JPH11273469A - Superconductive precursor composite wire and manufacture of superconductive composite wire - Google Patents

Superconductive precursor composite wire and manufacture of superconductive composite wire

Info

Publication number
JPH11273469A
JPH11273469A JP10075600A JP7560098A JPH11273469A JP H11273469 A JPH11273469 A JP H11273469A JP 10075600 A JP10075600 A JP 10075600A JP 7560098 A JP7560098 A JP 7560098A JP H11273469 A JPH11273469 A JP H11273469A
Authority
JP
Japan
Prior art keywords
layer
superconducting
alloy
composite wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10075600A
Other languages
Japanese (ja)
Other versions
JP4001996B2 (en
Inventor
亮 ▲高▼木
Akira Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP07560098A priority Critical patent/JP4001996B2/en
Publication of JPH11273469A publication Critical patent/JPH11273469A/en
Application granted granted Critical
Publication of JP4001996B2 publication Critical patent/JP4001996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductive composite wire having a low AC loss at a low cost by providing a metal layer such as an Au layer around a filament made of a precursor material for a superconductor, and arranging Ag or its alloy on its outside. SOLUTION: This superconductive precursor composite wire is provided with a layer of at least one kind of metal selected from Au, Pt, Pd, hand Rh around a filament, and Ag or an Ag alloy is arranged on its outside. The metal such as Au forms a high-resistance alloy between it and Ag by a heat treatment. When the composite wire is heat-treated for generating a superconductive material, a high-resistance layer of an Ag-Au alloy is formed around the filament, and an AC loss can be reduced by this high-resistance layer. These metals are used in the pure metal state easily available when a composite billet is assembled, thus the raw material cost can be reduced, and the manufacturing process is simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流損失の低減し
た酸化物超電導複合線材を得ることを可能とする超電導
前駆複合線材、および酸化物超電導複合線材の製造方法
に関する。
The present invention relates to a superconducting precursor composite wire capable of obtaining an oxide superconducting composite wire having reduced AC loss, and to a method for producing an oxide superconducting composite wire.

【0002】[0002]

【従来の技術】酸化物超電導線、例えばBi系超電導線
やY系超電導線は、超電導物質生成時に必要な酸素透過
性や、加工性、および超電導物質の配向性を確保するた
めに、AgまたはAg合金からなるシースの中に超電導
物質の原料粉を封入し、減面加工し、更に圧延加工を施
すパウダーインチューブ法により作製されるのが一般的
である。
2. Description of the Related Art An oxide superconducting wire, for example, a Bi-based superconducting wire or a Y-based superconducting wire is made of Ag or a superconducting material in order to secure oxygen permeability, workability, and orientation of the superconducting material necessary for producing the superconducting material. In general, it is manufactured by a powder-in-tube method in which a raw material powder of a superconducting substance is sealed in a sheath made of an Ag alloy, the surface is reduced, and rolling is performed.

【0003】このような方法で作製された超電導線を交
流で使用する場合、マトリクス部の電気抵抗が小さい
と、フィラメント同士が電磁気的に結合して閉回路を形
成し、その変動磁場を遮蔽するように流れる電流により
ジュール損失(交流損失の一種)が発生する。このジュ
ール損失を低減する方法として、シース材料であるAg
またはAg合金に、Au、Pd、Ptなどの元素を添加
し、電気抵抗を増大させて、交流損失を低減する方法が
ある。
When a superconducting wire manufactured by such a method is used in alternating current, if the electric resistance of the matrix portion is small, the filaments are electromagnetically coupled to each other to form a closed circuit, thereby shielding the fluctuating magnetic field. Joule loss (a type of AC loss) occurs due to the flowing current. As a method of reducing this Joule loss, Ag which is a sheath material is used.
Alternatively, there is a method in which elements such as Au, Pd, and Pt are added to an Ag alloy to increase electric resistance and reduce AC loss.

【0004】Au、Pd、Pt等の貴金属を使う理由
は、主として2つある。その一つは、これらの貴金属
は、Bi系やY系の超電導物質とは反応し難く、超電導
特性に悪影響を及ぼさないためである。もう一つは、こ
れらの貴金属を添加した結果、形成されたAg−Au合
金やAg−Pd合金は、加工性に優れており、通常のパ
ウダーインチューブ法を適用することができるためであ
る。
There are mainly two reasons for using precious metals such as Au, Pd, and Pt. One is that these noble metals hardly react with Bi-based and Y-based superconducting materials and do not adversely affect the superconducting properties. Another reason is that the Ag-Au alloy and Ag-Pd alloy formed as a result of adding these noble metals are excellent in workability, and a normal powder-in-tube method can be applied.

【0005】[0005]

【発明が解決しようとする課題】しかし、Ag−Au合
金などは需要が少ないため高価であり、これをマトリク
ス全体に用いたのでは、得られた線材全体が高価とな
る。
However, Ag-Au alloys and the like are expensive because of low demand, and if they are used for the whole matrix, the whole obtained wire becomes expensive.

【0006】[0006]

【課題を解決するための手段】本発明は、このような状
況に鑑みなされ、交流損失の低減した酸化物超電導複合
線材を安価に作製することを可能とする超電導前駆複合
線材を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a superconducting precursor composite wire capable of inexpensively producing an oxide superconducting composite wire with reduced AC loss. Aim.

【0007】本発明の他の目的は、交流損失の低減した
酸化物超電導複合線材を安価に作製することを可能とす
る酸化物超電導複合線材の製造方法を提供することにあ
る。上記課題を解決するため、本発明は、超電導体とな
り得る前駆物質からなるフィラメントの周囲にAu層、
Pt層、Pd層、Ir層およびRh層からなる群から選
ばれた少なくとも1種の金属層を設け、その外側にAg
またはAg合金を配置したことを特徴とする超電導前駆
複合線材を提供する。
Another object of the present invention is to provide a method for manufacturing an oxide superconducting composite wire which enables low-cost production of an oxide superconducting composite wire with reduced AC loss. In order to solve the above-mentioned problems, the present invention provides an Au layer around a filament made of a precursor that can be a superconductor,
At least one metal layer selected from the group consisting of a Pt layer, a Pd layer, an Ir layer, and a Rh layer is provided, and Ag is provided outside the metal layer.
Alternatively, the present invention provides a superconducting precursor composite wire in which an Ag alloy is disposed.

【0008】また、本発明は、超電導体となり得る前駆
物質からなるフィラメントの周囲にAgまたはAg合金
の層を設け、その外側にAu層、Pt層、Pd層、Ir
層およびRh層からなる群から選ばれた少なくとも1種
の金属層を配置したことを特徴とする超電導前駆複合線
材を提供する。
Further, the present invention provides an Ag or Ag alloy layer around a filament made of a precursor which can be a superconductor, and an Au layer, a Pt layer, a Pd layer, an Ir layer outside the layer.
A superconducting precursor composite wire comprising at least one metal layer selected from the group consisting of a layer and a Rh layer.

【0009】上記金属層は、パイプで形成してもよい
が、箔を巻いたり、蒸着、塗布、ディッピング等により
形成してもよい。更に、本発明は、超電導体となり得る
前駆物質からなるフィラメントの周囲にAgまたはAg
合金の層を設けたものを複数本集合させると共に、この
集合したフィラメント群の中に、Au製金属体、Pt製
金属体、Pd製金属体、Ir製金属体およびRh製金属
体からなる群から選ばれた少なくとも1種の金属体を配
置したことを特徴とする超電導前駆複合線材を提供す
る。
The metal layer may be formed by a pipe, but may be formed by winding a foil, or by vapor deposition, coating, dipping, or the like. Further, the present invention relates to a method for forming Ag or Ag around a filament made of a precursor which can be a superconductor.
A plurality of alloy layers provided with an alloy layer are assembled, and a group consisting of a metal body made of Au, a metal body made of Pt, a metal body made of Pd, a metal body made of Ir, and a metal body made of Rh is included in the group of the collected filaments. A superconducting precursor composite wire, wherein at least one metal body selected from the group consisting of:

【0010】金属体を配置する位置は、中心部が望まし
いが、複数箇所に分散して配置してもよい。更にまた、
本発明は、上述の超電導前駆複合線材を熱処理すること
により、前記前駆物質を超電導体にするとともに、前記
Au、Pt、Pd、IrおよびRhからなる群から選ば
れた少なくとも1種の金属を拡散させて、高抵抗の合金
層を形成することを特徴とする超電導複合線材の製造方
法を提供する。
The metal body is preferably located at the center, but may be distributed at a plurality of locations. Furthermore,
The present invention heat-treats the above-described superconducting precursor composite wire to convert the precursor into a superconductor and diffuse at least one metal selected from the group consisting of Au, Pt, Pd, Ir and Rh. Thus, a method for manufacturing a superconducting composite wire, wherein a high-resistance alloy layer is formed, is provided.

【0011】本発明に係る超電導前駆複合線材には、以
下の3つの態様がある。 (1)フィラメントの周囲にAu、Pt、Pd、Irお
よびRhからなる群から選ばれた少なくとも1種の金属
の層を設け、その外側にAgまたはAg合金を配置した
構造。
The superconducting precursor composite wire according to the present invention has the following three embodiments. (1) A structure in which at least one metal layer selected from the group consisting of Au, Pt, Pd, Ir, and Rh is provided around a filament, and Ag or an Ag alloy is arranged outside the layer.

【0012】(2)フィラメントの周囲にAgまたはA
g合金の層を設け、その外側にAu、Pt、Pd、Ir
およびRhからなる群から選ばれた少なくとも1種の金
属の層を配置した構造。
(2) Ag or A around the filament
g alloy layer, Au, Pt, Pd, Ir outside
And at least one metal layer selected from the group consisting of Rh.

