JP2685910B2 - Manufacturing method of oxide superconducting conductor - Google Patents

Manufacturing method of oxide superconducting conductor

Info

Publication number
JP2685910B2
JP2685910B2 JP1191342A JP19134289A JP2685910B2 JP 2685910 B2 JP2685910 B2 JP 2685910B2 JP 1191342 A JP1191342 A JP 1191342A JP 19134289 A JP19134289 A JP 19134289A JP 2685910 B2 JP2685910 B2 JP 2685910B2
Authority
JP
Japan
Prior art keywords
sheath
rolling
metal
metal tube
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1191342A
Other languages
Japanese (ja)
Other versions
JPH0357110A (en
Inventor
直樹 宇野
清 根本
祐行 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP1191342A priority Critical patent/JP2685910B2/en
Publication of JPH0357110A publication Critical patent/JPH0357110A/en
Application granted granted Critical
Publication of JP2685910B2 publication Critical patent/JP2685910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導導体の製造方法に関するもので
あり、特にテープ状の酸化物超電導導体の製造方法に関
するものである。
The present invention relates to a method for producing an oxide superconducting conductor, and more particularly to a method for producing a tape-shaped oxide superconducting conductor.

[従来の技術] シース用金属管内に酸化物超電導体の粉末を充填し、
これを縮径加工して線材化する方法は、容易に線材化し
得る方法として一般に公知である。
[Prior Art] Filling a sheath metal tube with powder of oxide superconductor,
A method of reducing the diameter of this to form a wire rod is generally known as a method of easily forming a wire rod.

特に最近では、線材の臨界電流密度を向上させるため
に、円筒形状よりも、テープ状に薄板圧延するほうが優
れているので、最終加工はほとんど圧延により行われて
いる。
Particularly in recent years, in order to improve the critical current density of the wire rod, it is better to roll the thin plate into a tape shape than to the cylindrical shape, so that the final processing is mostly performed by rolling.

前記テープ状線材の特徴は、一方向に圧延することに
より金属シース内部の超電導体の結晶の長軸(C軸)が
圧延方向と同一方向になるように配向されることであ
る。そのため各結晶粒間の結合面積が無配向材よりも増
大し、所謂弱結合が改善される。このため、界面相の厚
さを薄くすることができる。
A feature of the tape-shaped wire rod is that by rolling in one direction, the major axis (C axis) of the crystal of the superconductor inside the metal sheath is oriented in the same direction as the rolling direction. Therefore, the bonding area between each crystal grain is increased as compared with the non-oriented material, and so-called weak bonding is improved. Therefore, the thickness of the interfacial phase can be reduced.

一方、酸化物超電導体を線材加工後、焼結熱処理を行
うにあたっては酸素を供給することが必要であり、シー
ス用金属としては、酸素透過性のある銀および銀合金が
一般に用いられている。
On the other hand, it is necessary to supply oxygen in performing the sintering heat treatment after processing the oxide superconductor into a wire, and as the metal for the sheath, silver and silver alloy having oxygen permeability are generally used.

また、酸化物超電導体、特に希土類を含む組成のもの
では、焼結から冷却過程に於いて、酸素の吸収を伴う2
次の相変態を有すること、また希土類を含まない組成で
も、焼結と、以後の熱処理過程で酸素の供給を必要とす
ることから、酸素を透過しない金属、もしくは自身が酸
化することにより他を還元する金属は用いられていな
い。
In addition, oxide superconductors, especially those having a composition containing rare earths, are accompanied by absorption of oxygen during the sintering process to the cooling process.
Even if the composition has the following phase transformation, and even if the composition does not contain a rare earth, it is necessary to supply oxygen during the sintering and the subsequent heat treatment process. No reducing metal was used.

[発明が解決しようとする課題〕 しかしながら、シース用金属として用いる銀および銀
合金は変形抵抗が小さく、塑性加工性にすぐれている一
方で、内部の酸化物超電導体との機械的強度の差が大き
いため、一対又は複数段の圧延ロール間で圧延する場合
に、テープの厚さが薄くなるにつれて長さ方向に均一な
加工ができなくなり、長さ方向で内部の酸化物超電導体
層の断面積の不均一化、所謂ソーセージング現象が生じ
た。
[Problems to be Solved by the Invention] However, silver and silver alloys used as the metal for the sheath have small deformation resistance and excellent plastic workability, but have a difference in mechanical strength from the oxide superconductor inside. Since it is large, when it is rolled between a pair of or a plurality of rolling rolls, it becomes impossible to perform uniform processing in the length direction as the thickness of the tape becomes thinner, and the cross-sectional area of the oxide superconductor layer in the length direction becomes longer. Non-uniformity, that is, a so-called sausaging phenomenon occurred.

本発明は、銀、銀合金などの変形抵抗の小さい金属で
酸化物超電導体を被覆した線状体に圧延加工をする際
に、シース用金属管内部の酸化物超電導セラミックス部
分の断面積が長さ方向で不均一になるのを改善すること
を目的とする。
According to the present invention, the cross-sectional area of the oxide superconducting ceramics portion inside the metal tube for the sheath is long when the linear body coated with the oxide superconductor with a metal having a small deformation resistance such as silver or a silver alloy is rolled. The purpose is to improve the unevenness in the depth direction.

[課題を解決するための手段] 本発明に係る酸化物超電導導体の製造方法では、酸化
物超電導体をシース用金属管に充填した状態で、該酸化
物超電導体をシース用金属管とともに圧延加工を施して
線材を作製した後、該線材を加熱処理する酸化物超電導
体の製造方法において、 前記酸化物超伝導体を充填したシース用金属管を予め
圧延する予備圧延工程と、 この予備圧延行程を経たシース用金属管を対向する圧下
方向の両側から前記シース用金属管よりも変形抵抗の大
きい一対の金属条で挟み、前記一対の金属条を介して前
記シース用金属管に圧下を加える挟み圧延工程とを備え
たものである。
[Means for Solving the Problems] In the method for producing an oxide superconductor according to the present invention, the oxide superconductor is rolled together with the sheath metal tube in a state where the oxide superconductor is filled in the sheath metal tube. In the method for producing an oxide superconductor, the wire rod is heat-treated after the wire rod is subjected to a pre-rolling step of previously rolling the sheath metal tube filled with the oxide superconductor, and this pre-rolling step. The metal tube for the sheath that has passed through is sandwiched by a pair of metal strips having a larger deformation resistance than the metal tube for the sheath from opposite sides in the rolling direction, and a sandwich for applying a reduction to the metal pipe for the sheath via the pair of metal strips. And a rolling process.

また、好ましくは、前記挟み圧延工程の直後に前記一
対の金属条を圧下方向と逆ほに剥離せしめる行程を更に
備えたものである。
Further, preferably, the method further comprises a step of peeling the pair of metal strips immediately after the sandwich rolling step, opposite to the rolling direction.

更に、好ましくは、前記金属条として無限ループ状の
金属条を用いるものである。
Further, preferably, an infinite loop metal strip is used as the metal strip.

[作用] 本発明においては、酸化物超電導体を充填したシース
用金属管を圧延する際に、シース用金属管の圧下方向の
両側に、前記シース用金属管よりも変形抵抗の大きい金
属条を介在させて挟み圧延加工を施すものであるため、
銀、銀合金などの変形抵抗の小さい金属で酸化物超電導
体を被覆してテープ状導体に圧延加工をする場合に、シ
ース用金属管内部の酸化物超電導セラミックス部分の断
面積が長さ方向で不均一になるが改善される。
[Operation] In the present invention, when rolling a sheath metal tube filled with an oxide superconductor, metal strips having a larger deformation resistance than the sheath metal tube are provided on both sides of the sheath metal tube in the rolling direction. Since it is sandwiched and rolled by interposing,
When the oxide superconductor is coated with a metal such as silver or silver alloy with low deformation resistance and rolled into a tape-shaped conductor, the cross-sectional area of the oxide superconducting ceramics part inside the sheath metal tube is Non-uniformity is improved.

即ち、銀、銀合金などのシース用金属管内に酸化物超
電導粉体を充填して圧延加工を行う場合、充填密度が低
い初期の段階では、粉体相互のすべりによって、見掛上
の塑性変形は容易に行われる。
That is, when the oxide superconducting powder is filled into the metal tube for the sheath of silver, silver alloy, etc. and the rolling process is performed, at the initial stage when the packing density is low, due to the mutual slip of the powders, the apparent plastic deformation occurs. Is done easily.

ところが、圧延の回数が多くなり、全加工率が高くな
るにつれて充填密度が高くなり、粉相互のすべりだけで
なく、粉同士の剪断力による破砕が多くなってくると、
見掛上の粉の変形抵抗は著しく上昇する。その結果、
銀、銀合金のような変形抵抗の小さいシース用金属管で
は内部の酸化物超電導粉体を全長で均一に変形させるこ
とができず、よって長さ方向の断面積の不均一化を生じ
る。
However, as the number of times of rolling increases, the packing density increases as the total processing rate increases, and not only slippage between powders but also crushing due to shearing force between powders increases.
The deformation resistance of the apparent powder is significantly increased. as a result,
In a metal tube for a sheath having a small deformation resistance such as silver or a silver alloy, the oxide superconducting powder inside cannot be uniformly deformed over the entire length, so that the cross-sectional area in the longitudinal direction becomes nonuniform.

これを解決する手段として、当該シース用金属管の両
側にシース用金属よりも変形抵抗の大きい、例えばステ
ンレスなどの金属条を配し、この金属条を介在させて挟
み圧延加工を施すと、見掛上シース用金属管の剛性が上
り、内部の酸化物超電導粉体の粉砕を伴う加工が可能と
なり、圧延の力が面状に掛るため、酸化物超電導粉体が
長さ方向で均一に充填された断面を持つ圧延加工ができ
ることとなる。
As a means for solving this, a metal strip having a larger deformation resistance than that of the sheath metal, such as stainless steel, is arranged on both sides of the sheath metal tube, and sandwiching rolling is performed with the metal strip interposed. The rigidity of the metal tube for the hanging sheath has increased, and it is possible to perform processing involving crushing of the oxide superconducting powder inside, and the rolling force is applied to the surface, so the oxide superconducting powder is uniformly filled in the length direction. It will be possible to carry out rolling processing with a defined cross section.

[実施例] 第1図は挟み圧延加工の圧延状態の断面模式図であ
る。図において、回転する2つの圧延ロール4の間に
は、一組の高い変形抵抗を有するステンレス製の金属条
1が挟み込まれており、金属条1の間には銀又は銀合金
製のシース用金属管2が挟みこまれている。シース用金
属管2の内部には酸化物超電導体粉3が充填されてい
る。
[Examples] FIG. 1 is a schematic cross-sectional view of a rolled state in the sandwich rolling process. In the figure, a pair of stainless metal strips 1 having a high deformation resistance is sandwiched between two rotating rolling rolls 4, and between the metal strips 1 for a sheath made of silver or silver alloy. The metal tube 2 is sandwiched. The inside of the metal tube for sheath 2 is filled with oxide superconductor powder 3.

高強度の金属条1は圧延によりほとんど変形しない。
一方、シース用金属管2と酸化物超電導粉3は変形し、
薄くなる。従って、金属条1とシース用金属管2は圧延
の過程で速度が相対的に異なる。この速度差によるシー
ス用金属管2表面の摩耗疵の発生を少なくするため、金
属条1とシース用金属管2の間に動粘性係数の高い潤滑
剤を適用することが望ましい。
The high-strength metal strip 1 is hardly deformed by rolling.
On the other hand, the sheath metal tube 2 and the oxide superconducting powder 3 are deformed,
become thinner. Therefore, the metal strip 1 and the sheath metal tube 2 have relatively different speeds during the rolling process. In order to reduce the occurrence of wear flaws on the surface of the sheath metal tube 2 due to this speed difference, it is desirable to apply a lubricant having a high kinematic viscosity coefficient between the metal strip 1 and the sheath metal tube 2.

以上のような挟み圧延加工により、実際に長尺線材を
得るための方法として、金属条を無限ループ状に配した
装置を使用するとよい。
As a method for actually obtaining a long wire rod by the above-mentioned sandwich rolling, it is preferable to use an apparatus in which metal strips are arranged in an infinite loop.

第2図は無限ループ状に高強度金属条を配した装置の
構成を示す説明図である。
FIG. 2 is an explanatory view showing the configuration of an apparatus in which high-strength metal strips are arranged in an infinite loop shape.

図において、上下一組のステンレス製の高強度金属条
11がガイドロール41によって無限ループ状に配置されて
いる。ガイドロール41による金属条11と接する部分の曲
率は、金属条11の弾性限度以内である。
In the figure, a pair of stainless steel high-strength metal strips
11 are arranged in an endless loop by the guide roll 41. The curvature of the portion of the guide roll 41 in contact with the metal strip 11 is within the elastic limit of the metal strip 11.

主圧延ロール42の入側にガイドロール41を設け、主圧
延ロール42のロール径よりも大きな曲率で該金属条11を
シース用金属管21と主圧延ロール42の間に介在させるよ
うにする。
A guide roll 41 is provided on the entrance side of the main rolling roll 42, and the metal strip 11 is interposed between the sheath metal tube 21 and the main rolling roll 42 with a curvature larger than the roll diameter of the main rolling roll 42.

このようにすることにより、シース用金属管21が主圧
延ロール42入口でロールにより押されて生じるバルジ
(ふくれ)変形を防止できる。
By doing so, it is possible to prevent the bulge deformation caused by the sheath metal tube 21 being pushed by the roll at the entrance of the main rolling roll 42.

また主圧延ロール42の出側にも副圧延ロール43を設
け、主圧延ロール42出側における圧延されたシース用金
属管21のふくれ変形の発生を防止するとともに、均一な
圧延を促進できる構造となっている。
Further, a sub-rolling roll 43 is also provided on the exit side of the main rolling roll 42 to prevent the occurrence of swelling deformation of the rolled sheath metal tube 21 on the exit side of the main rolling roll 42 and to promote uniform rolling. Has become.

なお、この圧延の場合にも、金属条11とシース用金属
管21との間に動粘性係数の高い潤滑剤を適用することが
望ましい。
Also in this rolling, it is desirable to apply a lubricant having a high kinematic viscosity coefficient between the metal strip 11 and the sheath metal tube 21.

なお、1回の圧下率は10%より大きく、好ましくは20
%以上とするのが望ましい。何故なら、10%以下では高
強度金属条による圧下力の伝達が不充分となり、全長で
均一な断面積を有する線材を得ることができないためで
ある。
In addition, the reduction ratio of one time is more than 10%, preferably 20%.
% Is desirable. This is because if it is 10% or less, the rolling force of the high-strength metal strip is insufficiently transmitted, and a wire rod having a uniform cross-sectional area over the entire length cannot be obtained.

以下に、実際に線材を作製した実施例を示す。 An example in which a wire rod was actually manufactured will be shown below.

実施例1 YBa2Cu3O7-Xで表わされる酸化物超電導体粉末(平均粒
径10μm)を内径15mm,外径25mm,長さ150mmの銀パイプ
に充填し、両端を銀ブロックにより密封した後、スウェ
ージングにより外径5mmまで縮径加工した。
Example 1 An oxide superconductor powder represented by YBa 2 Cu 3 O 7-X (average particle size 10 μm) was filled in a silver pipe having an inner diameter of 15 mm, an outer diameter of 25 mm and a length of 150 mm, and both ends were sealed with silver blocks. After that, the diameter was reduced to 5 mm by swaging.

