industrially manufactured wire rods.
A new problem has arisen in that the above-mentioned properties of Ag do not prevent the removal of oxygen or oxidation from the completed wire rod, and some countermeasures are required.

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高い臨界温度を有する焼結体超電導材料を実用的に
線材として製造することのできる新規な方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a new method that can practically produce a wire rod from a sintered superconducting material having a high critical temperature.

課題を解決するための手段 本発明に従って、少なくとも1つの閉断面を有し、塑性
加工に適した金属によって形成された外筒部材の内部に
原料粉末を充填し、該原料粉末を充填した外筒部材を塑
性加工した後に加熱して該原料粉末を焼結する工程を含
む線状超電導材の製造製造方法において、前記外筒部材
の内部に、原料粉末と共にAu20sを収容した後、加
熱処理を含む一連の処理を行うことを特徴とする線状超
電導材の製造方法が提供される。
Means for Solving the Problems According to the present invention, a raw material powder is filled inside an outer cylinder member having at least one closed cross section and formed of a metal suitable for plastic working, and an outer cylinder filled with the raw material powder. A method for producing a linear superconducting material, which includes a step of plastically working a member and then heating it to sinter the raw material powder, the method including heating treatment after accommodating Au20s together with the raw material powder inside the outer cylindrical member. A method for manufacturing a linear superconducting material is provided, which is characterized by performing a series of treatments.

ここで、本発明の一態様に従うと、前記Au20iが、
粉末として前記外筒部材に原料粉末と共に充填される。
Here, according to one aspect of the present invention, the Au20i is
The powder is filled into the outer cylindrical member together with the raw material powder.

また、本発明の好ましい実施態様に従うと、前記Au2
03が、前記外筒部材の内面に付着することにより該外
筒部材内に収容され、前記原料粉末が該Au203の更
に内部に収容されることが有利である。
Further, according to a preferred embodiment of the present invention, the Au2
It is advantageous that the Au 203 is accommodated within the outer tube member by adhering to the inner surface of the outer tube member, and the raw material powder is further accommodated inside the Au203.

前記外筒部材は、所定長のパイプであり得、前記塑性加
工を、前記外筒部材に対する伸線加工とすることができ
る。ここで、前記伸線加工としては、ダイス伸線、ロー
ラダイス伸線、圧延ロール伸線、スウェージングまたは
押出伸線等を例示することができる。
The outer cylindrical member may be a pipe of a predetermined length, and the plastic working may be wire drawing on the outer cylindrical member. Here, examples of the wire drawing process include die wire drawing, roller die wire drawing, rolling roll wire drawing, swaging, extrusion wire drawing, and the like.

また、前記塑性加工は、前記外筒部材に対する鍛造処理
であり得、該鍛造処理としては、スウエイジングを例示
することができる。
Further, the plastic working may be a forging process for the outer cylinder member, and an example of the forging process is swaging.

更に、本発明の好ましい一態様によれば、上記組成加工
後の焼結工程にあける加熱温度は、850乃至1200
℃の範囲内であることが好ましく、更に、該焼結後に、
前記原料粉末を充填した外筒部材を最低で160℃まで
徐冷し、該温度以上に5時間以上保持した後に急冷する
ことが有利である。
Furthermore, according to a preferred embodiment of the present invention, the heating temperature in the sintering step after the composition processing is 850 to 1200 ℃.
It is preferable that the temperature is within the range of ℃, and furthermore, after the sintering,
It is advantageous to gradually cool the outer cylindrical member filled with the raw material powder to a minimum of 160° C., maintain the temperature above that temperature for 5 hours or more, and then rapidly cool it.

尚、本発明の一態様によれば、前記原料粉末は、周期律
表[a族に含まれる元素αを含む化合物と、周期律表I
Ja族に含まれる元素βを含む化合物と、周期律表1 
b 11I b s ■b −、■aまたは■a族に含
まれる元素γを含む化合物の各粉末を、該元素α、β並
びにTをいずれも含むように混合したものとすることが
できる。
According to one aspect of the present invention, the raw material powder contains a compound containing an element α included in group a of the periodic table [I
Compounds containing element β included in the Ja group and periodic table 1
Each powder of a compound containing the element γ included in the b 11I b s ■b -, ■a, or ■a group may be mixed so as to contain all of the elements α, β, and T.

また、前記原料粉末を、周期律表IIa族に含まれる元
素αを含む化合物と、周期律表IIIa族に含まれる元
素βを含む化合物と、周期律表Ib、nb s I[I
 b s IV aまたは■a族に含まれる元素Tを含
む化合物の各粉末を、該元素α、β並びにTをいずれも
含むように混合した出発材料を、焼成して形成された焼
成体を粉砕して得た複合酸化物焼成体粉末とすることも
好ましい。
Further, the raw material powder may be mixed with a compound containing an element α included in group IIa of the periodic table, a compound containing an element β included in group IIIa of the periodic table, and Ib, nb s I[I
b s IV A starting material obtained by mixing each powder of a compound containing the element T included in group a or ■a so as to contain all of the elements α, β, and T is sintered, and the sintered body formed is pulverized. It is also preferable to use a composite oxide sintered body powder obtained by

ここで、前記焼成時の加熱温度は、850乃至1200
℃の範囲が好ましく、更に、前記焼成後に、焼成体を3
00乃至400℃まで徐冷し、更に該温度範囲で5時間
以上保持した後に室温まで急冷する処理を実施すること
が有利である。
Here, the heating temperature during the firing is 850 to 1200.
℃ range is preferable, and furthermore, after the firing, the fired body is heated to 3
It is advantageous to carry out a process of slowly cooling the material to 00 to 400° C., then holding the temperature range for 5 hours or more, and then rapidly cooling it to room temperature.

尚、前記元素α、β及びTの組合せとしては、α/β/
 T ”Ba/ Y/Cu、 Ba/La/ Cu、 
Sr/ La/Cu、 Ba/No/Cu等を例示する
ことができるがこれらに限定されない。
Note that the combination of the elements α, β, and T is α/β/
T”Ba/Y/Cu, Ba/La/Cu,
Examples include Sr/La/Cu, Ba/No/Cu, but are not limited to these.

これらの元素の組合せを焼成して得られる前記焼成体は
、 一般式=(α+−x βx)ryδ2 (但し、αは周期律表1a族に含まれる元素であり、β
は周期律表ma族に含まれる元素であり、γは周期律表
Ib、IIb、lb、■aまたは■a族に含まれる元素
であり、δが0(酸素)であり、Xs’JsZはそれぞ
れX=0.1〜0.9 、y= 1.0〜4.0.1≦
2≦5を満たす数である) で示される組成を有し、ペロブスカイト型または擬似ペ
ロブスカイト型の結晶構造を有するものと見られる。
The fired body obtained by firing a combination of these elements has the general formula = (α+-x βx)ryδ2 (where α is an element included in group 1a of the periodic table, and β
is an element included in group ma of the periodic table, γ is an element included in group Ib, IIb, lb, ■a, or ■a of the periodic table, δ is 0 (oxygen), and Xs'JsZ is X=0.1~0.9, y=1.0~4.0.1≦, respectively
It is considered to have a perovskite-type or pseudo-perovskite-type crystal structure.

また、本発明の適用は、上記の複合酸化物系超電導材料
に限定されるものではなく、他の酸化物系超電導材料に
も適用できることはいうまでもなく 、Bi −Ca 
−3r−Cu系あるいはTI −Ca−Ba (Sr)
−Cu系の複合酸化物等を有利に適用できる超電導材料
として挙げることができる。
Furthermore, the application of the present invention is not limited to the above-mentioned composite oxide superconducting materials, and it goes without saying that it can be applied to other oxide superconducting materials as well.
-3r-Cu system or TI -Ca-Ba (Sr)
-Cu-based composite oxides and the like can be mentioned as superconducting materials that can be advantageously applied.

作用 本発明に従う線状超電導材の製造方法は、原料粉末を収
容する外筒部材の内部に、原料粉末と共にAu20.粉
末を収容することをその主要な特徴としている。
Function: The method for manufacturing a linear superconducting material according to the present invention includes placing Au20. Its main feature is to contain powder.

即ち、Au203は、160℃以上の温度領域で分解し
てOを放出することが知られている。従って、外筒部材
の内部にAu203が存在することにより、原料粉末の
焼結処理並びに熱処理を通じてAu20゜から放出され
た酸素が外筒部材内の原料粉末に供給される。
That is, it is known that Au203 decomposes and releases O in a temperature range of 160° C. or higher. Therefore, due to the presence of Au 203 inside the outer cylinder member, oxygen released from the Au 20° through the sintering process and heat treatment of the raw material powder is supplied to the raw material powder inside the outer cylinder member.

一方、上述のようにして原料粉末に対する酸素の供給が
確保されたならば、最早外筒部材が酸素を透過する必要
はなく、Ag以外の安価で加工性のよい金属、即ち、C
u、 A1等を自由に使用することができる。
On the other hand, if the supply of oxygen to the raw material powder is ensured as described above, it is no longer necessary for the outer cylinder member to permeate oxygen, and it is no longer necessary to use a metal other than Ag that is inexpensive and has good workability, that is, carbon.
u, A1, etc. can be used freely.

外筒部材に対するAuzOsの収容方法としては多くの
態様が考えられる。粉末として原料粉末に混入する方法
が最も容易であり、酸素供給剤としての効果が原料粉末
全体に均一に得られる。但し、この場合、酸素供給剤が
酸素を放出した後に生成する物質が超電導焼結体と反応
する恐れがある。
There are many possible ways to accommodate AuzOs in the outer cylinder member. The easiest method is to mix it into the raw material powder as a powder, and the effect as an oxygen supplying agent can be uniformly obtained throughout the raw material powder. However, in this case, there is a possibility that the substance generated after the oxygen supply agent releases oxygen may react with the superconducting sintered body.

そこで、原料粉末の充填に先立って、Au203を外筒
部材の内面に付着しておく方法が有効な方法のひとつと
して挙げられる。この場合、Au20.と原料粉末とが
反応したとしても原料粉末の表面近傍のみに限定される
ので、原料粉末の中心付近は有効な超電導焼結体を形成
する。尚、Au20aによって供給された酸素が放散す
ることを防止するために、外筒部材は原料粉末の充填後
に開口部を封止することが好ましい。
Therefore, one effective method is to attach Au203 to the inner surface of the outer cylinder member prior to filling the raw material powder. In this case, Au20. Even if the raw material powder and the raw material powder react, it is limited only to the vicinity of the surface of the raw material powder, so that an effective superconducting sintered body is formed near the center of the raw material powder. Note that in order to prevent the oxygen supplied by the Au 20a from dissipating, it is preferable that the opening of the outer cylinder member is sealed after being filled with the raw material powder.

こうして得られた原料粉末を充填した金属筒体は、金属
の長尺材に対して実施される一般的な塑性加工を行うこ
とによって所望の形状に加工することができる。最も一
般的な加工方法としては伸線加工が挙げられ、ダイス伸
線、ローラダイス伸線、圧延ロール伸線、スウェージン
グ、押出伸線等の既知の方法によって容易に線状に成形
することができる。
The metal cylindrical body filled with the raw material powder thus obtained can be processed into a desired shape by performing general plastic working performed on elongated metal materials. The most common processing method is wire drawing, and it can be easily formed into a wire by known methods such as die wire drawing, roller die wire drawing, rolling roll wire drawing, swaging, and extrusion wire drawing. can.

更に、前述のように、超電導焼結体は一般に密度が高い
ことがその特性に好ましく影響するので、前述の金属筒
体に対して、筒体としての容積が減少するように例えば
鍛造加工を行うことによって超電導線材としての特性向
上を図ることも好ましい。尚、鍛造処理は、例えばスウ
エイジング等を有利な方法として挙げることができる。
Furthermore, as mentioned above, since a superconducting sintered body generally has a high density, which favorably affects its properties, the aforementioned metal cylinder is subjected to, for example, forging processing to reduce the volume of the cylinder. It is also preferable to improve the properties of the superconducting wire by doing so. Note that for the forging process, for example, swaging can be cited as an advantageous method.

さて、上述のようにして外筒部材に充填された原料粉末
は、一般に850℃乃至1200℃の温度範囲に加熱し
て焼結することによって、有効な超電導特性を発揮する
複合酸化物焼結体となる。ここで、焼結温度は、原料粉
末に含まれる各元素の組合せに応じて適宜調整されるべ
きであり、−例を挙げると、[Ba−Y−Cu)系のも
のでは約1050℃、(Ba−La−Cu]系では95
0℃程度が好ましい。尚、焼結温度が上記範囲を越える
と、原料粉末に固溶相が生じ、超電導特性に有効な結晶
構造の形成が阻害される。一方、焼結温度が上記範囲よ
りも低い場合は、有効な焼結反応が不足し、やはり超電
導物質が形成されないか、あるいは形成されるのに極め
て長い時間が掛かる。
Now, the raw material powder filled in the outer cylindrical member as described above is generally heated to a temperature range of 850°C to 1200°C and sintered to form a composite oxide sintered body that exhibits effective superconducting properties. becomes. Here, the sintering temperature should be adjusted appropriately depending on the combination of each element contained in the raw material powder. 95 for Ba-La-Cu] system
The temperature is preferably about 0°C. Note that if the sintering temperature exceeds the above range, a solid solution phase will occur in the raw material powder, inhibiting the formation of a crystal structure effective for superconducting properties. On the other hand, if the sintering temperature is lower than the above range, there will be a lack of effective sintering reaction, and either the superconducting material will not be formed or it will take a very long time to form.

また、上記焼結後の冷却過程において、原料粉末に添加
した酸素供給剤の分解温度以上の温度では、冷却速度を
低く保ち、十分な焼結反応の促進を図ることが好ましい
。一方、酸素供給剤の分解温度以下では、もはや酸素供
給剤による酸素の供給が保証されないので、形成された
超電導物質の変質を防止するために急速に冷却すること
が好ましい。
Further, in the cooling process after sintering, it is preferable to keep the cooling rate low at a temperature higher than the decomposition temperature of the oxygen supply agent added to the raw material powder to sufficiently promote the sintering reaction. On the other hand, if the temperature is below the decomposition temperature of the oxygen supply agent, the supply of oxygen by the oxygen supply agent is no longer guaranteed, so it is preferable to cool rapidly in order to prevent the formed superconducting material from deteriorating in quality.

更に、焼結後に、改めて酸素供給剤の分解温度以上で熱
処理に付すことも有効であると考えられる。即ち、酸素
供給剤により酸素が十分に供給された状態で所定時間の
熱処理に付すことによって、より精密な酸素制御が可能
となる。尚、この場合も、熱処理後の冷却において、特
に酸素供給剤の分解温度以下の温度領域では冷却速度を
上げ、熱処理処理によって形成された超電導物質が変質
することを防止することが好ましい。
Furthermore, it is considered effective to subject the material to heat treatment again at a temperature higher than the decomposition temperature of the oxygen supply agent after sintering. That is, more precise oxygen control becomes possible by subjecting the material to heat treatment for a predetermined period of time in a state where oxygen is sufficiently supplied by the oxygen supplying agent. In this case as well, it is preferable to increase the cooling rate in the cooling after the heat treatment, especially in the temperature range below the decomposition temperature of the oxygen supply agent, to prevent the superconducting material formed by the heat treatment from deteriorating.

本発明の方法を最も有利に適用できる超電導材料として
は、ペロブスカイト系の結晶構造を有すると考えられて
いる複合酸化物焼結体超電導材料が挙げられ、特に[B
a−Y−Co3系、(Ba−La −CuE系、[5r
−La−Cu)系、(Ba−t(o−Co3系の複合酸
化物について優れた特性が確認されている。
Superconducting materials to which the method of the present invention can be most advantageously applied include composite oxide sintered superconducting materials that are thought to have a perovskite crystal structure, and in particular [B
a-Y-Co3 system, (Ba-La-CuE system, [5r
-La-Cu)-based and (Ba-t(o-Co3)-based composite oxides have been confirmed to have excellent properties.

これらの複合酸化物は、一般に下記の式:%式%) (但し、αは周期律表IIa族に含まれる元素であり、
βは周期律表11Ja族に含まれる元素であり、Tは周
期律表Ib、nb、mb、■aまたは■a族に含まれる
元素であり、δがO(酸素)であり、xsYsZはそれ
ぞれX=0.1〜0.9 、y= 1.0〜4.0.1
≦2≦5を満たす数である) で示される組成を有し、液体窒素温度以上という極めて
高い温度領域で超電導現象を示す。
These composite oxides generally have the following formula: % formula %) (However, α is an element included in Group IIa of the periodic table,
β is an element included in the Ja group of periodic table 11, T is an element included in the Ib, nb, mb, ■a, or ■a group of the periodic table, δ is O (oxygen), and xsYsZ are each X=0.1~0.9, y=1.0~4.0.1
≦2≦5) It exhibits a superconducting phenomenon in an extremely high temperature range above the temperature of liquid nitrogen.

このような焼結体超電導材料は、この複合酸化物を構成
する元素を含む化合物の混合粉末を焼結することによっ
て得られ、本発明の方法においても同様に各化合物粉末
の混合物を原料粉末として用いることができる。しかし
ながら、焼結体の組成を精密に制御するためには、予め
各化合物混合物を焼成して複合酸化物焼成体を得、これ
を粉砕した焼成体粉末を原料粉末とすることが好ましい
Such a sintered superconducting material is obtained by sintering a mixed powder of a compound containing the elements constituting this composite oxide, and in the method of the present invention, a mixture of each compound powder is similarly used as a raw material powder. Can be used. However, in order to precisely control the composition of the sintered body, it is preferable to sinter each compound mixture in advance to obtain a composite oxide sintered body, and use the sintered body powder obtained by pulverizing the sintered body as the raw material powder.

何故ならば、後者の方法では、焼成体が既に超電導複合
酸化物の組成を構成しているので、最終的に均質で高い
特性を示す超電導焼結体が得られる。
This is because, in the latter method, since the sintered body already has the composition of the superconducting composite oxide, a superconducting sintered body that is homogeneous and exhibits high characteristics is finally obtained.

尚、本発明の方法の適用は、上記した複合酸化物超電導
材料に限らず、その製造工程において酸素の存在を必要
とする他の焼結体線材の製造においても有利に使用でき
ることはいうまでもない。
It goes without saying that the method of the present invention can be advantageously applied not only to the composite oxide superconducting material described above, but also to the production of other sintered wire materials that require the presence of oxygen in the production process. do not have.

即ち、Bi −Ca−3r−Cu系あるいはTI −C
a−Ba (Sr)−Cu系の複合酸化物等を有利に適
用できる超電導材料として例示することができる。
That is, Bi-Ca-3r-Cu system or TI-C
An example of a superconducting material that can be advantageously applied is a-Ba (Sr)-Cu-based composite oxide.

以下に、実施例を挙げて本発明をより具体的に詳述する
が、以下に開示するものは本発明の一実施例に過ぎず、
本発明の技術的範囲を何ら限定するものではない。
The present invention will be described in more detail below with reference to examples, but what is disclosed below is only one example of the present invention.
This is not intended to limit the technical scope of the present invention in any way.

実施例 純度99.9%のBaCO3粉末と、純度99.9%の
Y2O3粉末と、純度99.99%のCuO粉末とを、
原子比Ba:Y:Cuが2:1:3となるように乳鉢で
摩砕すると共に混合し、この混合物を成形して1気圧の
酸素分圧下で940℃/15時間予備焼成し、得られた
焼成体を再び乳鉢で粉砕した。以下、〔成形→焼成→粉
砕〕の一連の処理を3回繰り返して、最終的に粒径10
μm以下の焼成体粉末を得、これを原料粉末とした。尚
、各焼成処理後の冷却時には、各回ともに焼成と同じ雰
囲気下で徐冷し、350℃で15時間保持した後に室温
まで冷却した。
Example BaCO3 powder with a purity of 99.9%, Y2O3 powder with a purity of 99.9%, and CuO powder with a purity of 99.99%,
The mixture was ground and mixed in a mortar so that the atomic ratio Ba:Y:Cu was 2:1:3, and the mixture was molded and pre-calcined at 940°C for 15 hours under an oxygen partial pressure of 1 atm. The fired body was ground again in a mortar. Below, the series of processes [molding → firing → crushing] is repeated three times, and the final particle size is 10.
A sintered body powder with a size of less than μm was obtained, and this was used as a raw material powder. It should be noted that during cooling after each firing process, the material was gradually cooled in the same atmosphere as the firing process, and after being held at 350° C. for 15 hours, it was cooled to room temperature.

一方、外筒部材として、肉厚2mm、外径10mmのC
u製のパイプを5本用意した。
On the other hand, as an outer cylinder member, C with a wall thickness of 2 mm and an outer diameter of 10 mm is used.
Five pipes made by U were prepared.

このCuパイプのうちの2本〔試料■、■〕には別途用
意したAu203粉末を約0.5mmの厚さで内面に付
着させた後原料粉末を充填した。
Two of these Cu pipes [Samples ① and ②] were filled with raw material powder after adhering separately prepared Au203 powder to the inner surface to a thickness of about 0.5 mm.

また、他の2本〔試料■、■〕には、原料粉末にAu2
C)+粉末を略同量混合したものを充填した。
In addition, for the other two [Samples ■ and ■], Au2 was added to the raw material powder.
A mixture of approximately the same amount of C) + powder was filled.

更に、残りの1本〔試料■〕には、そのまま原料粉末の
みを充填した。
Furthermore, the remaining one [Sample ■] was filled with only the raw material powder as it was.

こうして原料粉末を充填した各パイプの両端を封じ、外
径で6品となるまでスウエイジングにより伸線した。得
られた各線材を、940℃で10時間加熱し、徐冷して
降温した。この冷却の際に、試料■、■、■については
、更に190℃で−旦冷却を停止し、10時間保持した
後に室温まで積極的に冷却した。
Both ends of each pipe filled with the raw material powder were sealed, and the wire was drawn by swaging until the outer diameter reached six pieces. Each of the obtained wire rods was heated at 940° C. for 10 hours and slowly cooled to lower the temperature. During this cooling, for samples (1), (2), and (2), cooling was further stopped at 190° C., and after being maintained for 10 hours, they were actively cooled to room temperature.

得られた長さ約3Qcmの線材に、Auペーストにより
電極を付けた後、冷却して電気抵抗が完全に零となるこ
とをms忍した。続いて、ヒータ1こよって試料の温度
を徐々に上げ、電気抵抗が常態と等しくなる温度を測定
した。また、臨界電流密度も併せて測定した。
After attaching electrodes to the obtained wire with a length of about 3 Qcm using Au paste, it was cooled for ms until the electrical resistance became completely zero. Subsequently, the temperature of the sample was gradually raised using the heater 1, and the temperature at which the electrical resistance became equal to the normal temperature was measured. In addition, critical current density was also measured.

尚、測定は、タライオスタット中で4点端子法により行
い、温度測定はキャリブレーション済みのAu (Fe
)−Ag熱電対を用いて行った。測定結果を第1表に示
す。
The measurement was performed using the four-point terminal method in a taliostat, and the temperature was measured using a calibrated Au (Fe
)-Ag thermocouple was used. The measurement results are shown in Table 1.

第1表 発明の効果 以上詳述のように、本発胡の方法によれば、外筒部材内
に原料粉末を充填して焼結あるいは熱処理を行っても、
金属筒体に収容された酸素供給剤によって、焼結あるい
は熱処理時に十分な酸素が供給されるので、高い超電導
特性を有する焼結体を収容した超電導材を製造すること
ができる。
Table 1 Effects of the Invention As detailed above, according to the method of this invention, even if the raw material powder is filled into the outer cylinder member and sintered or heat treated,
Since sufficient oxygen is supplied by the oxygen supply agent housed in the metal cylinder during sintering or heat treatment, a superconducting material containing a sintered body having high superconducting properties can be manufactured.

また、こうして製造された超電導材は、超電導焼結体が
金属筒体中に保護されているので、雰囲気による劣化が
防止されると共に、十分な機械的強度を有しており、線
材として実用的に利用することができる。従って、高く
安定したTcを有する超電導材として、線材あるいは小
部品に広く利用することができる。
In addition, since the superconducting sintered body is protected in a metal cylinder, the superconducting material manufactured in this way is prevented from deteriorating due to the atmosphere, and has sufficient mechanical strength, making it suitable for practical use as a wire material. It can be used for. Therefore, it can be widely used for wire rods or small parts as a superconducting material having a high and stable Tc.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1つの閉断面を有し塑性加工に適した金属に
よって形成された外筒部材の内部に原料粉末を充填し、
該原料粉末を充填した外筒部材を塑性加工した後に加熱
して該原料粉末を焼結する工程を含む線状超電導材の製
造方法において、前記外筒部材の内部に、原料粉末と共
にAu_2O_3を収容した後、前記加熱処理を含む一
連の処理を行うことを特徴とする線状超電導材の製造方
法。
Filling the inside of an outer cylindrical member made of a metal suitable for plastic working and having at least one closed cross section with raw material powder,
A method for manufacturing a linear superconducting material, which includes a step of plastically working an outer cylindrical member filled with the raw material powder and then heating the raw material powder to sinter the raw material powder, in which Au_2O_3 is stored together with the raw material powder inside the outer cylindrical member. A method for manufacturing a linear superconducting material, characterized in that after that, a series of treatments including the heat treatment are performed.
JP63110003A 1988-05-06 1988-05-06 Manufacture of linear superconductive material Pending JPH01279510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110003A JPH01279510A (en) 1988-05-06 1988-05-06 Manufacture of linear superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110003A JPH01279510A (en) 1988-05-06 1988-05-06 Manufacture of linear superconductive material

Publications (1)

Publication Number Publication Date
JPH01279510A true JPH01279510A (en) 1989-11-09

Family

ID=14524636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110003A Pending JPH01279510A (en) 1988-05-06 1988-05-06 Manufacture of linear superconductive material

Country Status (1)

Country Link
JP (1) JPH01279510A (en)

Similar Documents

Publication Publication Date Title
US5252550A (en) Method of producing a composite oxide superconductive wire
JP2914331B2 (en) Method for producing composite oxide ceramic superconducting wire
JP2514690B2 (en) Superconducting wire manufacturing method
JPH01279510A (en) Manufacture of linear superconductive material
JPH01279509A (en) Manufacture of linear superconductive material
JPH01279508A (en) Manufacture of linear superconductive material
JPH01279512A (en) Manufacture of linear superconductive material
JPH01279515A (en) Manufacture of linear superconductive material
JP2557498B2 (en) Manufacturing method of linear superconducting material
JPH01279514A (en) Manufacture of linear superconductive material
JPH01279511A (en) Manufacture of linear superconductive material
JPH01279516A (en) Manufacture of linear superconductive material
JPH01279517A (en) Manufacture of linear superconductive material
JPH01279513A (en) Manufacture of linear superconductive material
US5474975A (en) Method for manufacturing an elongated member from a superconducting ceramic material
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
JPH01163922A (en) Manufacture of linear superconductive material
JPH01283713A (en) Manufacture of linear superconductive material
JPS63307622A (en) Manufacture of superconductive wire
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPS63274027A (en) Manufacture of superconductive material
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPS63274017A (en) Superconductive wire material