JPH01206518A - Manufacture of linear superconductive material - Google Patents

Manufacture of linear superconductive material

Info

Publication number
JPH01206518A
JPH01206518A JP63255479A JP25547988A JPH01206518A JP H01206518 A JPH01206518 A JP H01206518A JP 63255479 A JP63255479 A JP 63255479A JP 25547988 A JP25547988 A JP 25547988A JP H01206518 A JPH01206518 A JP H01206518A
Authority
JP
Japan
Prior art keywords
cylinder
superconducting
raw material
material powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255479A
Other languages
Japanese (ja)
Other versions
JP2557498B2 (en
Inventor
Susumu Yamamoto
進 山本
Nozomi Kawabe
望 河部
Tomoyuki Awazu
知之 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63255479A priority Critical patent/JP2557498B2/en
Publication of JPH01206518A publication Critical patent/JPH01206518A/en
Application granted granted Critical
Publication of JP2557498B2 publication Critical patent/JP2557498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Metal Extraction Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enable the production of a sintered body superconductive material having a high critical temperature as a wire rod by making a composite clad cylindrical body formed of an inner cylinder made of Ag and an outer cylinder made of a metal suitable to plastic working other than Ag as a cylindrical body, and removing said outer cylinder after plastic working, followed by sintering. CONSTITUTION:As a cylindrical body to be filled with starting powders, a composite clad cylindrical body formed of an inner cylinder made of Ag and an outer cylinder made of a metal suitable to plastic working and having a tensile strength higher than that of Ag is made, and the outer cylinder is removed after plastic working followed by sintering treatment. As materials of the outer cylinder, steel or iron and alloys thereof, Ni and alloys thereof, Al alloys, and others are used. The sintering temperature ranges from 860 to 970 deg.C. The atmosphere in the sintering contains oxygen of a partial pressure about 1atm, and after sintering, the sintered body is maintained at 300-400 deg.C for 5 hours or more in the same atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は長尺の焼結体よりなる超電導材の製造方法に関
するものである。より詳細には、特に複合酸化物系焼結
体材料を含む長尺超電導体の優れた超電導特性を保持し
たまま、長尺超電導体の機械的強度を向上させる新規な
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a superconducting material made of a long sintered body. More specifically, the present invention relates to a novel method for improving the mechanical strength of elongated superconductors while maintaining the excellent superconducting properties of elongated superconductors containing particularly complex oxide-based sintered materials.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種の応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR。
That is, its application fields include power fields such as MHD generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. .

π中間子治療、高エネルギー物理実験装置などの計測の
分野等、極めて多くの分野を挙げることができる。
There are many fields that can be mentioned, such as pi-meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb3G
eにおいても超電導臨界温度は23、2 Kと極めて低
く、これが長期間に亘って超電導臨界温度の限界とされ
ていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb3G is said to have the highest superconducting critical temperature Tc among conventional superconducting materials.
The superconducting critical temperature is also extremely low at 23.2 K, and this has long been considered the limit of the superconducting critical temperature.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、最近になって、IIa族元素あるいはlIa
族元素を含む複合酸化物焼結体が極めて高いTcで超電
導体となり得ることが報告され、非低温超電導体による
超電導技術の実用化が俄かに促進されようとしている。
However, recently, group IIa elements or lIa
It has been reported that a composite oxide sintered body containing group elements can become a superconductor at an extremely high Tc, and the practical application of superconducting technology using non-low temperature superconductors is suddenly being promoted.

これまでにも、複合酸化物系のセラミック材料が超電導
特性を示すということ自体は既に公知であり、例えば、
米国特許第3.932.315号には、Ba−Pb−B
1系の複合酸化物が超電導特性を示すということが記載
されており、さらに、特開昭60−173、885号公
報にはHa−Bi系の複合酸化物が超電導特性を示すと
いうことが記載されている。しかし、これまでに知られ
ていた上記の系の複合酸化物のTcはIOK以下である
ので超電導現象を起こさせるには液体ヘリウム(沸点4
.2K)を用いる以外なかった。
It has already been known that composite oxide-based ceramic materials exhibit superconducting properties; for example,
U.S. Pat. No. 3,932,315 describes Ba-Pb-B
It is stated that 1-based composite oxides exhibit superconducting properties, and furthermore, JP-A-60-173-885 describes that Ha-Bi-based composite oxides exhibit superconducting properties. has been done. However, since the Tc of the complex oxides of the above-mentioned systems known so far is below IOK, liquid helium (boiling point 4
.. 2K) was the only option.

ところが、1986年にベドノーツおよびミューラー等
によって従来の金属系超電導材料よりも遥かに高いT。
However, in 1986, Bednotes and Mueller et al. discovered that T was much higher than that of conventional metallic superconducting materials.

をもつ超電導酸化物が発見されるにいたって、高温超電
導の可能性が大きく開けてきた(Z、 Phys、86
4.1986.9月、p189−193 )。
With the discovery of superconducting oxides with
4. September 1986, p189-193).

ベドノーツおよびミューラー等によって発見された酸化
物超電導体は、(La、 Ba) 2 Cu Oaまた
は(La、 5r)2CuCLで、この酸化物超電導体
は、K2NiF4型酸化物と呼ばれるもので、これらの
物質は従来から知られていたペロブスカイト型超電導酸
化物と結晶構造が似ているが、そのT。は従来の超電導
材料に比べて飛躍的に高い約30にという値である。
The oxide superconductor discovered by Bednautz and Muller et al. is (La, Ba) 2 Cu Oa or (La, 5r) 2 CuCL, and this oxide superconductor is called a K2NiF4 type oxide, and these materials has a crystal structure similar to that of previously known perovskite-type superconducting oxides, but its T. The value is about 30, which is dramatically higher than that of conventional superconducting materials.

更に、1987年2月になって、チュー等によって90
にクラスの臨界温度を示すBa−Y系の複合酸化物が発
見されたことが報道され、非低温超電導体実現の可能性
が俄かに高まっている。
Furthermore, in February 1987, Chu et al.
It has been reported that a Ba-Y complex oxide has been discovered that exhibits a critical temperature in the class of 2015, and the possibility of realizing non-low temperature superconductors has suddenly increased.

しかしながら、これらの超電導材料は焼結体として得ら
れるので、−船釣に脆く取り扱いに注意が必要である。
However, since these superconducting materials are obtained as sintered bodies, they are brittle when used in boat fishing and must be handled with care.

即ち、機械的なストレスによって容易に亀裂あるいは折
損を生じ、特に線材化した場合には極めて脆弱で実際の
利用には大きな制約が伴う。そこで、超電導焼結体の原
料粉末を金属筒体等に充填して加工することによって、
十分な機械的強度を有する超電導線材を作製する方法が
各種提案されている。
That is, it easily cracks or breaks due to mechanical stress, and especially when made into a wire, it is extremely brittle, and its practical use is severely restricted. Therefore, by filling the raw material powder of superconducting sintered body into a metal cylinder etc. and processing it,
Various methods have been proposed for producing superconducting wires with sufficient mechanical strength.

この方法は、組成加工に適した金属材料で作製した例え
ば筒状の筒体に原料粉末を充填し、これを伸線あるいは
鍛造等の加工によって所望の形状に加工すると共に、内
部の原料粉末の密度を上げ、然る後に焼結して細いある
いは複雑な形状の焼結体製品を作製する方法である。こ
のような方法によって作製された超電導線材は、十分な
機械的強度を有するのみならず、超電導材料のクエンチ
時に金属筒体が電流のバイパス並びに放熱経路として機
能することから、超電導線材の作製等に極めて有効な技
術であると考えられる。
This method involves filling a cylindrical body made of a metal material suitable for compositional processing with raw material powder, processing it into a desired shape by wire drawing or forging, and removing the raw material powder inside. This is a method of increasing the density and then sintering to produce a sintered product with a thin or complex shape. Superconducting wires produced by this method not only have sufficient mechanical strength, but also the metal cylinder functions as a current bypass and heat dissipation path when the superconducting material is quenched, so it is suitable for the production of superconducting wires. It is considered to be an extremely effective technology.

発明が解決しようとする課題 このような事情に鑑み、本発明者らは強度や靭性低下の
原因となる有機系粘着剤を使用せずに実用的に十分使用
できる程度に長平方向の寸法を断面方向の寸法に対して
長く形成できる焼結セラミックス線の製造法として、先
に、1988年2月5日出願の米国特許出顎第152.
713号、1988年2月29日出願の米国特許出願第
161,480号、1988年4月18日出願の米国特
許出願第182.489号、1988年5月2日出願の
米国特許出願第189.366号および1988年8月
3日出願の米国特許出願第225.207号おいて、セ
ラミックス原料粉末を金属筒体、特にAgの筒体中に充
填し、該原料粉末を充填した金属筒体を金属加工した後
、焼結する方法を提案した。
Problems to be Solved by the Invention In view of the above circumstances, the present inventors have developed a cross-sectional dimension in the longitudinal direction that can be used practically without using an organic adhesive that causes a decrease in strength and toughness. As a method for manufacturing a sintered ceramic wire that can be formed long in the direction dimension, US Patent No. 152.
No. 713, U.S. Patent Application No. 161,480, filed February 29, 1988, U.S. Patent Application No. 182.489, filed April 18, 1988, and U.S. Patent Application No. 189, filed May 2, 1988. .366 and U.S. Patent Application No. 225.207 filed on August 3, 1988, a ceramic raw material powder is filled in a metal cylinder, particularly an Ag cylinder, and a metal cylinder filled with the raw material powder is disclosed. We proposed a method of sintering after metal processing.

ところが、上述のように金属筒体に原料粉末を充填して
焼結しても、焼結体が十分に高い超電導特性を示さない
、即ち、焼結体のみをバルク状に作製した場合の特性に
到達しえない場合が多い。
However, even if a metal cylinder is filled with raw material powder and sintered as described above, the sintered body does not exhibit sufficiently high superconducting properties. in many cases cannot be reached.

これは、筒体中に充填して焼結するために、焼結体に含
まれる酸素の制御が十分になされていないためであると
考えられる。
This is thought to be because the oxygen contained in the sintered body is not sufficiently controlled because it is filled into the cylinder and sintered.

即ち、高い超電導特性を発揮する超電導焼結体を作製す
るには、その製造過程において酸素の含有量を極めて精
密に制御することが要求される。
That is, in order to produce a superconducting sintered body that exhibits high superconducting properties, it is required to control the oxygen content extremely precisely during the manufacturing process.

既知のバルク状超電導焼結体材料の製造方法として有効
であることが判明している製造プロセスの一例を挙げる
と、 ■ 超電導焼結体の構成元素を含む化合物粉末(一般に
酸化物を用いる)を微細に粉砕して混合し、原料粉末と
する。
An example of a manufacturing process that has been found to be effective as a known method for manufacturing bulk superconducting sintered material is: ■ A process in which compound powder (generally using oxides) containing the constituent elements of superconducting sintered material is Finely grind and mix to obtain raw material powder.

■ 得られた原料粉末を緻密に成形する。■ The obtained raw material powder is compactly molded.

■ 1気圧程度の酸素分圧下で、所定の温度に加熱して
焼結る。
■ Sinter by heating to a predetermined temperature under an oxygen partial pressure of about 1 atm.

■ 同様の酸素分圧下で300℃から400℃程度まで
徐冷し、この温度を数時間から十数時間保持する。
(2) Slowly cool from 300°C to about 400°C under the same oxygen partial pressure, and maintain this temperature for several hours to more than ten hours.

■ 室温まで冷却する。■ Cool to room temperature.

これらのプロセスのうち、特に■のアニール処理は、得
られる焼結体の酸素含有量に極めて密接な関係があり、
材料に高い超電導特性を発揮させ、更にそれを安定させ
るためには不可欠な処理であるとみられている。ところ
が、前述のように金属性の筒体に原料粉末を充填して焼
結した場合には、焼結体を酸素雲囲気に曝しながらアニ
ールすることが困難であり、また焼結時にも雰囲気によ
る酸素の制御はできず、超電導線材の超電導特性を低下
させる原因となっていた。
Among these processes, the annealing treatment (ii) in particular has a very close relationship with the oxygen content of the obtained sintered body.
This treatment is considered essential for making the material exhibit high superconducting properties and further stabilizing it. However, when a metal cylinder is filled with raw material powder and sintered as described above, it is difficult to anneal the sintered body while exposing it to an oxygen cloud environment, and there are also problems due to the atmosphere during sintering. Oxygen could not be controlled, which caused a decline in the superconducting properties of the superconducting wire.

また、金属筒体の材料をAgとすることによって、上述
のような問題を解決することが提案されている。即ち、
Agはその酸化還元反応によって擬似的に酸素を透過す
る性質があり、これを金属筒体として用いることによっ
て焼結時あるいはアニール時の酸素制御を可能とするも
のである。しかしながら、Agは極めて高価な材料であ
り、線材の工業的な製造には向かないという問題が有る
。また、筒体に原料粉末を充填して焼結する場合、焼結
体の十分な密度を実現するために、原料粉末を充填した
筒体を塑性加工する必要がある。しかしながら、筒体材
料としてAgを用いた場合、塑性加工に耐えられ、さら
に塑性加工後の原料粉末の高密度を維持できる強度を筒
体に持たせようとすると、Ag製筒体の厚さを筒体断面
積の172から1/3としなければならず、高価なAg
を更に大量に使用しなければならない。
Furthermore, it has been proposed to solve the above-mentioned problems by using Ag as the material of the metal cylinder. That is,
Ag has the property of pseudo-permeating oxygen due to its redox reaction, and by using it as a metal cylinder, it is possible to control oxygen during sintering or annealing. However, Ag is an extremely expensive material and has the problem of not being suitable for industrial production of wire rods. Furthermore, when a cylindrical body is filled with raw material powder and sintered, it is necessary to plastically process the cylindrical body filled with the raw material powder in order to achieve sufficient density of the sintered body. However, when Ag is used as the cylindrical material, if we want the cylindrical body to have the strength to withstand plastic working and maintain the high density of the raw material powder after plastic working, the thickness of the Ag cylindrical body must be increased. The cross-sectional area of the cylinder must be 172 to 1/3, and expensive Ag
must be used in larger quantities.

そこで、本発明の目的は、上記従来波′術の問題点を解
決し、高い臨界温度を有する焼結体超電導材料を実用的
な線材として製造することのできる新規な方法を提供す
ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a new method that can solve the problems of the conventional wave technology and produce a sintered superconducting material having a high critical temperature as a practical wire. .

課題を解決するための手段 即ち、本発明に従い、少なくとも1つの閉断面を有する
金属の筒体の内部に原料粉末を充填し、該原料粉末を充
填した筒体を所望の形状に塑性加工し、次いで、該原料
粉末を充填した筒体を加熱することによって上記原料粉
末を焼結する工程を含む線状の超電導材を製造する方法
において、上記筒体が、Agにより形成された内筒と、
塑性加工に適し且つAgよりも引張強度の高い金属によ
り形成された外筒とを備えた複合クラッド筒体であり、
上記塑性加工後に前記外筒を除去した後に前記加熱処理
を実施して前記原料粉末を焼結することを特徴とする線
状超電導材の製造方法が提供される。
Means for solving the problem, that is, according to the present invention, filling a raw material powder inside a metal cylinder having at least one closed cross section, plastic working the cylinder filled with the raw material powder into a desired shape, Next, in the method for manufacturing a linear superconducting material, which includes the step of sintering the raw material powder by heating the cylinder filled with the raw material powder, the cylinder has an inner cylinder formed of Ag;
A composite clad cylindrical body comprising an outer cylinder made of a metal suitable for plastic working and having a higher tensile strength than Ag,
There is provided a method for manufacturing a linear superconducting material, characterized in that after the outer tube is removed after the plastic working, the heat treatment is performed to sinter the raw material powder.

作用 本発明による線状超電導材の製造方法は、閉断面を有す
る金属製筒体の内部に原料粉末を充填し、原料粉末を充
填した筒体を塑性加工し、次いで、加熱して該原料粉末
を焼結する各工程を含む線状超電導材の製造製造方法に
おいて、前記筒体をAgよりなる内筒と塑性加工に適し
且つAgよりも引張強度の高い金属よりなる外筒とによ
って構成された複合クラッド筒体とし、この複合クラッ
ド筒体を塑性加工し、次いで、上記外側の金属製外筒を
除去した後に原料粉末を充填した上記のAgO内筒を加
熱することによって原料粉末を焼結することを特徴とし
ている。
Function The method for producing a linear superconducting material according to the present invention involves filling a metal cylinder having a closed cross section with raw material powder, plastically working the cylinder filled with the raw material powder, and then heating the raw material powder. In the manufacturing method of a linear superconducting material including each step of sintering the cylindrical body, the cylindrical body is composed of an inner cylinder made of Ag and an outer cylinder made of a metal suitable for plastic working and having a higher tensile strength than Ag. A composite clad cylinder is formed, this composite clad cylinder is plastically worked, and the raw material powder is sintered by heating the AgO inner cylinder filled with the raw material powder after removing the outer metal outer cylinder. It is characterized by

本発明に従う上記線状超電導材の製造方法は、原料粉末
を充填する筒体をAg製の内筒と、Ag以外の塑性加工
に適した金属よりなる外筒とで構成された複合クラッド
筒体とし、塑性加工後に上記外筒を除去して焼結処理に
付すことをその主要な特徴としている。
In the method for manufacturing a linear superconducting material according to the present invention, the cylinder to be filled with raw material powder is a composite clad cylinder composed of an inner cylinder made of Ag and an outer cylinder made of a metal other than Ag suitable for plastic working. Its main feature is that the outer cylinder is removed after plastic working and subjected to sintering treatment.

即ち、塑性加工時には十分な強度を有する外筒が原料粉
末並びにAgeI&の内筒を支持し、焼結時には、Ag
が酸素を透過すること並びにAgが原料粉末を換言しな
いことを有効に利用して原料粉末の酸素制御を有効に行
うことによって、優れた特性を有する線状超電導材を製
造することができる。
That is, during plastic working, the outer cylinder with sufficient strength supports the raw material powder and the inner cylinder of AgeI&, and during sintering, the outer cylinder with sufficient strength supports the Ag I &
By effectively controlling the oxygen in the raw material powder by effectively utilizing the fact that Ag permeates oxygen and that Ag does not change the raw material powder, a linear superconducting material having excellent properties can be manufactured.

外筒の材料としては、塑性加工に適した材料であってA
gよりも引張強度の高い金属であれば従来公知のものを
いずれも適用できるが、特に産業上の利用を考慮すると
、鋼ま゛たは鉄およびその合金、Niおよびその合金、
A1合金等が有利に使用できる。
The material for the outer cylinder is A, which is suitable for plastic working.
Any conventionally known metal can be used as long as it has a tensile strength higher than that of g, but especially considering industrial use, steel or iron and its alloys, Ni and its alloys,
A1 alloy etc. can be used advantageously.

また、このような外筒を用いた場合、塑性加工後の外筒
の除去は、塩酸、硫酸または硝酸等を用いて酸洗処理を
行うことが容易かつ有利である。更−に、長尺の線材等
の場合は、前記原料粉末を充填した筒体をコイル状にし
て後処理に付すことが好ましい。
Further, when such an outer cylinder is used, it is easy and advantageous to remove the outer cylinder after plastic working by performing pickling treatment using hydrochloric acid, sulfuric acid, nitric acid, or the like. Furthermore, in the case of a long wire, etc., it is preferable that the cylindrical body filled with the raw material powder be coiled and subjected to post-treatment.

尚、内筒の形状は、複数の平行な孔を有するものとする
こともできる。この場合、完成後の超電導材において、
Ag製の内筒がクエンチ時の電流バイパス並びに放熱路
として、より高い性能を発揮するので有利である。
Note that the shape of the inner cylinder can also be such that it has a plurality of parallel holes. In this case, in the superconducting material after completion,
The Ag inner cylinder is advantageous because it exhibits higher performance as a current bypass during quenching and as a heat radiation path.

また、本発明者等の知見によれば、焼結体の超電導材料
の場合、焼結体の密度がその材料の超電導臨界電流に密
接に関係しており、筒体に原料粉末を充填する際にも、
原料粉末を加圧して充填することか好ましい。
Furthermore, according to the findings of the present inventors, in the case of a sintered superconducting material, the density of the sintered compact is closely related to the superconducting critical current of the material, and when filling the cylinder with raw material powder, Also,
It is preferable to pressurize and fill the raw material powder.

本発明の方法における°゛塑性加工゛′とは、従来金属
材料に対して実施されていた圧延加工、伸線加工、鍛造
加工等をいずれも含み、その実施手段としては、この伸
線加工の場合には、ダイス、ローラタイス、圧延ローノ
ペスウエージングユニット、押出機を用いることができ
、また、鍛造加工の場合にはスウェイジング、圧延ロー
ル等を用いることができる。
``Plastic working'' in the method of the present invention includes rolling, wire drawing, forging, etc. that have been conventionally performed on metal materials, and the means for carrying out such processing include this wire drawing. In the case of forging, a die, a roller tie, a rolling roll swaging unit, an extruder can be used, and in the case of forging, a swaging, a rolling roll, etc. can be used.

本発明の方法を最も有利に適用できる超電導材料として
は、ペロブスカイト系の結晶構造を有する複合酸化物焼
結体超電導材料が挙げられ、特に(Ba−Y−Cu〕系
、(Ba −La −Cu E系、[5r−La−Cu
l系の複合酸化物について優れた特性が確S忍されてい
る。また、本発明者等は、〔Ba−Y −Howl系に
ついても優れた特性を確認している。これらの複合酸化
物は、一般に下記の式: %式%) 〔但し、元素αは、周期律表Ila族に含まれる元素で
あり、 元素βは、周期律表11a族に含まれる元素であり、 元素Tは、周期律表1b、nb、Ib。
Superconducting materials to which the method of the present invention can be most advantageously applied include complex oxide sintered superconducting materials having a perovskite crystal structure, particularly (Ba-Y-Cu), (Ba-La-Cu) E series, [5r-La-Cu
The excellent properties of l-based composite oxides are well established. Furthermore, the present inventors have also confirmed the excellent properties of the [Ba-Y-Howl system. These composite oxides generally have the following formula: % formula %) [However, element α is an element included in group Ila of the periodic table, and element β is an element included in group 11a of the periodic table. , Element T is 1b, nb, Ib of the periodic table.

rVaまたは■a族に含まれる元素であり、x、y、z
は、それぞれx = 0.1〜0.9、y=1.0〜4
.0、 l≦2≦5 を満たす数である) で示される組成を有し、液体窒素温度以上という極めて
高い温度領域で超電導現象を示す。
rVa or ■An element included in the a group, x, y, z
are x = 0.1 to 0.9, y = 1.0 to 4, respectively.
.. 0, l≦2≦5), and exhibits a superconducting phenomenon in an extremely high temperature range above the liquid nitrogen temperature.

更に具体的には、上記元素αがBaまたはSrであり、
上記元素βがY、 La、 Gd5Dy、 Ho5Er
、 Tm。
More specifically, the element α is Ba or Sr,
The above element β is Y, La, Gd5Dy, Ho5Er
, Tm.

YbおよびLuよりなる群の中から選択された少なくと
も一つの元素であり、上記元素rがCuである複合酸化
物層が挙げられる。
Examples include a composite oxide layer in which at least one element is selected from the group consisting of Yb and Lu, and the element r is Cu.

上記元素αとβの原子比は上記αおよびβの種類に応じ
て適宜選択できる。例えば、Ba−Y、Ba−1a、 
3r−1a系の場合にはそれぞれ以下の比を満足するこ
とが好ましい。
The atomic ratio of the elements α and β can be appropriately selected depending on the types of the elements α and β. For example, Ba-Y, Ba-1a,
In the case of the 3r-1a system, it is preferable that the following ratios be satisfied.

Y/ (Y+Ba) :       0.06〜0.
94、好ましくは0.1〜0.4 Ba/ (La+Ba) :       0.04〜
0.96、好ましくは0.08〜0.45 Sr/ (La+Sr) :       0,03〜
0.95、好ましくは0.05〜0.1 上記の元素の組合せの中で、特に、本発明によって形成
可能な複合酸化物層としては、例えば、以下に例示した
Y−Ba−Cu−0系、La−Ba−Cu−0系および
La−3r −Cu−0系の複合酸化物層が挙げられる
: YbBa2Cu30t−x、  tlo+Ba2cus
c)+−x。
Y/(Y+Ba): 0.06~0.
94, preferably 0.1 to 0.4 Ba/(La+Ba): 0.04 to
0.96, preferably 0.08~0.45 Sr/(La+Sr): 0.03~
0.95, preferably 0.05 to 0.1 Among the above combinations of elements, the composite oxide layer that can be formed according to the present invention is, for example, Y-Ba-Cu-0 as exemplified below. Composite oxide layers of La-Ba-Cu-0 system, La-Ba-Cu-0 system, and La-3r-Cu-0 system include: YbBa2Cu30t-x, tlo+Ba2cus
c) +-x.

LJBa2Cua O?−XN  Sm1Ba2Cu3
07−XNNd1Ba2Cu3 o、−、、Gd1Ba
2Cua 0t−x、EulBa2Cu+0v−xs 
 Br1Ba2Cu+0t−x、DylBa2Cu30
t−x、  TJBa2Cu*0t−x。
LJBa2Cua O? -XN Sm1Ba2Cu3
07-XNNd1Ba2Cu3 o,-,,Gd1Ba
2Cua 0t-x, EulBa2Cu+0v-xs
Br1Ba2Cu+0t-x, DylBa2Cu30
t-x, TJBa2Cu*0t-x.

Yb1Ba2Cu30フ−X      La+Ba2
Cu307−XN(La、 Sr) 2Cu O4−X 〔但し、XはQ<x<lを満たす数である〕上記酸化物
はペロブスカイト型酸化物または擬似ペロブスカイト型
酸化物であることが好ましい。
Yb1Ba2Cu30fu-X La+Ba2
Cu307-XN(La, Sr) 2Cu O4-X [However, X is a number satisfying Q<x<l] The above oxide is preferably a perovskite-type oxide or a pseudo-perovskite-type oxide.

尚、擬似ペロブスカイトとはペロブスカイトに類似した
構造をいい、例えば酸素欠損ペロブスカイト型、オルソ
ロンピック型等を含むものである。
Incidentally, pseudo-perovskite refers to a structure similar to perovskite, and includes, for example, an oxygen-deficient perovskite type, an orthorhombic type, and the like.

このような焼結体超電導材料は、この複合酸化物を構成
する元素の化合物の粉末を焼結することによって得られ
、本発明の方法においても同様に各化合物粉末の混合物
を原料粉末として用いることができる。しかしながら、
焼結体の組成を精密に制御するためには、予め各化合物
混合物を焼成して複合酸化物焼成体を得、これを粉砕し
た焼成体粉末を原料粉末とすることが好ましい。何故な
らば、後者の方法では、焼成体が既に超電導複合酸化物
の組成を構成しているので、最終的に均質で高い特性を
示す超電導焼結体が得られる。
Such a sintered superconducting material can be obtained by sintering powders of compounds of elements constituting this composite oxide, and in the method of the present invention, a mixture of powders of each compound can be used as the raw material powder as well. Can be done. however,
In order to precisely control the composition of the sintered body, it is preferable to sinter each compound mixture in advance to obtain a composite oxide sintered body, and use the sintered body powder obtained by pulverizing the sintered body as the raw material powder. This is because, in the latter method, since the sintered body already has the composition of the superconducting composite oxide, a superconducting sintered body that is homogeneous and exhibits high characteristics is finally obtained.

焼結の際の加熱温度は、860℃から970℃の温度範
囲であることが好ましい。焼結温度がこの範囲を越えた
場合は、焼結体中に固溶相が生じ、超電導特性に好まし
い結晶構造が形成されない。また、加熱温度が上記範囲
に達しない場合は、十分な焼結反応が起こらず、やはり
一電導物質が形成されない。
The heating temperature during sintering is preferably in the temperature range of 860°C to 970°C. If the sintering temperature exceeds this range, a solid solution phase will occur in the sintered body, and a crystal structure favorable for superconducting properties will not be formed. Furthermore, if the heating temperature does not reach the above range, a sufficient sintering reaction will not occur and a single conductive material will not be formed.

また、本発明者等の知見によれば、優れた特性を発揮す
る複合酸化物□系超電導材料を製造するには、特にその
酸素含有量の制御が重要であり、これは、焼結時の雲囲
気が1気圧程度の分圧の酸素を含むことと、焼結後に焼
結体を同じ雰囲気中で300から400℃で5時間以上
保持することが有効であることを見出している。前述の
ように、本発明に従う方法によって作製する超電導線材
の筒体を形成するAgは酸素を透過する性質があるので
、上述のような焼結体に対する処理には特に有効である
Additionally, according to the findings of the present inventors, in order to produce composite oxide □-based superconducting materials that exhibit excellent properties, it is particularly important to control the oxygen content. It has been found that it is effective for the cloud atmosphere to contain oxygen at a partial pressure of about 1 atm, and to hold the sintered body in the same atmosphere at 300 to 400° C. for 5 hours or more after sintering. As mentioned above, Ag forming the cylinder of the superconducting wire manufactured by the method according to the present invention has a property of permeating oxygen, and therefore is particularly effective in the treatment of the above-mentioned sintered body.

本発明において使用可能な上記以外の複合酸化物系超電
導材料としては、一般式: %式% mは、6≦m≦10を満たす数であり、nは、4≦n≦
8を満たす数であり、 p = (6+2m+2n) / 2であり、qは、0
<q<1を満たす数であり、 rは、−2≦r≦2を満たす数を表す〕で表される組成
を主とした複合酸化物超電導体層が挙げられる。
Composite oxide superconducting materials other than the above that can be used in the present invention include the following general formula: % formula % m is a number satisfying 6≦m≦10, and n is 4≦n≦
It is a number that satisfies 8, p = (6 + 2m + 2n) / 2, and q is 0
A composite oxide superconductor layer mainly having a composition represented by <q<1, and r represents a number satisfying -2≦r≦2] can be mentioned.

さらに具体的には、下記の系が挙げられる二B125r
2Ca2Cu30+o−oまたはB14Sr4Ca4C
usOzno−x)T12Ba2Ca2Cu30 + 
O−1+またはT12Ba4Ca4Cus O2(I 
0−)l)〔但し、Xは一2≦X≦2を満たす数である
〕以下に実施例を挙げて本発明をより具体的に詳述する
が、以下に開示するものは本発明の一実施例に過ぎず、
本発明の技術的範囲を何ら限定するものではない。
More specifically, the following systems may be mentioned:
2Ca2Cu30+o-o or B14Sr4Ca4C
usOzno-x)T12Ba2Ca2Cu30 +
O-1+ or T12Ba4Ca4Cus O2(I
0-)l) [However, X is a number satisfying 12≦X≦2] The present invention will be described in more detail with reference to Examples below. This is just one example;
This is not intended to limit the technical scope of the present invention in any way.

実施例 純度99.9%のBa○粉末と、純度99.9%のY2
O3粉末と、純度99.99%のCuO粉末とをY:B
a:Cuの原子比が1:2:3となるように混合して、
乳鉢で摩砕し粉末混合物を得た。この混合物を成形し、
1気圧の酸素分圧下で940℃/15時間予備焼成し、
得られた焼成体を再び乳鉢で粉砕した。以下、〔成形→
焼成→粉砕〕の一連の処理を同じ条件で3回繰り返し、
最終的に粒径10μm以下の焼成体粉末を得てこれを原
料粉末とした。なお、各焼成処理後の冷却時には、各回
ともに焼成と同じ雰囲気下で徐冷し、350℃で10時
間保持した後に室温まで冷却した。
Example Ba○ powder with a purity of 99.9% and Y2 with a purity of 99.9%
O3 powder and CuO powder with a purity of 99.99% are mixed in Y:B
a: Mix so that the atomic ratio of Cu is 1:2:3,
It was ground in a mortar to obtain a powder mixture. Shape this mixture
Pre-calcined at 940°C for 15 hours under an oxygen partial pressure of 1 atm,
The obtained fired body was ground again in a mortar. Below, [Molding→
Repeat the series of firing → crushing three times under the same conditions,
Finally, a fired powder with a particle size of 10 μm or less was obtained and used as a raw material powder. It should be noted that during cooling after each firing process, slow cooling was performed in the same atmosphere as the firing process, and after being held at 350°C for 10 hours, it was cooled to room temperature.

一方、筒体として、肉厚1.Omm、外径6IT1mの
筒体を用意した。この筒体は、肉厚9.2mmのAg製
内筒と肉厚Q、8m+y+の0.4%炭素鋼の外筒とか
ら形成された複合クラッド材である。
On the other hand, as a cylinder, the wall thickness is 1. A cylindrical body with an outer diameter of 6 IT and 1 m was prepared. This cylinder is a composite clad material formed from an inner cylinder made of Ag with a wall thickness of 9.2 mm and an outer cylinder made of 0.4% carbon steel with a wall thickness Q of 8 m+y+.

また、肉厚1.0++on、外径5 m+ncDAg、
 Cu、  0.4%炭素鋼のパイプを、それぞれ比較
試料■、■、■とじて用意し、後述する工程で線状超電
導材を作成した。
Also, wall thickness 1.0++on, outer diameter 5m+ncDAg,
Pipes made of Cu and 0.4% carbon steel were prepared as comparison samples ①, ②, and ②, respectively, and linear superconducting materials were created in the steps described below.

各筒体に前述の原料粉末を充填し、パイプの両端を封じ
た後に、外径が各々3.2mmとなる互でダイスを用い
て伸線した。
After filling each cylinder with the raw material powder described above and sealing both ends of the pipe, wire was drawn using a die so that each pipe had an outer diameter of 3.2 mm.

本発明に従って、複合クラッド材を用いた試料について
は、伸線後に塩酸を用いた酸洗によって外筒を除去した
。こうして得られた各線材を、940℃で10時間加熱
し徐冷した。尚、冷却に際して、各試料の降温を350
℃で一旦冷却を停止し、10時間この温度を保持した後
に室温まで積極的に冷却した。
According to the present invention, for samples using a composite clad material, the outer cylinder was removed by pickling with hydrochloric acid after wire drawing. Each wire rod thus obtained was heated at 940° C. for 10 hours and slowly cooled. In addition, when cooling, the temperature of each sample was reduced to 350°C.
Cooling was once stopped at 0.degree. C., and after maintaining this temperature for 10 hours, it was actively cooled to room temperature.

得られた線材から、各々長さ3cmの試料を切り取り、
この試料からAg製筒体を研磨により除去した後に、芯
材の両端にAuペーストにより電極を付け、液体窒素に
よって冷却して電気抵抗が完全に零となることを確認し
た。続いて、ヒータによって試料の温度を徐々に上げ、
電気抵抗が常態と等しくなる温度Tcを測定した。
From the obtained wire rods, samples each having a length of 3 cm were cut.
After removing the Ag cylinder from this sample by polishing, electrodes were attached to both ends of the core material using Au paste, and it was confirmed that the electrical resistance became completely zero by cooling with liquid nitrogen. Next, the temperature of the sample is gradually raised using a heater.
The temperature Tc at which the electrical resistance becomes equal to the normal state was measured.

尚、測定は、クライオスタット中で直流4点プローブ法
で行い、温度測定はキャリブレーション済みの111u
 (Fe)−Ag熱電対を用いて行った。測定結果を第
1表に示す。
The measurement was performed using the DC 4-point probe method in a cryostat, and the temperature was measured using a calibrated 111u probe.
This was carried out using a (Fe)-Ag thermocouple. The measurement results are shown in Table 1.

また更に、焼結前の試料と抵抗測定後の試料とについて
それぞれ焼結体の密度を測定し、塑性加工の効果を調べ
た。密度の測定は、グイフロン含浸比重測定法によって
得た焼結体の体積で、試料の重量を割ることによって求
めた。
Furthermore, the densities of the sintered bodies were measured for the samples before sintering and the samples after resistance measurement, and the effects of plastic working were investigated. The density was determined by dividing the weight of the sample by the volume of the sintered body obtained by Guiflon impregnation specific gravity measurement method.

第1表 発明の効果 以上詳述のように、本発明の方法によれば、強度に優れ
た外筒と、酸素透過性を有するAg製の内筒よりなる筒
体を使用することによって、有効な塑性加工と精密な酸
素制御を両立させ、優れた特性を発揮する線状超電導材
を製造することができる。
Table 1 Effects of the Invention As detailed above, according to the method of the present invention, effective It is possible to manufacture linear superconducting materials that exhibit excellent properties by achieving both precise plastic working and precise oxygen control.

また、こうして製造された超電導材は、超電導焼結体が
Ag製筒体中に保護されているので、雰囲気による劣化
が防止されると共に、十分な機械的強度を有しており、
線材として実用的に利用することができる。従って、高
(安定したTcを有する超電導材として、線材あるいは
小部品に広く利用することができる。
In addition, the superconducting material manufactured in this way has a superconducting sintered body protected in an Ag cylinder, so it is prevented from deteriorating due to the atmosphere and has sufficient mechanical strength.
It can be practically used as a wire rod. Therefore, it can be widely used for wire rods or small parts as a superconducting material having a high (stable Tc).

更に、高価なAgの使用が内筒に限られるので、製品の
コストも低減することができる。
Furthermore, since the use of expensive Ag is limited to the inner cylinder, the cost of the product can also be reduced.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】 少なくとも1つの閉断面を有する金属の筒体の内部に原
料粉末を充填し、該原料粉末を充填した筒体を所望の形
状に塑性加工し、次いで、該原料粉末を充填した筒体を
加熱することによって上記原料粉末を焼結する工程を含
む線状の超電導材を製造する方法において、 上記筒体が、Agにより形成された内筒と、塑性加工に
適し且つAgよりも引張強度の高い金属により形成され
た外筒とを備えた複合クラッド筒体であり、上記塑性加
工後に前記外筒を除去した後に前記加熱処理を実施して
前記原料粉末を焼結することを特徴とする線状超電導材
の製造方法。
[Claims] A raw material powder is filled inside a metal cylinder having at least one closed cross section, the cylinder filled with the raw material powder is plastically worked into a desired shape, and then the raw material powder is filled. In the method for manufacturing a linear superconducting material, the method includes the step of sintering the raw material powder by heating the cylinder, the cylinder having an inner cylinder formed of Ag, and an inner cylinder suitable for plastic working and made of Ag. The composite clad cylinder is also equipped with an outer cylinder formed of a metal with high tensile strength, and after the outer cylinder is removed after the plastic working, the heat treatment is performed to sinter the raw material powder. A manufacturing method for characteristic linear superconducting materials.
JP63255479A 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material Expired - Lifetime JP2557498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255479A JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-254965 1987-10-09
JP25496587 1987-10-09
JP63255479A JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Publications (2)

Publication Number Publication Date
JPH01206518A true JPH01206518A (en) 1989-08-18
JP2557498B2 JP2557498B2 (en) 1996-11-27

Family

ID=26541947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255479A Expired - Lifetime JP2557498B2 (en) 1987-10-09 1988-10-11 Manufacturing method of linear superconducting material

Country Status (1)

Country Link
JP (1) JP2557498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357110A (en) * 1989-07-26 1991-03-12 Furukawa Electric Co Ltd:The Manufacture of oxide superconductor
JPH04292816A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of bismuth-based oxide superconductive wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357110A (en) * 1989-07-26 1991-03-12 Furukawa Electric Co Ltd:The Manufacture of oxide superconductor
JPH04292816A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of bismuth-based oxide superconductive wire

Also Published As

Publication number Publication date
JP2557498B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
KR970004554B1 (en) Apparatus and systems comprising a superconductive body and method for producing such body
JP2754564B2 (en) Method for producing superconducting composite
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
CN101728028B (en) Method for preparing multicore TiC doped with MgB2 superconductive material by in situ method
US5470821A (en) Superconductors having continuous ceramic and elemental metal matrices
JP4500901B2 (en) Composite sheathed magnesium diboride superconducting wire and its manufacturing method
JPH03261619A (en) Superconducting material of oxide, production method thereof and application thereof
JPH01206518A (en) Manufacture of linear superconductive material
JP2514690B2 (en) Superconducting wire manufacturing method
WO1990008389A1 (en) Method of producing ceramic-type superconductive wire
JPH01163922A (en) Manufacture of linear superconductive material
JPH01279508A (en) Manufacture of linear superconductive material
JP2003092032A (en) Superconductive wire and its manufacturing method
JPH01283713A (en) Manufacture of linear superconductive material
KR100392511B1 (en) Fabrication method of MgB2 superconducting wire
JPH01279509A (en) Manufacture of linear superconductive material
JPH01279510A (en) Manufacture of linear superconductive material
JP2519742B2 (en) Manufacturing method of superconducting material
JPS63307622A (en) Manufacture of superconductive wire
JPH01279512A (en) Manufacture of linear superconductive material
JPH01279517A (en) Manufacture of linear superconductive material
JPH01279515A (en) Manufacture of linear superconductive material
JPH01279514A (en) Manufacture of linear superconductive material