而して製作した線材を平ロール圧延機により厚さ2mm
までそのまま扁平に圧延し、厚さ2mm×幅7mmのテープ状
線材を得た。
The wire rod manufactured in this way is 2 mm thick with a flat roll mill.
It was rolled flat as it was to obtain a tape-shaped wire rod having a thickness of 2 mm and a width of 7 mm.

このテープ条線材の上下両面側に厚さ0.5mm,幅10mmの
ステンレス条(sus304H)を第2図に示すように無限軌
道型に配し、このステンレス条を介して、1パス圧下率
30%で厚さ0.5mmまで圧延した。
A 0.5 mm thick and 10 mm wide stainless steel strip (sus304H) is placed in the endless track type on both the upper and lower sides of this tape strip as shown in Fig. 2. Through this stainless steel strip, one pass rolling reduction is performed.
Rolled to a thickness of 0.5 mm at 30%.

得られた線材を3分割し、それぞれ30%,50%,80%の
圧下率で厚さ0.1mmまで同様に圧延し、各圧下率の試料
毎に線材長手方向に対して垂直な断面を長さ方向の10ケ
所で切り出し、シース内部の酸化物超電導体層部分の断
面積を測定し、平均断面積とバラツキ(σs%)を求め
た。
The obtained wire rod is divided into three parts, and rolled in the same way to a thickness of 0.1 mm with a reduction ratio of 30%, 50%, 80%, and a section perpendicular to the longitudinal direction of the wire rod is lengthened for each sample of each reduction ratio. It was cut out at 10 positions in the vertical direction, the cross-sectional area of the oxide superconductor layer portion inside the sheath was measured, and the average cross-sectional area and variation (σs%) were obtained.

また上記圧延テープ線材を酸素気流中で900℃×5hr焼
結熱処理を行った後、臨界電流Icを測定した。このIcを
平均断面積で除して、臨界電流密度Jcを求めた。
The rolled tape wire was subjected to a sintering heat treatment at 900 ° C. for 5 hours in an oxygen stream, and then the critical current Ic was measured. This Ic was divided by the average cross-sectional area to obtain the critical current density Jc.

比較例1−1 実施例1と同様の挟み圧延加工を行い、厚さ0.5mmか
ら厚さ0.1mmまで1パス圧下率10%で圧延した。而して
得られた線材の内部の酸化物超電導体層の断面積と、Ic
を実施例1と同様に測定した。
Comparative Example 1-1 The same sandwich rolling process as in Example 1 was performed, and rolling was performed from a thickness of 0.5 mm to a thickness of 0.1 mm at a 1-pass reduction of 10%. The cross-sectional area of the oxide superconductor layer inside the wire thus obtained, and Ic
Was measured in the same manner as in Example 1.

比較例1−2 実施例1と同様に銀パイプにYBa2Cu3O7-X酸化物超電
導粉体を充填した後、スウェージングと圧延により厚さ
2mm×幅7mmのテープ状線材を得た。得られた線材をステ
ンレス条を介することなく1パス圧下率30%で厚さ0.1m
mまで圧延した。而して得られた線材について実施例1
と同様に内部の酸化物超電導体層の断面積とIcを測定し
た。
Comparative Example 1-2 As in Example 1, a silver pipe was filled with YBa 2 Cu 3 O 7-X oxide superconducting powder, and then swaged and rolled to obtain a thickness.
A tape-shaped wire rod having a width of 2 mm and a width of 7 mm was obtained. The obtained wire rod has a thickness of 0.1 m at a pass reduction of 30% without passing through a stainless steel strip.
Rolled to m. Example 1 of the wire thus obtained
Similarly, the cross-sectional area and Ic of the oxide superconductor layer inside were measured.

結果を次の第1表に示す。 The results are shown in Table 1 below.

実施例2 (Bi1.8Pb0.2)2Sr2Ca2Cu3Oxで表わされる酸化物超電導
粉末(平均粒径10μm)を実施例1と同様の銀パイプに
充填し、同様の方法で厚さ0.5mmまでに圧延した。得ら
れた線材を3分割し、それぞれ30%,50%,80%の圧下率
で厚さ0.1mmまで圧延した。而して得られた線材につい
て実施例1と同様に長さ方向の10ケ所の内部の酸化物超
電導体層部分の断面積を測定し、平均断面積とバラツキ
(σs%)を求めた。
Example 2 An oxide superconducting powder represented by (Bi 1.8 Pb 0.2 ) 2 Sr 2 Ca 2 Cu 3 O x (average particle size 10 μm) was filled in the same silver pipe as in Example 1, and the thickness was increased by the same method. Rolled to 0.5 mm. The obtained wire rod was divided into three and rolled to a thickness of 0.1 mm at a reduction rate of 30%, 50% and 80%, respectively. With respect to the wire material thus obtained, the cross-sectional areas of the oxide superconductor layer portions inside 10 places in the lengthwise direction were measured in the same manner as in Example 1, and the average cross-sectional area and the variation (σs%) were obtained.

また上記圧延テープ線材を大気中で845℃×20hr焼結
熱処理を行った後、200kg/cm2の圧力を加えてプレスを
行い、さらに845℃×100hrの熱処理を行い、臨界電流Ic
を測定した。このIcを平均断面積で除して臨界電流密度
Jcを求めた。
Further, after the above-mentioned rolled tape wire rod is subjected to a sintering heat treatment at 845 ° C. for 20 hours in the air, it is pressed by applying a pressure of 200 kg / cm 2 , and further subjected to a heat treatment at 845 ° C. for 100 hours to obtain a critical current Ic.
Was measured. The critical current density is calculated by dividing this Ic by the average cross-sectional area.
I asked for Jc.

比較例2−1 実施例2と同様の挟み圧延加工を行い、厚さ0.5mmか
ら厚さ0.1mmまで1パス圧下率10%で圧延した。而して
得られた線材について内部の酸化物超電導体層の断面積
と、Icを実施例2と応用に測定した。
Comparative Example 2-1 The same sandwich rolling process as in Example 2 was performed, and rolling was performed from a thickness of 0.5 mm to a thickness of 0.1 mm with a 1-pass reduction of 10%. With respect to the wire thus obtained, the cross-sectional area of the oxide superconductor layer inside and Ic were measured for Example 2 and application.

比較例2−2 実施例2と同様のBi系酸化物超電導粉末を用い、比較
例(1−2)と同様にステンレス条を介することなく1
パス圧下率30%で厚さ0.1mmまで圧延した。而して得ら
れた線材について実施例2と同様に内部の酸化物超電導
体層の断面積とIcを測定した。
Comparative Example 2-2 The same Bi-based oxide superconducting powder as in Example 2 was used, and the same procedure as in Comparative Example (1-2) was performed without using a stainless steel strip.
It was rolled to a thickness of 0.1 mm with a pass reduction of 30%. The cross-sectional area and Ic of the internal oxide superconductor layer of the wire thus obtained were measured in the same manner as in Example 2.

結果を次の第2表に示す。 The results are shown in Table 2 below.

第1表及び第2表に示すように、1パス圧下率の大き
い実施例1品及び実施例2品では、内部の酸化物超電導
体層の断面積のバラツキ(σs)が小さく、そのためIc
が高いことが判った。
As shown in Tables 1 and 2, in Example 1 product and Example 2 product having a large 1-pass rolling reduction, the variation (σs) in the cross-sectional area of the oxide superconductor layer inside was small, and therefore Ic
Was found to be high.

一方、1パス圧下率の小さい比較例1−1品及び比較
例2−1品、金属条を介さないで圧延をした比較例1−
2品及び比較例2−2品では内部の酸化物超電導体層の
断面積のバラツキ(σs)が大きく、Icが低いことが判
った。
On the other hand, Comparative Example 1-1 products and Comparative Example 2-1 products having a small 1-pass rolling reduction ratio, and Comparative Example 1-rolled without a metal strip.
It was found that the two products and the product of Comparative Example 2-2 had a large variation (σs) in the cross-sectional area of the oxide superconductor layer inside and a low Ic.

この実施例と比較例とで酸化物超電導体層の断面積の
変動以上にIcの値に差が出たのは、酸化物超電導体層の
断面積変動の大きい線材では結晶粒子相互の配向性や接
触が悪く、電流パスの低下と弱結合の増大をきたしたか
らである。
The difference in the value of Ic beyond the variation of the cross-sectional area of the oxide superconductor layer in this example and the comparative example is that the orientation of mutual crystal grains in the wire material having a large variation in the cross-sectional area of the oxide superconductor layer. This is because the contact was poor and the current path decreased and the weak coupling increased.

[発明の効果] 本発明は以上説明したとおり、シース用金属管内に充
填された酸化物超電導体をシース用金属管とともに圧延
する際に、シース用金属管の圧下方向の両側に、前記シ
ース用金属管よりも変形抵抗の大きい金属条を介在させ
て挟み圧延加工を施すものであるため、銀、銀合金など
の変形抵抗の小さい金属で酸化物超電導体を被覆した線
状体に圧延加工をする際に、シース用金属管内部の酸化
物超電導セラミックス部分の断面積が長さ方向で均一に
なり、結晶粒子相互の配向性や接触が良好になり、電流
パスの増大や弱結合の減少を果たすという効果がある。
[Effects of the Invention] As described above, according to the present invention, when an oxide superconductor filled in a sheath metal tube is rolled together with the sheath metal tube, the sheath metal tube is provided on both sides of the sheath metal tube in the rolling direction. Since a metal strip having a larger deformation resistance than that of a metal tube is interposed and rolled, the linear body coated with an oxide superconductor with a metal having a small deformation resistance such as silver or a silver alloy is rolled. In this case, the cross-sectional area of the oxide superconducting ceramics inside the sheath metal tube becomes uniform in the lengthwise direction, the orientation and contact of the crystal grains become better, and the current path increases and the weak coupling decreases. There is an effect of fulfilling.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による挟み圧延加工の圧延状態の断面模
式図、第2図は無限ループ状に高強度金属条を配した実
施例装置の構成を示す説明図である。 図において、1,11は金属条、2,21はシース用金属管、3
は酸化物超電導体粉、4は圧延ロール、41はガイドロー
ル、42は主圧延ロール、43は副圧延ロールである。
FIG. 1 is a schematic cross-sectional view of a rolled state of the sandwich rolling process according to the present invention, and FIG. 2 is an explanatory view showing the configuration of an embodiment apparatus in which high-strength metal strips are arranged in an infinite loop shape. In the figure, 1, 11 are metal strips, 2, 21 are metal tubes for sheath, 3
Is an oxide superconductor powder, 4 is a rolling roll, 41 is a guide roll, 42 is a main rolling roll, and 43 is a sub-rolling roll.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−258832(JP,A) 特開 平1−206518(JP,A) 特開 平2−8335(JP,A) 特開 平3−53419(JP,A) 特開 平2−199715(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A 1-258832 (JP, A) JP-A 1-206518 (JP, A) JP-A 2-8335 (JP, A) JP-A 3- 53419 (JP, A) JP-A-2-199715 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体をシース用金属管に充填し
た状態で、該酸化物超電導体をシース用金属管とともに
圧延加工を施して線材を作成した後、該線材を加熱処理
する酸化物超電導導体の製造方法において、 前記酸化物超伝導体を充填したシース用金属管を予め圧
延する予備圧延工程と、 この予備圧延工程を経たシース用金属管を対向する圧下
方向の両側から前記シース用金属管よりも変形抵抗の大
きい一対の金属条で挟み、前記一対の金属条を介して前
記シース用金属管に圧下を加える挟み圧延工程とを備え
たことを特徴とする酸化物超電導導体の製造方法。
1. An oxide in which a metal rod for sheath is filled with an oxide superconductor and the oxide superconductor is rolled together with a metal pipe for sheath to form a wire, and then the wire is heat-treated. In the method for manufacturing a superconducting conductor, a pre-rolling step of pre-rolling a sheath metal tube filled with the oxide superconductor, and a sheath metal tube that has undergone this pre-rolling step is applied to the sheath metal tube from opposite sides in a rolling direction. A sandwich rolling step of sandwiching between a pair of metal strips having a larger deformation resistance than that of the metal pipe and applying a rolling reduction to the sheath metal pipe through the pair of metal strips. Method.
【請求項2】前記挟み圧延工程の直後に前記一対の金属
条を圧下方向と逆方向に剥離せしめる行程を更に備えた
ことを特徴とする請求項1に記載の酸化物超電導導体の
製造方法。
2. The method for producing an oxide superconducting conductor according to claim 1, further comprising a step of peeling the pair of metal strips in a direction opposite to a rolling direction immediately after the sandwich rolling step.
【請求項3】前記金属条として無限ループ状の金属条を
用いることを特徴とする請求項1又は2に記載の酸化物
超電導導体の製造方法。
3. The method for producing an oxide superconducting conductor according to claim 1, wherein an infinite loop metal strip is used as the metal strip.
JP1191342A 1989-07-26 1989-07-26 Manufacturing method of oxide superconducting conductor Expired - Lifetime JP2685910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191342A JP2685910B2 (en) 1989-07-26 1989-07-26 Manufacturing method of oxide superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191342A JP2685910B2 (en) 1989-07-26 1989-07-26 Manufacturing method of oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH0357110A JPH0357110A (en) 1991-03-12
JP2685910B2 true JP2685910B2 (en) 1997-12-08

Family

ID=16272972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191342A Expired - Lifetime JP2685910B2 (en) 1989-07-26 1989-07-26 Manufacturing method of oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP2685910B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192613A (en) * 1989-12-21 1991-08-22 Natl Res Inst For Metals Oxide superconducting wire material and manufacture thereof
CH685996A5 (en) * 1993-06-22 1995-11-30 Univ Geneve Method and apparatus for producing a conductor having at least one textured superconducting core.
JP4660928B2 (en) * 2001-01-15 2011-03-30 住友電気工業株式会社 Manufacturing method of oxide superconducting wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557498B2 (en) * 1987-10-09 1996-11-27 住友電気工業株式会社 Manufacturing method of linear superconducting material
JP2653462B2 (en) * 1988-04-09 1997-09-17 株式会社東芝 Superconductor

Also Published As

Publication number Publication date
JPH0357110A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
JP3042551B2 (en) Superconducting wire manufacturing method
DE3889398T2 (en) Process for the production of a superconductor.
CA2063281A1 (en) Method of preparing oxide superconducting wire
JP2685910B2 (en) Manufacturing method of oxide superconducting conductor
DE19757331C1 (en) Multicore superconductor strip production process includes a flat rolling operation
JPH01134822A (en) Manufacture of oxide superconductive wire
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3178478B2 (en) Superconducting wire manufacturing method
EP1038301B1 (en) METHOD FOR PRODUCING A BAND-SHAPED SUPRACONDUCTOR WITH HIGH Tc SUPRACONDUCTIVE MATERIAL
JP2583499B2 (en) Superconducting wire manufacturing method
JPH0479109A (en) Manufacture of oxide superconducting wire
JP3122524B2 (en) Superconducting wire manufacturing method
DE4421163C2 (en) Method and device for producing a conductor with at least one textured, superconducting core
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
Thieme et al. High strain warm extrusion and warm rolling of multifilamentary Bi-2223 metallic precursor wire
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH03266312A (en) Composite substance processing method for ceramic superconductor
JPH0353419A (en) Manufacture of oxide superconducting conductor
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
DE19828954C2 (en) Process for producing a band-shaped multicore superconductor with high-T¶c¶ superconductor material and device for carrying out the process
Yuan et al. Effect of rolling on properties of monofilamentary Bi-2212 superconductor tapes
JPH0557724U (en) Oxide superconducting wire manufacturing equipment
JPH0479107A (en) Method for molding tape-shaped wire
Yuan et al. Fabrication of laminated Bi-2212/Ag multifilamentary tape
JPH03192613A (en) Oxide superconducting wire material and manufacture thereof