【0013】(3)周囲にAgまたはAg合金の層を設
けた複数のフィラメント群の中に、Au、Pt、Pd、
IrおよびRhからなる群から選ばれた少なくとも1種
の金属体を配置した構造。
(3) Au, Pt, Pd, and the like are included in a plurality of filament groups provided with a layer of Ag or an Ag alloy around them.
A structure in which at least one metal body selected from the group consisting of Ir and Rh is arranged.

【0014】上記(1)および(2)の構造の場合、金
属層の厚さは、等価フィラメント径に対して、好ましく
は0.05ないし5%、より好ましくは0.05〜3%
であるのがよい。
In the case of the above structures (1) and (2), the thickness of the metal layer is preferably 0.05 to 5%, more preferably 0.05 to 3% with respect to the equivalent filament diameter.
It is good.

【0015】金属層の厚さが上記の範囲であれば、熱処
理後に得られる高抵抗層の厚さがフィラメント同士の電
磁気的結合を遮断するのに十分な厚さとなると共に、コ
ストアップを抑制することが出来る。
When the thickness of the metal layer is within the above range, the thickness of the high-resistance layer obtained after the heat treatment is sufficient to cut off the electromagnetic coupling between the filaments, and the cost is suppressed. I can do it.

【0016】ここで、等価フィラメント径とは、フィラ
メントを完全な円形と仮定した場合の、その円の直径で
ある。通常、フィラメントは加工により複雑な形状とな
るので、仕込みの段階からの加工度を考慮して、相似計
算により等価フィラメント径を求める。
Here, the equivalent filament diameter is the diameter of the circle assuming that the filament is a perfect circle. Usually, since a filament has a complicated shape due to processing, an equivalent filament diameter is obtained by similar calculation in consideration of the degree of processing from the stage of preparation.

【0017】また、上記(3)の構造の場合、金属体の
等価径は、超電導線のフィラメント部を除いた全マトリ
クス重量の1ないし20重量%になるように定めること
が好ましく、1〜10%がより好ましい。
In the case of the above structure (3), the equivalent diameter of the metal body is preferably determined to be 1 to 20% by weight of the total matrix weight excluding the filament portion of the superconducting wire, and preferably 1 to 10%. % Is more preferred.

【0018】金属体の等価径が上記の範囲であれば、熱
処理後に得られる高抵抗層がフィラメント同士の電磁気
的結合を遮断するのに十分なものになるとともに、コス
トアップを抑制することが出来る。
When the equivalent diameter of the metal body is within the above range, the high-resistance layer obtained after the heat treatment is sufficient to cut off the electromagnetic coupling between the filaments, and it is possible to suppress an increase in cost. .

【0019】ここで、等価径とは、金属体を完全な円形
と仮定した場合の、その円の直径である。なお、金属層
および金属体は、単一種類の金属からなるものであって
もよいが、複数種類の金属を積層したものであってもよ
い。
Here, the equivalent diameter is the diameter of the circle assuming that the metal body is a perfect circle. The metal layer and the metal body may be made of a single kind of metal, or may be made of a laminate of a plurality of kinds of metals.

【0020】本発明で使用されるAu、Pt、Pd、I
rおよびRhからなる群から選ばれた金属は、いずれも
熱処理によりAgとの間で高抵抗の合金を形成する金属
である。例えば、Auは、それ自体は低い抵抗を有する
が、熱処理により高抵抗のAu−Ag合金を形成する。
Au, Pt, Pd, I used in the present invention
Any metal selected from the group consisting of r and Rh is a metal that forms a high-resistance alloy with Ag by heat treatment. For example, Au itself has low resistance, but forms a high-resistance Au-Ag alloy by heat treatment.

【0021】以上説明した本発明の超電導前駆複合線材
は、超電導物質生成のための熱処理に供されるが、その
際、Au等又はAgが拡散し、その結果、フィラメント
の周囲にAg−Au合金等の高抵抗層が形成される。こ
のように形成された高抵抗層により、交流損失を低減す
ることが可能である。
The superconducting precursor composite wire of the present invention described above is subjected to a heat treatment for producing a superconducting substance. At this time, Au or Ag diffuses, and as a result, an Ag—Au alloy Is formed. AC loss can be reduced by the high resistance layer formed in this manner.

【0022】また、本発明によれば、高抵抗層を形成す
るためのAu、Pt、Pd、IrおよびRhからなる群
から選ばれた金属は、複合ビレット組立時に入手容易な
純金属の状態で用いるので、マトリクス全体に貴金属を
合金化させたものを用いる場合に比べて原料コストを低
減出来、かつ製造工程が簡略化される。またマトリクス
全体をAg−Au合金化する場合に比べ、Au等の使用
量を少なくすることができ、この点でも、安価な製造が
可能となる。
According to the present invention, a metal selected from the group consisting of Au, Pt, Pd, Ir and Rh for forming a high resistance layer is a pure metal which is easily available at the time of assembling the composite billet. Since it is used, the raw material cost can be reduced and the manufacturing process can be simplified as compared with the case where a precious metal is alloyed for the entire matrix. Also, compared to the case where the whole matrix is made of an Ag-Au alloy, the amount of Au or the like used can be reduced, and in this regard, inexpensive manufacturing is possible.

【0023】なお、上記(2)の場合には、当該超電導
前駆複合線を更にAgまたはAg合金ビュレット入れて
線材化した場合は、Au等の金属層の内側と外側の両面
にAgまたはAg合金の層が存在するので、Au−Ag
等の合金層は両界面に形成されることになる。そのた
め、高抵抗の合金層が多量に超電導フィラメントを囲ん
だ、交流損失の小さい超電導複合線材を製造することが
出来る、Au等を速やかに拡散できるという効果が得ら
れる。
In the case of the above (2), when the superconducting precursor composite wire is further made of Ag or an Ag alloy burette to form a wire, the Ag or Ag alloy is formed on both the inner and outer surfaces of a metal layer such as Au. Au—Ag
Are formed at both interfaces. Therefore, it is possible to produce a superconducting composite wire having a large amount of a high-resistance alloy layer surrounding the superconducting filament, a small AC loss, and to quickly diffuse Au and the like.

【0024】また、上記(3)の場合は、金属体とし
て、線状、棒状のものを利用出来るので、製造し易いと
いう利点がある。次に、本願の他の発明は、超電導体と
なり得る前駆物質からなるフィラメントの周囲にAgま
たはAg合金の層を設けたものを複数本集合させると共
に、この集合したフィラメント群の中に、Au、Pt、
Pd、IrおよびRhからなる群から選ばれた少なくと
も1種を含む合金からなる金属体を少なくとも1種配置
したことを特徴とする超電導前駆複合線材である。
Further, in the case of the above (3), a linear or rod-shaped metal body can be used, so that there is an advantage that manufacture is easy. Next, another invention of the present application relates to assembling a plurality of filaments made of a precursor that can be a superconductor and having a layer of Ag or an Ag alloy provided around a filament, and including Au, Pt,
A superconducting precursor composite wire characterized in that at least one metal body made of an alloy containing at least one selected from the group consisting of Pd, Ir and Rh is arranged.

【0025】合金としては、Au、Pt、Pd、Irお
よびRhを互いに合金化したものの他、それらとAgと
の合金も利用出来る。この超電導前駆複合線材も、熱処
理することにより、前記前駆物質を超電導体にするとと
もに、前記Au、Pt、Pd、IrおよびRhからなる
群から選ばれた少なくとも1種を拡散させて、高抵抗の
合金層を形成することで、交流損失の少ない超電導複合
線材を製造出来る。
As alloys, Au, Pt, Pd, Ir and Rh may be alloyed with each other, or alloys of them with Ag may be used. This superconducting precursor composite wire is also heat-treated to convert the precursor into a superconductor and to diffuse at least one selected from the group consisting of Au, Pt, Pd, Ir and Rh, to obtain a high-resistance By forming the alloy layer, a superconducting composite wire with low AC loss can be manufactured.

【0026】この発明においても、マトリクス全体をA
g−Au等の合金で形成する場合に比べて、Au等の使
用量を低減して、コストダウンを図ることが出来る。但
し、Au,Pt等を合金化する手間がかかる。しかし、
線状、棒状の金属体を利用出来る点では製造し易い。
Also in the present invention, the whole matrix is A
Compared with the case of forming with an alloy such as g-Au, the usage amount of Au or the like can be reduced, and the cost can be reduced. However, it takes time to alloy Au, Pt, and the like. But,
It is easy to manufacture because a linear or rod-shaped metal body can be used.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態とし
て、種々の実施例を示す。 実施例1 Bi2223(Bi2 Sr2 Ca2 Cu310)からな
る酸化物超電導原料粉末を、径15mm、長さ500m
mの棒状に圧粉したものを、0.1mm肉厚のAuシー
スで包んで、超電導コア部とした。これを、内径16m
m、外径20mm、長さ550mmの純銀パイプに挿入
し、径2mmになるまで縮径し、複合多芯線用素線とし
た。この複合多芯線用素線の複数本を、内径16mm、
外径20mm、長さ550mmの純銀パイプに嵌合し、
更に縮径加工、圧延を行い、厚さ0.2mm、幅3mm
のテープ状に加工し、図1に示す断面構造を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments will be described below as embodiments of the present invention. Example 1 Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10) of the oxide superconducting material powder consisting of, diameter 15 mm, length 500m
The superconducting core was wrapped in a 0.1 mm-thick Au sheath and pressed into a rod shape of m. This is 16m inside diameter
m, an outer diameter of 20 mm, and a length of 550 mm were inserted into a pure silver pipe, and the diameter was reduced to 2 mm to obtain a composite multifilamentary strand. Plural wires of this composite multifilamentary wire are
Fits into a pure silver pipe with an outer diameter of 20mm and a length of 550mm,
Furthermore, diameter reduction processing and rolling are performed, thickness 0.2 mm, width 3 mm
To obtain a cross-sectional structure shown in FIG.

【0028】図1において、酸化物超電導原料粉末1が
Auシース2で包まれており、更に純銀パイプ3に収容
されて、複合多芯線用素線4が形成され、この複合多芯
線用素線4が複数本、純銀パイプ5内に収容されて超電
導前駆複合線材が構成されている。
In FIG. 1, an oxide superconducting raw material powder 1 is wrapped in an Au sheath 2 and further accommodated in a pure silver pipe 3 to form a composite multifilamentary wire 4. 4 are housed in a pure silver pipe 5 to form a superconducting precursor composite wire.

【0029】その後、図1に示す断面構造の超電導前駆
複合線材に、825℃で超電導生成熱処理を施すことに
より、臨界電流密度20kA/cm2 の超電導線を作製
した。その際、Auシース2のAu原子は純銀パイプ3
のAg中に拡散し、その界面に厚さ1μmのAg−Au
合金層を形成していた。
Thereafter, the superconducting precursor composite wire having the cross-sectional structure shown in FIG. 1 was subjected to a superconducting heat treatment at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 . At this time, the Au atoms in the Au sheath 2 are
Of Ag—Au having a thickness of 1 μm
An alloy layer was formed.

【0030】このようにして得た超電導線材の交流損失
を、磁化法により外部印可磁界10mTで測定したとこ
ろ、4.3J/m3 であった。また、純銀パイプの代わ
りにAg−10%Au合金パイプを用いて、後述する比
較例2で製造した場合に比べて、原料費を約50%低減
することができた。
The AC loss of the superconducting wire thus obtained was 4.3 J / m 3 as measured by a magnetization method with an externally applied magnetic field of 10 mT. Further, the raw material cost was able to be reduced by about 50% as compared with the case where the Ag-10% Au alloy pipe was used in place of the pure silver pipe, and was manufactured in Comparative Example 2 described later.

【0031】実施例2 Bi2223(Bi2 Sr2 Ca2 Cu310)からな
る酸化物超電導原料粉末を、径15mm、長さ500m
mの棒状に圧粉したものを超電導コア部とした。これ
を、内径16mm、外径20mm、長さ550mmの純
銀パイプに挿入し、径2mmになるまで縮径し、複合多
芯線用素線とした。この複合多芯線用素線の外側に0.
1mmの肉厚のAuシースを巻き付けたもの複数本を、
内径16mm、外径20mm、長さ550mmのAgM
gパイプに嵌合し、縮径加工、圧延を行い、厚さ0.2
mm、幅3mmのテープ状に加工し、図2に示す断面構
造を得た。
Example 2 An oxide superconducting raw material powder made of Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 ) was used to prepare a powder having a diameter of 15 mm and a length of 500 m.
The superconducting core was obtained by pressing the powder into a rod shape of m. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and was reduced in diameter until the diameter became 2 mm to obtain a composite multifilamentary element wire. The outside of the composite multifilamentary wire is set at 0.
A plurality of 1 mm thick Au sheaths wound around
AgM with inner diameter 16mm, outer diameter 20mm, length 550mm
g Fitted to a pipe, reduced in diameter, and rolled to a thickness of 0.2
2 mm and a width of 3 mm to obtain a cross-sectional structure shown in FIG.

【0032】図2において、酸化物超電導原料粉末11
が純銀パイプ13で包まれており、更にAuシース12
に収容されて、複合多芯線用素線14が形成され、この
複合多芯線用素線14が複数本、純銀パイプ15内に収
容されて超電導前駆複合線材が構成されている。
In FIG. 2, the oxide superconducting raw material powder 11
Is wrapped in a sterling silver pipe 13 and further an Au sheath 12
To form a composite multifilamentary element wire 14. A plurality of the composite multifilamentary elementary wires 14 are accommodated in a pure silver pipe 15 to constitute a superconducting precursor composite wire.

【0033】その後、図2に示す断面構造の超電導前駆
複合線材に、825℃で超電導生成熱処理を行うことに
より、臨界電流密度20kA/cm2 の超電導線を作製
した。その際、Auシース12のAu原子は、純銀パイ
プ13のAg中および純銀パイプ15のAgに拡散し、
それぞれ厚さ1μmのAg−Au合金層を形成してい
た。
Thereafter, the superconducting precursor composite wire having the cross-sectional structure shown in FIG. 2 was subjected to a superconducting heat treatment at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 . At this time, Au atoms in the Au sheath 12 diffuse into Ag of the pure silver pipe 13 and into Ag of the pure silver pipe 15,
Ag-Au alloy layers each having a thickness of 1 μm were formed.

【0034】このようにして得た超電導線材の交流損失
を、磁化法により外部印可磁界10mTで測定したとこ
ろ、4.3J/m3 であった。 実施例3 Bi2223(Bi2 Sr2 Ca2 Cu310)からな
る酸化物超電導原料粉末を、径15mm、長さ500m
mの棒状に圧粉したものを超電導コア部とした。これ
を、内径16mm、外径20mm、長さ550mmの純
銀パイプに挿入し、径2mmになるまで縮径し、複合多
芯線用素線とした。この複合多芯線用素線の複数本を、
内径16mm、外径20mm、長さ550mmの純銀パ
イプに嵌合した。その際、中心部に径1mmのPt線を
配置し、縮径加工、圧延を行い、厚さ0.2mm、幅3
mmのテープ状に加工し、図3に示す断面構造を得た。
The AC loss of the superconducting wire thus obtained was measured by a magnetizing method at an externally applied magnetic field of 10 mT and found to be 4.3 J / m 3 . Example 3 Bi-2223-based oxide superconductor material powder consisting of (Bi 2 Sr 2 Ca 2 Cu 3 O 10), diameter 15 mm, length 500m
The superconducting core was obtained by pressing the powder into a rod shape of m. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and was reduced in diameter until the diameter became 2 mm to obtain a composite multifilamentary element wire. A plurality of strands of this composite multifilamentary wire are
A pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm was fitted. At that time, a Pt wire having a diameter of 1 mm was arranged at the center, diameter reduction processing and rolling were performed, and the thickness was 0.2 mm and the width was 3 mm.
mm, and the cross-sectional structure shown in FIG. 3 was obtained.

【0035】図3において、酸化物超電導原料粉末21
が純銀パイプ23で包まれて、複合多芯線用素線24が
形成され、この複合多芯線用素線24が複数本、中心部
にPt線26を配置した状態で、純銀パイプ25内に収
容されて超電導前駆複合線材が構成されている。
In FIG. 3, the oxide superconducting raw material powder 21
Is wrapped in a pure silver pipe 23 to form a composite multifilamentary wire 24, and a plurality of the composite multifilamentary wires 24 are housed in a pure silver pipe 25 in a state where a Pt wire 26 is arranged at the center. Thus, a superconducting precursor composite wire is formed.

【0036】その後、図3に示す断面構造の超電導前駆
複合線材に、825℃で超電導生成熱処理を行い、臨界
電流密度20kA/cm2 の超電導線を作製した。その
際、複合多芯線用素線24の周りのPt線22のPt原
子は、純銀パイプ23のAg中に拡散し、厚さ0.5μ
mのAg−Pt合金層を形成していた。
Thereafter, the superconducting precursor composite wire having the cross-sectional structure shown in FIG. 3 was subjected to a superconducting heat treatment at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 . At this time, Pt atoms of the Pt wire 22 around the composite multifilamentary wire 24 diffuse into Ag of the pure silver pipe 23 and have a thickness of 0.5 μm.
An Ag-Pt alloy layer having a thickness of m was formed.

【0037】このようにして得た超電導線材の交流損失
を、磁化法により外部印可磁界10mTで測定したとこ
ろ、5.1J/m3 であった。 比較例1 Bi2223酸化物超電導原料粉末をφ15mm×L5
00mmの棒状に圧粉したものを超電導コア部とした。
これを、内径16mm、外径20mm、長さ550mm
の純銀パイプに挿入し、φ2mmまで縮径し、複合多芯
線用素線とした。これを、内径16mm、外径20m
m、長さ550mmの純銀パイプに嵌合し縮径加工、圧
延を行い厚さ0.2mm、幅3mmのテープ状に加工し
た。この後、825℃で超電導生成熱処理を行い、臨界
電流密度20kA/cm2 の超電導線を作製した。
The AC loss of the superconducting wire thus obtained was measured by a magnetizing method with an externally applied magnetic field of 10 mT and found to be 5.1 J / m 3 . Comparative Example 1 Bi2223 oxide superconducting raw material powder was φ15 mm × L5
A superconducting core was obtained by pressing a bar having a diameter of 00 mm.
This is converted to an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm.
And then reduced in diameter to φ2 mm to obtain a composite multifilamentary strand. This is 16mm inside diameter, 20m outside diameter
It was fitted into a pure silver pipe having a length of 550 mm and a diameter of 550 mm, reduced in diameter and rolled, and processed into a tape shape having a thickness of 0.2 mm and a width of 3 mm. Thereafter, a superconducting heat treatment was performed at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 .

【0038】この線材の交流損失を磁化法により外部印
可磁界10mTで測定したところ、36J/m3 であっ
た。 比較例2 比較例1において、純銀パイプの代わりにAg−10%
Au合金パイプを用いた。
The AC loss of this wire was measured by a magnetization method with an externally applied magnetic field of 10 mT, and was found to be 36 J / m 3 . Comparative Example 2 In Comparative Example 1, Ag-10% was used instead of the pure silver pipe.
An Au alloy pipe was used.

【0039】この線材の交流損失を磁化法により外部印
可磁界10mTで測定したところ4.0J/m3 であっ
た。 実施例4 Pt線の代わりにPt−Ag合金線を用いたことを除い
て、実施例3と同様の超電導線を作製した。このように
して得た超電導線材の交流損失を、磁化法により外部印
可磁界10mTで測定したところ、比較例1,2よりも
低い値が得られた。
The AC loss of this wire was measured by a magnetizing method at an externally applied magnetic field of 10 mT and found to be 4.0 J / m 3 . Example 4 A superconducting wire similar to that of Example 3 was produced except that a Pt-Ag alloy wire was used instead of the Pt wire. The AC loss of the superconducting wire thus obtained was measured by a magnetizing method with an externally applied magnetic field of 10 mT, and a value lower than Comparative Examples 1 and 2 was obtained.

【0040】[0040]

【発明の効果】以上詳細に説明したように、本発明の超
電導前駆複合線材によれば、超電導物質生成のための熱
処理において、Au等のAg以外の金属がAg中に拡散
し、その結果、フィラメントの周囲にAg−Au合金等
の高抵抗層が形成されるので、この高抵抗層により、交
流損失を低減することが可能である。
As described in detail above, according to the superconducting precursor composite wire of the present invention, metals other than Ag, such as Au, diffuse into Ag during the heat treatment for producing a superconducting material. Since a high-resistance layer such as an Ag-Au alloy is formed around the filament, the AC loss can be reduced by the high-resistance layer.

【0041】また、本発明の超電導前駆複合線材および
超電導複合線材の製造方法によれば、高抵抗層を形成す
るためのAu、Pt、Pd、IrおよびRhからなる群
から選ばれた金属は、複合ビレット組立時に入手し易い
純金属の状態で嵌合されるので、貴金属を合金化させた
ものを用いる場合に比べ、原料コストを低減出来ると共
に、製造工程が簡略化される。更に、マトリクス全体を
合金にする場合に比べて、Au等の高価な貴金属の量を
少なくすることができ、その結果、安価な製造が可能と
なる。
According to the superconducting precursor composite wire and the method for producing a superconducting composite wire of the present invention, a metal selected from the group consisting of Au, Pt, Pd, Ir and Rh for forming a high-resistance layer comprises: Since the fitting is performed in a pure metal state that is easily available at the time of assembling the composite billet, the cost of raw materials can be reduced and the manufacturing process can be simplified as compared with the case of using a precious metal alloy. Furthermore, the amount of expensive noble metal such as Au can be reduced as compared with the case where the entire matrix is made of an alloy, and as a result, inexpensive production becomes possible.

【0042】Au等の合金からなる金属体を用いたもの
にあっても、マトリクス全体を合金化する場合に比べ、
安価に製造できるという利点がある。更に、金属体を用
いたものにあっては、取扱易い線状のものなどを用いる
ことが出来、製造し易いという利点がある。
Even in the case of using a metal body made of an alloy such as Au, compared with the case where the whole matrix is alloyed,
There is an advantage that it can be manufactured at low cost. Furthermore, in the case of using a metal body, a linear object that can be easily handled can be used, and there is an advantage that it is easy to manufacture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る超電導前駆複合線材を示す断面
図。
FIG. 1 is a cross-sectional view showing a superconducting precursor composite wire according to Example 1.

【図2】実施例2に係る超電導前駆複合線材を示す断面
図。
FIG. 2 is a cross-sectional view showing a superconducting precursor composite wire according to Example 2.

【図3】実施例3に係る超電導前駆複合線材を示す断面
図。
FIG. 3 is a sectional view showing a superconducting precursor composite wire according to a third embodiment.

【符号の説明】[Explanation of symbols]

1,11,21…酸化物超電導原料粉末 2,12…Auシース 3,5,13,15,23,25…純銀パイプ 4,14,24…複合多芯線用素線 26…Pt線 1,11,21 ... oxide superconducting raw material powder 2,12 ... Au sheath 3,5,13,15,23,25 ... pure silver pipe 4,14,24 ... element wire for composite multi-core wire 26 ... Pt wire

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超電導体となり得る前駆物質からなるフ
ィラメントの周囲にAu層、Pt層、Pd層、Ir層お
よびRh層からなる群から選ばれた少なくとも1種の金
属層を設け、その外側にAgまたはAg合金を配置した
ことを特徴とする超電導前駆複合線材。
At least one metal layer selected from the group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and a Rh layer is provided around a filament made of a precursor that can become a superconductor, and outside the filament, A superconducting precursor composite wire, comprising Ag or an Ag alloy.
【請求項2】 超電導体となり得る前駆物質からなるフ
ィラメントの周囲にAgまたはAg合金の層を設け、そ
の外側にAu層、Pt層、Pd層、Ir層およびRh層
からなる群から選ばれた少なくとも1種の金属層を配置
したことを特徴とする超電導前駆複合線材。
2. A layer made of an Ag or Ag alloy is provided around a filament made of a precursor that can become a superconductor, and an outer layer thereof is selected from the group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and a Rh layer. A superconducting precursor composite wire comprising at least one metal layer.
【請求項3】 超電導体となり得る前駆物質からなるフ
ィラメントの周囲にAgまたはAg合金の層を設けたも
のを複数本集合させると共に、この集合したフィラメン
ト群の中に、Au製金属体、Pt製金属体、Pd製金属
体、Ir製金属体およびRh製金属体からなる群から選
ばれた少なくとも1種の金属体を配置したことを特徴と
する超電導前駆複合線材。
3. A plurality of filaments comprising a precursor made of a superconductor and having a layer of Ag or an Ag alloy provided around the filaments, and a metal body made of Au, made of Pt, A superconducting precursor composite wire comprising at least one metal member selected from the group consisting of a metal member, a Pd metal member, an Ir metal member, and a Rh metal member.
【請求項4】 超電導体となり得る前駆物質からなるフ
ィラメントの周囲にAgまたはAg合金の層を設けたも
のを複数本集合させると共に、この集合したフィラメン
ト群の中に、Au、Pt、Pd、IrおよびRhからな
る群から選ばれた少なくとも1種を含む合金からなる金
属体を少なくとも1種配置したことを特徴とする超電導
前駆複合線材。
4. A plurality of filaments made of a precursor or a superconductor and having a layer of Ag or an Ag alloy provided around the filaments, and Au, Pt, Pd, Ir A superconducting precursor composite wire comprising at least one metal body made of an alloy containing at least one selected from the group consisting of Rh and Rh.
【請求項5】 請求項1ないし4のいずれかに記載の超
電導前駆複合線材を熱処理することにより、前記前駆物
質を超電導体にするとともに、前記Au、Pt、Pd、
IrおよびRhからなる群から選ばれた少なくとも1種
を拡散させて、高抵抗の合金層を形成することを特徴と
する超電導複合線材の製造方法。
5. The superconducting precursor composite wire according to claim 1, wherein said precursor is converted into a superconductor and said Au, Pt, Pd,
A method for manufacturing a superconducting composite wire, comprising diffusing at least one selected from the group consisting of Ir and Rh to form a high-resistance alloy layer.
JP07560098A 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire Expired - Fee Related JP4001996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07560098A JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07560098A JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Publications (2)

Publication Number Publication Date
JPH11273469A true JPH11273469A (en) 1999-10-08
JP4001996B2 JP4001996B2 (en) 2007-10-31

Family

ID=13580868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07560098A Expired - Fee Related JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Country Status (1)

Country Link
JP (1) JP4001996B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081953A1 (en) * 2003-03-12 2004-09-23 Kansai Technology Licensing Organization Co., Ltd. Method for manufacturing high-temperature superconducting wire
US6828508B1 (en) * 1999-11-08 2004-12-07 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconductor wire and method of producing the same
WO2006098269A1 (en) * 2005-03-15 2006-09-21 Sumitomo Electric Industries, Ltd. Process for producing superconducting wire rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828508B1 (en) * 1999-11-08 2004-12-07 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconductor wire and method of producing the same
WO2004081953A1 (en) * 2003-03-12 2004-09-23 Kansai Technology Licensing Organization Co., Ltd. Method for manufacturing high-temperature superconducting wire
WO2006098269A1 (en) * 2005-03-15 2006-09-21 Sumitomo Electric Industries, Ltd. Process for producing superconducting wire rod
JP2006260854A (en) * 2005-03-15 2006-09-28 Sumitomo Electric Ind Ltd Manufacturing method of superconductive wire rod

Also Published As

Publication number Publication date
JP4001996B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JPH0377609B2 (en)
JPH02276111A (en) Compound superconductor and its manufacture
JPH0268820A (en) Electric conductor in the form of wire or cable
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JP4001996B2 (en) Superconducting precursor composite wire and method for producing superconducting composite wire
JPH11312420A (en) High-temperature oxide superconducting wire and its manufacture
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
JPS5827605B2 (en) 100% of the population
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP3095399B2 (en) Method for manufacturing compound superconducting conductor
JP3070969B2 (en) Superconducting wire manufacturing method
JPH0146963B2 (en)
JPH10149729A (en) Oxide superconductive wire rod and manufacture thereof
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JPS5933653B2 (en) Method for producing stabilized superconductor
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH04298914A (en) Compound superconductor
JPH10247428A (en) Oxide superconductive wire
JP2004200098A (en) Manufacturing method of oxide superconductive wire rod
JPS604573B2 (en) Manufacturing method of compound hollow superconducting magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees