JP2517597B2 - Manufacturing method of oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire

Info

Publication number
JP2517597B2
JP2517597B2 JP62124553A JP12455387A JP2517597B2 JP 2517597 B2 JP2517597 B2 JP 2517597B2 JP 62124553 A JP62124553 A JP 62124553A JP 12455387 A JP12455387 A JP 12455387A JP 2517597 B2 JP2517597 B2 JP 2517597B2
Authority
JP
Japan
Prior art keywords
powder
oxide
wire
metal layer
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62124553A
Other languages
Japanese (ja)
Other versions
JPS63289724A (en
Inventor
宰 河野
義光 池野
伸行 定方
優 杉本
三紀夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62124553A priority Critical patent/JP2517597B2/en
Priority to DE3887910T priority patent/DE3887910T2/en
Priority to EP88302417A priority patent/EP0283313B1/en
Priority to CN88101444.3A priority patent/CN1027937C/en
Priority to CA000561971A priority patent/CA1338753C/en
Publication of JPS63289724A publication Critical patent/JPS63289724A/en
Priority to US07/831,663 priority patent/US5168127A/en
Priority to US07/932,933 priority patent/US5283232A/en
Application granted granted Critical
Publication of JP2517597B2 publication Critical patent/JP2517597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば大容量送電を行なう送電用ケーブ
ルなどに使用可能な酸化物超電導線の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an oxide superconducting wire that can be used, for example, in a power transmission cable that performs large-capacity power transmission.

〔従来技術とその問題点〕 近時、常電導状態から超電導状態に遷移する臨界温度
(Tc)が極めて高い値を示す酸化物系の超電導体が種々
発見されつつある。そして、このような酸化物超電導体
は、従来の合金系あるいは金属間化合物系超電導体に比
べて臨界温度が高いことから、実用上極めて有望な超電
導材料とされている。
[Prior Art and its Problems] Recently, various oxide-based superconductors have been found which have a very high critical temperature (Tc) at which a normal-conducting state changes to a superconducting state. Since such an oxide superconductor has a higher critical temperature than conventional alloy-based or intermetallic compound-based superconductors, it is regarded as a very promising superconducting material in practical use.

ところで、従来、酸化物超電導線を製造するには、酸
化物超電導体を構成する元素を含む原料粉末を金属シー
ス内に充填し、次いでこの金属シース全体を縮径加工し
たのち、熱処理する方法がある。
By the way, conventionally, in order to manufacture an oxide superconducting wire, a method in which a raw material powder containing an element constituting an oxide superconductor is filled in a metal sheath, and then this whole metal sheath is subjected to a diameter reduction process and then heat treatment is performed. is there.

しかしながら、このような方法では、酸化物超電導体
の原料粉末の周囲に、銅、銅合金、ステンレス等の酸化
性金属が接した状態で存在すると、熱処理時に上記酸化
性金属が酸化することにより上記原料粉末の酸素が奪わ
れてしまうことがある。この場合、上記酸化性金属に接
する部分の原料粉末では、酸素の量が不足気味となり、
その結果部分的に臨界温度および臨界電流密度の低い超
電導体が金属シース内に生成される不都合が生じ、最悪
の場合には超電導体の外周部が絶縁体となってしまう問
題もある。
However, in such a method, when an oxidizing metal such as copper, a copper alloy, or stainless steel is present around the raw material powder of the oxide superconductor in a state of being in contact with the oxide superconductor, the oxidizing metal is oxidized during heat treatment to Oxygen in the raw material powder may be deprived. In this case, in the raw material powder of the portion in contact with the oxidizing metal, the amount of oxygen tends to be insufficient,
As a result, there is a problem that a superconductor having a low critical temperature and a low critical current density is partially generated in the metal sheath, and in the worst case, the outer peripheral portion of the superconductor becomes an insulator.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、酸化物超電導体と酸化物超電導体を構
成する元素を含む材料のうち少なくとも一方からなる粉
末を圧縮成形して棒状の成形体を作成し、次いでこの成
形体を非酸化性金属からなる一次金属層で被覆したうえ
で、この成形体を多数本集合し、得られた集合体を上記
非酸化性金属より硬い金属からなる二次金属層で被覆し
たのち、伸線加工を施し、次いで熱処理することをその
解決手段とした。
In the present invention, a powder made of at least one of an oxide superconductor and a material containing an element forming the oxide superconductor is compression-molded to form a rod-shaped molded body, and then this molded body is made of a non-oxidizing metal. After being coated with a primary metal layer consisting of, a large number of the molded bodies are assembled, and the obtained assembly is coated with a secondary metal layer made of a metal harder than the non-oxidizing metal, and then subjected to wire drawing. Then, heat treatment was used as a solution.

以下、この発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.

この発明では、まず原料粉末を調製する。この原料粉
末としては、酸化物超電導体を構成する元素を含むもの
などが用いられ、具体的にはアルカリ土類金属元素粉
末、周期律表第III a族元素粉末および酸化銅粉末等か
らなる混合粉末あるいはこの混合粉末を仮焼成した粉末
または前記混合粉末と仮焼粉末との混合粉末などが用い
られる。ここでのアルカリ土類金属元素粉末としては、
Be,Sr,Mg,Ba,Raの各元素の炭酸塩粉末、酸化物粉末、塩
化物粉末、硫化物粉末、フッ化物粉末などの化合物粉末
あるいは合金粉末などが用いられる。また、周期律表第
III a族元素粉末としては、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの各元素の炭酸塩粉末、酸
化物粉末、塩化物粉末、硫化物粉末、フッ化物粉末など
の化合物粉末あるいは合金粉末などが用いられる。さら
に、酸化物粉末としては、CuO,Cu2O,Cu2O3,Cu4O3などの
酸化銅の粉末が用いられる。
In this invention, first, a raw material powder is prepared. As the raw material powder, one containing an element forming an oxide superconductor is used, and specifically, a mixture of an alkaline earth metal element powder, a Group IIIa element powder of the periodic table, a copper oxide powder, and the like. A powder, a powder obtained by calcining this mixed powder, a mixed powder of the mixed powder and the calcined powder, or the like is used. As the alkaline earth metal element powder here,
A compound powder such as a carbonate powder, an oxide powder, a chloride powder, a sulfide powder, or a fluoride powder of each element of Be, Sr, Mg, Ba, and Ra or an alloy powder is used. Also, the periodic table
IIIa group element powders include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Carbonate powders, oxide powders, chloride powders, sulfide powders, compound powders such as fluoride powders or alloy powders are used. To be Further, as the oxide powder, powder of copper oxide such as CuO, Cu 2 O, Cu 2 O 3 and Cu 4 O 3 is used.

そして、これらの粉末の混合比は、得られる酸化物超
電導体をAxByCuzO9- δ (但し、AはSc,Y,La,Yb等の周期律表第III a族元素を
表し、BはBe,Sr,Ba等のアルカリ土類金属元素を表
す。)の組成式で示すと、x,y,z,δが次のような範囲で
決められることが望ましい。
The mixing ratio of these powders was such that the obtained oxide superconductor was AxByCuzO 9- δ (where A represents an element of Group IIIa of the periodic table such as Sc, Y, La, and Yb, and B represents Be, It is desirable that x, y, z, and δ be determined in the following ranges when expressed by the composition formula of (representing an alkaline earth metal element such as Sr and Ba).

0.1≦x≦2,0.1≦y≦3,1≦z≦3,0≦δ≦7 そして、このような各粉末から原料粉末を調製する
が、この原料粉末を調製するにあたっては、アルカリ土
類金属元素粉末および周期律表第III a族元素粉末から
それぞれ1種ずつ選択してもよく、またアルカリ土類金
属元素粉末あるいは周期律表第III a族元素粉末からそ
れぞれ2種以上選択してもよい。前者の場合には、例え
ばLa−Sr−Cu−O系、Y−Ba−Cu−O系の超電導体の原
料となる原料粉末の調製が可能となり、また後者の場合
には、例えばBa−Sr−Cu−O系、La−Y−Cu−O系等の
超電導体の原料粉末の調製が可能となる。
0.1 ≦ x ≦ 2, 0.1 ≦ y ≦ 3, 1 ≦ z ≦ 3, 0 ≦ δ ≦ 7 Then, a raw material powder is prepared from each of these powders. One kind may be selected from each of the metal element powder and the group IIIa element powder of the periodic table, or two or more kinds may be selected from each of the alkaline earth metal element powder and the group IIIa element powder of the periodic table. Good. In the case of the former, it becomes possible to prepare a raw material powder as a raw material of a La-Sr-Cu-O-based or Y-Ba-Cu-O-based superconductor, and in the latter case, for example, Ba-Sr. It is possible to prepare a raw material powder of a superconductor such as a -Cu-O type or a La-Y-Cu-O type.

そして、このような原料粉末中に炭酸塩もしくは炭素
分が含有されている場合には、この原料粉末に対して予
備焼成を施す。この予備焼成は、上記粉末中の炭酸塩も
しくは炭素分を熱分解して酸化物とするために行なわ
れ、通常焼成温度650〜750℃、焼成時間1〜10時間の条
件下で行なうことが好ましい。このような予備焼成後
に、粉末中の炭酸塩もしくは炭素分の有無を分析して調
べ、炭酸塩もしくは炭素分が残存していれば、さらにこ
の粉末に対して予備焼成を必要回繰り返す。
When such raw material powder contains a carbonate or a carbon content, the raw material powder is pre-baked. This preliminary calcination is carried out in order to thermally decompose the carbonate or carbon content in the powder to form an oxide, and it is preferable to carry out the calcination at a temperature of 650 to 750 ° C. and a calcination time of 1 to 10 hours. . After such preliminary calcination, the presence or absence of carbonate or carbon content in the powder is analyzed and examined, and if the carbonate or carbon content remains, the preliminary calcination is repeated for this powder a necessary number of times.

次いで、このようにして原料粉末中の炭素分が完全に
除去されたならば、この粉末に対して仮焼成を施す。こ
の仮焼成は、焼成温度850〜950℃、焼成時間1〜30時間
の条件下で行なうことが好ましい。このような仮焼成に
より、上記粉末中のアルカリ土類金属酸化物と周期律表
第III a族元素の酸化物と酸化銅とが反応し、粉末の少
なくとも一部が超電導特性を示す酸化物となる。
Then, when the carbon content in the raw material powder is completely removed in this way, the powder is pre-baked. This calcination is preferably performed under conditions of a calcination temperature of 850 to 950 ° C. and a calcination time of 1 to 30 hours. By such calcination, the alkaline earth metal oxide in the powder and the oxide of the Group IIIa element of the periodic table react with copper oxide, and at least a part of the powder has an oxide exhibiting superconducting properties. Become.

次に、このようにして得られた原料粉末を十分粉砕し
て粒径を揃えたのち、通常のラバープレス等の液圧プレ
スにより、上記粉末を第1図に示すような円柱状の成形
体1に成形する。液圧プレスの成形圧力は、上記の原料
粉末の組成、組成比、得られる成形体の大きさなどに左
右され、通常は1.5〜10ton/cm2程度の範囲で決められ
る。
Next, the raw material powder thus obtained is sufficiently pulverized to make the particle diameter uniform, and then the powder is subjected to a hydraulic press such as an ordinary rubber press to form the powder into a cylindrical molded body as shown in FIG. Mold to 1. The molding pressure of the hydraulic press depends on the composition of the raw material powder, the composition ratio, the size of the molded body to be obtained, etc., and is usually determined in the range of about 1.5 to 10 ton / cm 2 .

次に、上記の成形体1に対して熱処理を施す。この熱
処理は、酸素気流中で行なわれ、通常は処理温度800〜1
100℃、処理時間1〜300時間の条件下で行なわれる。こ
の熱処理により、成形体1中のアルカリ土類金属酸化物
と周期律表第III a族元素の酸化物と酸化銅とが十分に
反応し、成形体1全体が例えば層状ペロブスカイト型の
酸化物超電導体となる。
Next, the molded body 1 is heat-treated. This heat treatment is carried out in an oxygen stream, and the treatment temperature is usually 800 to 1
It is carried out under the conditions of 100 ° C. and a treatment time of 1 to 300 hours. By this heat treatment, the alkaline earth metal oxide in the compact 1 sufficiently reacts with the oxide of the Group IIIa element of the periodic table and the copper oxide, and the compact 1 as a whole is, for example, a layered perovskite type oxide superconducting material. Become a body.

次いで、このような成形体1上に非酸化性金属からな
る一次金属層1aを被覆する。ここで、上記非酸化性金属
としては、例えばAg,Au,Pt,Ir,Os,Pd,Rh,Ru等の貴金属
やこれらの合金などが好適に用いられる。そして、この
一次金属層1aの形成方法としては、上記非酸化性金属か
らなるパイプ内に上記成形体1を挿入するクラッディン
グ法、成形体1を溶融非酸化性金属中に浸漬したのち焼
付けするディップ法、あるいはスパッタ法、真空蒸着法
等の薄膜形成法などの種々の方法が用いられる。
Then, the molded body 1 is coated with a primary metal layer 1a made of a non-oxidizing metal. Here, as the non-oxidizing metal, for example, noble metals such as Ag, Au, Pt, Ir, Os, Pd, Rh and Ru, and alloys thereof are preferably used. As a method of forming the primary metal layer 1a, a cladding method in which the compact 1 is inserted into a pipe made of the non-oxidizing metal, or the compact 1 is immersed in a molten non-oxidizing metal and then baked. Various methods such as a dipping method, a thin film forming method such as a sputtering method and a vacuum deposition method are used.

次に、上記成形体1を多数本集合して第2図に示すよ
うに集合体2としたのち、この集合体2に上記一次金属
層1aを形成する材料より硬い材料からなる金属パイプ3
を被せて複合体4とし、この複合体4全体を縮径して第
3図に示すように線材5とし、この線材5上に二次金属
層6を形成する。ここで、多数の成形体1を集合させる
には、例えば1本の成形体1を中心とし、この成形体1
の外周部に多数の成形体1…を引揃えるようにすること
が望ましい。また、二次金属層6は、後工程の伸線加工
の際に集合体2を均一に縮径させるために加工圧力を集
合体2に確実に伝達するためのものである。そして、こ
の二次金属層6を形成する材料としては、上記一次金属
層1aを形成する材料に応じて適宜決められ、例えばSUS3
04、SUS316等のステンレス鋼などが用いられる。
Next, a large number of the formed bodies 1 are assembled into an assembly 2 as shown in FIG. 2, and then a metal pipe 3 made of a material harder than the material forming the primary metal layer 1a on the assembly 2.
The composite body 4 is covered with the composite material 4 and the composite material 4 is reduced in diameter to form a wire 5 as shown in FIG. 3. A secondary metal layer 6 is formed on the wire 5. Here, in order to collect a large number of molded bodies 1, for example, one molded body 1 is centered
It is desirable to arrange a large number of molded bodies 1 ... Further, the secondary metal layer 6 is for reliably transmitting the processing pressure to the aggregate 2 in order to uniformly reduce the diameter of the aggregate 2 during the wire drawing in the subsequent step. The material for forming the secondary metal layer 6 is appropriately determined according to the material for forming the primary metal layer 1a, and for example, SUS3
04, stainless steel such as SUS316 is used.

次に、上記線材5の二次金属層6上に、第4図に示す
ように銅等の安定化パイプ7を被せ、伸線加工を施して
所望の線径としたのち、熱処理を施して第5図に示す酸
化物超電導線8を製造する。ここで、上記安定化パイプ
7は、伸線加工の易加工性および最終的に得られる酸化
物超電導線の安定化などを目的として設けられたもので
ある。そして、この安定化パイプ7を形成する材料とし
ては、伸線加工性に優れた銅、銅合金、アルミニウムな
どの金属が用いられる。また、上記熱処理の処理温度
は、前述の成形体1に対する熱処理とほぼ同様の条件と
され、熱処理時間は前の熱処理時間などに応じて決めら
れる。このような伸線加工および熱処理により、複数の
成形体1…はそれぞれ均一に縮径され熱処理されて細径
の超電導細線1b…となる。
Next, as shown in FIG. 4, a stabilizing pipe 7 made of copper or the like is placed on the secondary metal layer 6 of the wire 5 and wire drawing is carried out to obtain a desired wire diameter, followed by heat treatment. The oxide superconducting wire 8 shown in FIG. 5 is manufactured. The stabilizing pipe 7 is provided for the purpose of easy workability of wire drawing and stabilization of the finally obtained oxide superconducting wire. As a material for forming the stabilizing pipe 7, a metal such as copper, a copper alloy, or aluminum, which has excellent wire drawing workability, is used. The processing temperature of the above-mentioned heat treatment is almost the same as that of the above-mentioned heat treatment for the molded body 1, and the heat treatment time is determined according to the previous heat treatment time and the like. By such wire drawing and heat treatment, the plurality of compacts 1 ... Are uniformly reduced in diameter and heat-treated to form superconducting thin wires 1b.

このようにして得られた酸化物超電導線8にあって
は、その内部の超電導細線1b…の外側に非酸化性金属か
らなる一次金属層1aが設けられたものであるので、この
一次金属層1aにより超電導細線1b…中の酸素が酸化性金
属に奪われるのを確実に防止できるものとなる。したが
って、この酸化物超電導線8は、その内部の超電導細線
1b…の良好な超電導特性がそれぞれ維持されることか
ら、全体として良好な超電導特性を発揮するものとな
る。このような酸化物超電導線8は、例えば大容量送電
を行なう送電用ケーブルとして好適に使用可能である。
In the oxide superconducting wire 8 thus obtained, the primary metal layer 1a made of a non-oxidizing metal is provided outside the superconducting thin wires 1b ... Oxygen in the superconducting thin wires 1b ... Can be surely prevented from being deprived of the oxidizing metal by the 1a. Therefore, the oxide superconducting wire 8 is a superconducting thin wire inside the oxide superconducting wire 8.
Since the good superconducting properties of 1b are maintained respectively, good superconducting properties are exhibited as a whole. Such an oxide superconducting wire 8 can be suitably used, for example, as a power transmission cable for performing large-capacity power transmission.

この方法によれば、集合体2上の二次金属層6を形成
する材料として成形体1上の一次金属層1aを形成する材
料より硬いものを用いたので、伸線加工時の加工圧力を
二次金属層6により集合体2に確実に伝えることがで
き、集合体2全体を均一に縮径でき、よってマルチスト
ランド型の酸化物超電導線8を長尺で製造することがで
きる。
According to this method, since the material forming the secondary metal layer 6 on the aggregate 2 is harder than the material forming the primary metal layer 1a on the compact 1, the processing pressure during wire drawing is reduced. The secondary metal layer 6 can be surely transmitted to the aggregate 2, and the diameter of the entire aggregate 2 can be uniformly reduced, so that the multi-strand type oxide superconducting wire 8 can be manufactured in a long size.

また、この方法によれば、得られる酸化物超電導線8
の各超電導細線1b…をそれぞれ非酸化性金属からなる一
次金属層1a…により覆うようにしたので、各超電導細線
1b中の酸素が酸化性金属に奪われるのを確実に防止で
き、よって酸化物超電導線8の良好な超電導特性の安定
化を図ることができる。
Moreover, according to this method, the obtained oxide superconducting wire 8
Each of the superconducting thin wires 1b ... Is covered with the primary metal layer 1a of a non-oxidizing metal.
Oxygen in 1b can be surely prevented from being deprived of the oxidizing metal, so that good superconducting characteristics of the oxide superconducting wire 8 can be stabilized.

上記の実施例では、成形体1を形成する原料粉末とし
て酸化物超電導体を構成する元素を含む粉末を用いた
が、既に超電導特性を示す酸化物超電導体からなる粉
末、あるいはこの超電導体からなる粉末と上記元素粉末
との混合粉末を用いてもよい。この場合には、原料粉末
に対する仮焼成や成形体1に対する熱処理の条件を緩や
かにすることができる。
In the above examples, the powder containing the element forming the oxide superconductor was used as the raw material powder for forming the molded body 1. However, the powder made of the oxide superconductor already showing the superconducting characteristics, or the powder made of this superconductor. You may use the mixed powder of a powder and the said element powder. In this case, the conditions for calcination of the raw material powder and heat treatment of the compact 1 can be made gentle.

〔実施例〕〔Example〕

各元素の組成比がY:Ba:Cu:O=1:2:3:7(原子量比)と
なるように、Y2O3粉末とBaCO3粉末とCuO粉末を混合して
混合粉末を得た。次に、この混合粉末に対して700℃、
3時間の予備焼成、次いで900℃、12時間の仮焼成を行
なった。次いで、上記混合粉末を粉砕して微粉末とした
のち、ラバープレスにより外径約10mmの円柱状の成形体
を得た。この後、酸素気流中で900℃×24時間の熱処理
を施した。
The composition ratio of each element is Y: Ba: Cu: O = 1: 2: 3: 7 obtained as a (atomic weight ratio), Y 2 O 3 powder and BaCO 3 powder and a mixed powder by mixing CuO powder It was Next, 700 ° C. for this mixed powder,
Pre-baking was performed for 3 hours, and then temporary baking was performed at 900 ° C. for 12 hours. Next, the mixed powder was pulverized into a fine powder, and then a rubber press was used to obtain a cylindrical molded body having an outer diameter of about 10 mm. Then, heat treatment was performed at 900 ° C. for 24 hours in an oxygen stream.

次に、この成形体を外径約15mm、肉厚2mmの銀製パイ
プ内に挿入したのち、全体を縮径して外径約4mmの線材
を作成した。
Next, this molded body was inserted into a silver pipe having an outer diameter of about 15 mm and a wall thickness of 2 mm, and then the entire diameter was reduced to prepare a wire rod having an outer diameter of about 4 mm.

次に、このような線材を7本用意し、1本の線材を中
心としてこの線材の外周部分に6本の線材を引揃えて集
合体とし、次いでこの集合体を外径約14mm、肉厚0.5mm
のステンレス(SUS304)製のパイプ内に挿入し、これを
さらに外径約20mm、肉厚2.5mmの銅パイプ内に挿入して
複合化したうえで、伸線加工して線径を約1.5mmとした
のち、熱処理を施してマルチストランド型の酸化物超電
導線を得た。この熱処理は、処理温度900℃、処理時間
3時間の条件下で行なった。
Next, 7 such wire rods are prepared, and 6 wire rods are aligned around the outer periphery of this wire rod around the center of one wire rod to form an aggregate, and then this aggregate is formed to have an outer diameter of about 14 mm and a wall thickness. 0.5 mm
Insert it into a stainless steel (SUS304) pipe, and then insert it into a copper pipe with an outer diameter of about 20 mm and a wall thickness of 2.5 mm to make a composite, and then wire drawing it to a wire diameter of about 1.5 mm. After that, heat treatment was performed to obtain a multi-strand type oxide superconducting wire. This heat treatment was performed under the conditions of a treatment temperature of 900 ° C. and a treatment time of 3 hours.

このようにして得られた酸化物超電導線の臨界温度を
測定したところ、約91Kを示した。また、臨界電流は液
体窒素温度で約500A/cm2を示した。したがって、この酸
化物超電導線は良好な超電導特性を示すことがわかっ
た。
When the critical temperature of the oxide superconducting wire thus obtained was measured, it was about 91K. The critical current was about 500 A / cm 2 at liquid nitrogen temperature. Therefore, it was found that this oxide superconducting wire exhibits good superconducting properties.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明の製造方法によれば、
得られるマルチストランド型の酸化物超電導線の各超電
導線をそれぞれ非酸化性金属からなる一次金属層により
覆うようにしたので、酸化物超電導線中の酸素が酸化性
金属に奪われるのを確実に防止でき、よって酸化物超電
導線の良好な超電導特性の安定化を図ることができる。
As described above, according to the manufacturing method of the present invention,
Since each superconducting wire of the resulting multi-strand type oxide superconducting wire is covered with a primary metal layer made of a non-oxidizing metal, it is ensured that oxygen in the oxide superconducting wire is deprived of the oxidizing metal. It is possible to prevent the oxide superconducting wire from being stabilized, and thus the excellent superconducting property of the oxide superconducting wire can be stabilized.

また、この方法によれば、集合体上の二次金属層を形
成する材料として成形体上の一次金属層を形成する材料
より硬いものを用いたので、伸線加工時の加工圧力を二
次金属層により集合体に確実に伝えることができ、集合
体全体を均一に縮径でき、よってマルチストランド型の
酸化物超電導線を長尺で製造することができる。
Further, according to this method, since the material forming the secondary metal layer on the aggregate is harder than the material forming the primary metal layer on the compact, the processing pressure during wire drawing is not The metal layer allows reliable transmission to the aggregate, and the diameter of the entire aggregate can be uniformly reduced. Therefore, a multi-strand type oxide superconducting wire can be manufactured in a long size.

したがって、この方法によって得られた酸化物超電導
線は、長尺でかつ超電導特性に優れたものであるので、
例えば送電用ケーブルに用いて大容量送電を行なうこと
が可能である。
Therefore, since the oxide superconducting wire obtained by this method is long and has excellent superconducting properties,
For example, it is possible to perform large-capacity power transmission by using the power transmission cable.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図は、この発明の酸化物超電導線の製造方
法の一例を説明するためのもので、第1図はこの発明に
用いられる一次金属層が設けられた成形体の一例を示す
概略断面図、第2図は第1図の成形体を集合して得た集
合体に金属パイプを複合した複合体を示す概略断面図、
第3図は第2図の複合体を縮径加工して得た線材を示す
概略断面図、第4図は第3図の線材に安定化パイプを複
合した複合線を示す概略断面図、第5図は第4図の複合
線を縮径加工し、熱処理して得た酸化物超電導線を示す
概略断面図である。 1……成形体、1a……一次金属層、1b……超電導細線、
2……集合体、6……二次金属層、8……酸化物超電導
線。
1 to 5 are for explaining an example of a method for producing an oxide superconducting wire of the present invention, and FIG. 1 is an example of a molded body provided with a primary metal layer used in the present invention. 2 is a schematic sectional view showing a composite body in which a metal pipe is combined with the assembly obtained by collecting the molded bodies of FIG.
FIG. 3 is a schematic cross-sectional view showing a wire rod obtained by reducing the diameter of the composite of FIG. 2, and FIG. 4 is a schematic cross-sectional view showing a composite wire in which a stabilizing pipe is combined with the wire rod of FIG. FIG. 5 is a schematic sectional view showing an oxide superconducting wire obtained by subjecting the composite wire of FIG. 4 to diameter reduction processing and heat treatment. 1 ... Molded body, 1a ... Primary metal layer, 1b ... Superconducting thin wire,
2 ... Aggregate, 6 ... Secondary metal layer, 8 ... Oxide superconducting wire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 優 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 中川 三紀夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭63−257128(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yu Sugimoto 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Mikio Nakagawa 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Incorporated (56) References JP-A-63-257128 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体と酸化物超電導体を構成す
る元素を含む材料のうち少なくとも一方からなる粉末を
圧縮成形して棒状の成形体を作成し、次いでこの成形体
を非酸化性金属からなる一次金属層で被覆したうえで、
この成形体を多数本集合し、得られた集合体を上記非酸
化性金属より硬い金属からなる二次金属層で被覆したの
ち、伸線加工を施し、次いで熱処理することを特徴とす
る酸化物超電導線の製造方法。
1. A rod-shaped molded body is produced by compression-molding a powder made of at least one of an oxide superconductor and a material containing an element constituting the oxide superconductor, and the molded body is then made of a non-oxidizing metal. After coating with a primary metal layer consisting of
An oxide characterized in that a large number of the formed bodies are assembled, and the obtained assembly is covered with a secondary metal layer made of a metal harder than the non-oxidizing metal, followed by wire drawing and then heat treatment. Superconducting wire manufacturing method.
JP62124553A 1987-03-20 1987-05-21 Manufacturing method of oxide superconducting wire Expired - Fee Related JP2517597B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62124553A JP2517597B2 (en) 1987-05-21 1987-05-21 Manufacturing method of oxide superconducting wire
DE3887910T DE3887910T2 (en) 1987-03-20 1988-03-18 Method for producing a wire made of superconducting oxide and wire produced therewith.
EP88302417A EP0283313B1 (en) 1987-03-20 1988-03-18 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
CN88101444.3A CN1027937C (en) 1987-03-20 1988-03-19 Method of producting oxide superconducting wire and oxide superconducting wire produced by this method
CA000561971A CA1338753C (en) 1987-03-20 1988-03-21 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
US07/831,663 US5168127A (en) 1987-03-20 1992-02-06 Oxide superconducting wire
US07/932,933 US5283232A (en) 1987-03-20 1992-08-20 Method for producing oxide superconducting composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124553A JP2517597B2 (en) 1987-05-21 1987-05-21 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPS63289724A JPS63289724A (en) 1988-11-28
JP2517597B2 true JP2517597B2 (en) 1996-07-24

Family

ID=14888327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124553A Expired - Fee Related JP2517597B2 (en) 1987-03-20 1987-05-21 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2517597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762673B1 (en) * 1998-02-10 2004-07-13 American Superconductor Corp. Current limiting composite material

Also Published As

Publication number Publication date
JPS63289724A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
US5283232A (en) Method for producing oxide superconducting composite wire
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
EP0299788B1 (en) Method of producing a superconducting wire including an oxide superconductor
EP0305820A2 (en) Method of manufacturing a superconductor
US5663528A (en) Oxide superconductive wire and process for manufacturing the same
EP0449222B1 (en) Thallium oxide superconductor and method of preparing the same
JP2517597B2 (en) Manufacturing method of oxide superconducting wire
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP3612856B2 (en) Manufacturing method of oxide superconductor
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2637427B2 (en) Superconducting wire manufacturing method
JP3692657B2 (en) Oxide superconducting wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2642644B2 (en) Method for producing oxide-based superconducting wire
CA1338753C (en) Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
KR20010040471A (en) Methods for Producing Precursor Material for the Production of High-Temperature Superconducting Wires
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH0644841A (en) Manufacture of oxide superconducting wire rod
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
JPH09288919A (en) Oxide superconducting wire material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees