JPH087681A - A3b type compound superconductive wire rod and manufacture thereof - Google Patents

A3b type compound superconductive wire rod and manufacture thereof

Info

Publication number
JPH087681A
JPH087681A JP6140146A JP14014694A JPH087681A JP H087681 A JPH087681 A JP H087681A JP 6140146 A JP6140146 A JP 6140146A JP 14014694 A JP14014694 A JP 14014694A JP H087681 A JPH087681 A JP H087681A
Authority
JP
Japan
Prior art keywords
metal
type compound
wire
matrix
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140146A
Other languages
Japanese (ja)
Inventor
Hisaki Sakamoto
久樹 坂本
Tomonori Yamada
知礼 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6140146A priority Critical patent/JPH087681A/en
Publication of JPH087681A publication Critical patent/JPH087681A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an A3B type compound superconductive wire rod having improved characteristics by enabling the rate of unreacted residual amount of A metal to a produced amount of the A3B compound in to be controlled substantially uniformly. CONSTITUTION:An A3B type compound superconductive wire rod has a filament aggregated part in which a plurality of A3B type compound filament are buried in matrix metal and a matrix part containing B metal. The diameter of the A3B type compound filament arranged adjacent to the matrix part in this filament aggregated part is made larger than that of the A3B type compound filament arranged in the other part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い臨界電流密度を実現
する優れたA3 B型化合物超電導線とその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excellent A 3 B type compound superconducting wire which realizes a high critical current density and a method for producing the same.

【0002】[0002]

【従来の技術】従来、Nb3 Sn、Nb3 Al、V3
a等のA3 B型化合物超電導体(A15型化合物超電導
体とも称される)は金属間化合物であり加工が極めて困
難であるため、超電導線材を製造するには、上記A3
型化合物超電導体を構成する高融点金属Aと低融点金属
Bとからなる複合ビレットに延伸加工を施して複合線材
とし、次いで、前記高融点金属Aの内部に前記低融点金
属Bを拡散、反応させる拡散熱処理により上記A3 B型
化合物超電導体を反応生成させる製造方法が採用されて
いる。
2. Description of the Related Art Conventionally, Nb 3 Sn, Nb 3 Al, V 3 G
Since A 3 B type compound superconductors such as a (also referred to A15 type compound superconductor) is an intermetallic compound working is extremely difficult, in order to produce a superconducting wire, the A 3 B
A composite billet composed of a high melting point metal A and a low melting point metal B constituting a type compound superconductor is subjected to a drawing process to form a composite wire, and then the low melting point metal B is diffused and reacted inside the high melting point metal A. A manufacturing method is employed in which the A 3 B type compound superconductor is reacted and produced by the diffusion heat treatment.

【0003】以下にA3 B型化合物超電導線の例として
ブロンズ法によるNb3 Sn超電導線の製造方法につい
て説明する。この場合A金属はNbでB金属はSnであ
る。まずマトリックスとしてCu−Sn合金(以下ブロ
ンズと称する)製の棒に穴をあけ、その中にNb芯材を
挿入して1次複合ビレットを形成し、次いで延伸加工を
施し素線とする。この素線をブロンズ管の中に充填して
2次複合ビレットを形成し、次いで延伸加工を施し複合
線材とする。なおこの複合線材を素線とし、更に高次の
複合ビレットを形成することもある。
A method for producing an Nb 3 Sn superconducting wire by the bronze method will be described below as an example of the A 3 B type compound superconducting wire. In this case, the A metal is Nb and the B metal is Sn. First, a Cu-Sn alloy (hereinafter referred to as bronze) rod is formed as a matrix, and a Nb core material is inserted into the rod to form a primary composite billet, which is then drawn to form a strand. This wire is filled in a bronze tube to form a secondary composite billet, and then drawn to give a composite wire. The composite wire may be used as a wire to form a higher-order composite billet.

【0004】さて上記複合線材は、マトリックス金属中
にNbフィラメントが埋め込まれた構造になっており、
この複合線材に550℃〜600℃程度に加熱する拡散
熱処理を施せばブロンズ中のSnがNbフィラメントの
内部に拡散、反応し、Nb3Snが生成する。こうして
Nbフィラメントが超電導フィラメントであるNb3
nフィラメントになり、多芯超電導線が得られるのであ
る。また前記複合線材の外周にSnを被覆してから、拡
散熱処理を施す方法(外部拡散法を呼ばれる)もある。
The above composite wire has a structure in which Nb filaments are embedded in a matrix metal,
When this composite wire is subjected to a diffusion heat treatment of heating at about 550 ° C. to 600 ° C., Sn in the bronze diffuses and reacts inside the Nb filament to produce Nb 3 Sn. Thus, the Nb filament is a superconducting filament of Nb 3 S
It becomes an n-filament, and a multifilamentary superconducting wire can be obtained. There is also a method of coating the outer periphery of the composite wire with Sn and then performing a diffusion heat treatment (called an external diffusion method).

【0005】また、加工性が悪いブロンズを用いず、C
u、Sn、Nb等の単体を用いて複合ビレットを組み立
て、これを延伸加工後、拡散熱処理を施す製造方法も検
討されている。これらの製造方法は、Nb3 Sn以外の
3 B型化合物超電導体の場合にも同様に適用できる。
Further, without using bronze, which has poor workability, C
A manufacturing method of assembling a composite billet using a simple substance such as u, Sn, and Nb, stretching the composite billet, and subjecting the composite billet to diffusion heat treatment is also under study. These manufacturing methods can be similarly applied to the case of an A 3 B type compound superconductor other than Nb 3 Sn.

【0006】ところで超電導特性が高い超電導線を実現
するための一つの条件は、超電導体であるNb3 Snを
多く生成させることである。Nb3 Snは、前記複合線
材に500℃〜800℃程度に加熱する拡散熱処理を施
してブロンズ中のSnをNbフィラメント中に拡散、反
応させて生成させるのであるが、その拡散熱処理時間を
長くすれば、当然、Nb3 Snの生成量は多くなる。従
ってNb3 Snの生成量を多くするには、可能な限り拡
散熱処理時間を長くすることが必要である。
By the way, one condition for realizing a superconducting wire having high superconducting characteristics is to produce a large amount of Nb 3 Sn which is a superconductor. Nb 3 Sn is produced by subjecting the composite wire to a diffusion heat treatment of heating at about 500 ° C. to 800 ° C. to cause Sn in the bronze to diffuse into the Nb filament and react with it. Naturally, the amount of Nb 3 Sn produced increases. Therefore, in order to increase the amount of Nb 3 Sn produced, it is necessary to extend the diffusion heat treatment time as long as possible.

【0007】ところでA3 B型化合物超電導線を用いて
マグネットを組み立てるには、拡散熱処理を施す前にコ
イル状に卷回して、その後拡散熱処理を施す方法が通常
用いられている。A3 B型化合物超電導線を構成するA
3 B型化合物は非常に脆く、拡散熱処理を経てA3 B型
化合物が生成した状態ではコイル状に卷回することが困
難になるからである。
By the way, in order to assemble a magnet using A 3 B type compound superconducting wire, a method is generally used in which a coil is wound before the diffusion heat treatment and then the diffusion heat treatment is performed. A 3 B type compound superconducting wire A
This is because the 3 B type compound is very fragile, and it becomes difficult to wind it into a coil in a state where the A 3 B type compound is produced through the diffusion heat treatment.

【0008】[0008]

【発明が解決しようとする課題】超電導マグネット等に
おける超電導体で成り立つ電流ループでは、通常、コイ
ル状に卷回した超電導線の両端に永久電流スイッチを超
電導接続する。永久電流スイッチは超電導マグネットと
共に寒材中に配置され、理想的には超電導回路の一部を
形成するようになっている。
In a current loop formed of a superconductor in a superconducting magnet or the like, a permanent current switch is usually superconductingly connected to both ends of a coil-shaped superconducting wire. The permanent current switch is placed in the cold material together with the superconducting magnet and ideally forms part of the superconducting circuit.

【0009】しかし実際には永久電流スイッチとコイル
状に卷回した超電導線の両端との接続部には電気抵抗が
残り、この接続部が電流減衰の原因になっている。従っ
てなるべくその接続抵抗を小さくすることが必要であ
る。超電導接続の方法は、超電導フィラメントを露出さ
せた超電導線の端部同士を接触させて半田等によって固
定する方法が一般的である。この際、超電導フィラメン
トを露出させるには、硫酸、硝酸等を含む液でマトリッ
クス金属を溶解すればよい。
However, in practice, electric resistance remains at the connection between the permanent current switch and both ends of the superconducting wire wound in a coil shape, and this connection causes current attenuation. Therefore, it is necessary to reduce the connection resistance as much as possible. The superconducting connection method is generally a method in which the ends of the superconducting wires with the superconducting filaments exposed are brought into contact with each other and fixed by soldering or the like. At this time, in order to expose the superconducting filament, the matrix metal may be dissolved with a liquid containing sulfuric acid, nitric acid or the like.

【0010】しかしA3 B型化合物超電導線の場合、上
述したようにA3 B型化合物超電導体が非常に脆く、溶
解させて超電導フィラメントを露出させると上記超電導
接続する際に割れてしまうことがある。この対策とし
て、当該超電導フィラメントの中心部分に未反応のA金
属部分を残し、この未反応のA金属部分の有する靱性で
以て、該超電導フィラメントの割れを防止する方法が採
用されている。
However, in the case of the A 3 B type compound superconducting wire, as described above, the A 3 B type compound superconductor is very fragile, and if the superconducting filament is exposed by melting it, the superconducting filament may be broken during the superconducting connection. is there. As a countermeasure against this, a method is employed in which an unreacted A metal portion is left in the central portion of the superconducting filament and the toughness of the unreacted A metal portion prevents the superconducting filament from cracking.

【0011】上記方法を採用するには、超電導フィラメ
ントの中心部分に未反応のA金属部分を残すように拡散
熱処理を適度に調節する必要がある。つまりマトリック
ス金属中にA金属フィラメントが埋設された構造の複合
線材に拡散熱処理を施すと、A金属フィラメントの内部
に進行するB金属の拡散は当然、該A金属フィラメント
の外周部分から進行していくのであるから、B金属の拡
散がA金属フィラメントの中心部分に至る前に拡散熱処
理を止めてA金属部分を残す必要があるのである。
In order to adopt the above method, it is necessary to appropriately adjust the diffusion heat treatment so that the unreacted A metal portion remains in the central portion of the superconducting filament. That is, when the composite wire having the structure in which the A metal filament is embedded in the matrix metal is subjected to the diffusion heat treatment, the diffusion of the B metal that proceeds inside the A metal filament naturally proceeds from the outer peripheral portion of the A metal filament. Therefore, it is necessary to stop the diffusion heat treatment and leave the A metal portion before the diffusion of the B metal reaches the central portion of the A metal filament.

【0012】このような超電導フィラメントの中心部分
に未反応のA金属部分が残るようにする、という制限の
ために、十分な拡散熱処理を施すことが難しくなってい
た。なぜなら、超電導フィラメントの配置される位置に
よって、拡散熱処理による反応量のバラツキが大きく、
一部の超電導フィラメントでは必要以上のA金属部分を
残す結果になっていたからである。上述したように、超
電導特性が高い超電導線の実現するための一つの条件
は、超電導体をなるべく多く生成させることであるか
ら、必要以上にA金属部分を残すことは、超電導特性劣
化の原因になるという問題がある。
Due to the limitation that the unreacted A metal portion remains in the central portion of the superconducting filament, it has been difficult to perform sufficient diffusion heat treatment. Because, due to the position where the superconducting filament is arranged, the variation in the reaction amount due to the diffusion heat treatment is large,
This is because some of the superconducting filaments resulted in leaving more A metal portion than necessary. As described above, one condition for realizing a superconducting wire having high superconducting properties is to generate as many superconductors as possible. Therefore, leaving the A metal portion more than necessary causes the deterioration of superconducting properties. There is a problem of becoming.

【0013】[0013]

【課題を解決するための手段】本発明はかかる状況に鑑
み、鋭意研究を行った結果なされたもので、その目的
は、十分な拡散熱処理を施すことを可能にし、高い特性
を有するA3 B型化合物超電導線を実現することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made as a result of intensive studies in view of such circumstances. The purpose of the present invention is to make it possible to perform a sufficient diffusion heat treatment and to provide A 3 B having high characteristics. Type compound superconducting wire.

【0014】即ち本願請求項1記載の発明は、複数のA
3 B型化合物フィラメントがマトリックス金属中に埋設
されてなるフィラメント集合部と、B金属を含有するマ
トリックス部とを有するA3 B型化合物超電導線であっ
て、前記フィラメント集合部内の、前記マトリックス部
の近傍に配置される前記A3 B型化合物フィラメントの
径が、その他の部分に配置されるA3 B型化合物フィラ
メントの径より大きいことを特徴とするA3 B型化合物
超電導線を提供する。
That is, the invention described in claim 1 of the present application includes a plurality of A's.
An A 3 B type compound superconducting wire having a filament assembly part in which a 3 B type compound filament is embedded in a matrix metal, and a matrix part containing a B metal, wherein the matrix part in the filament assembly part is There is provided an A 3 B type compound superconducting wire, wherein the diameter of the A 3 B type compound filament arranged in the vicinity is larger than the diameter of the A 3 B type compound filament arranged in other portions.

【0015】また本願請求項2記載の発明は、A金属芯
材およびマトリックス金属からなる素線をB金属を含む
マトリックス部材または安定化金属材からなる最外シー
スの中に配置して組み立てた複合ビレット、またはA金
属芯材およびマトリックス金属からなる素線と、B金属
を含有するマトリックス部材または安定化金属材とを、
B金属を含有するマトリックス部材または安定化金属材
からなる最外シースの中に配置して組み立てた複合ビレ
ットに、延伸加工を施して複合線材を得、該複合線材に
拡散熱処理を施してA3 B型化合物超電導線を製造する
方法において、前記マトリックス部材の近傍に配置され
るA金属芯材の径をその他の部分に配置されるA金属芯
材の径より大きくなるようにすることを特徴とするA3
B型化合物超電導線の製造方法である。
The invention according to claim 2 of the present application is a composite structure in which an A metal core material and an elemental wire made of a matrix metal are arranged in a matrix member containing a B metal or an outermost sheath made of a stabilized metal material and assembled. A billet, or an element wire composed of an A metal core material and a matrix metal, and a matrix member containing B metal or a stabilizing metal material,
The composite billet, which is arranged and assembled in the outermost sheath made of a matrix member containing B metal or a stabilized metal material, is subjected to a stretching process to obtain a composite wire, and the composite wire is subjected to diffusion heat treatment to obtain A 3 In the method for producing a B-type compound superconducting wire, the diameter of the A metal core material arranged in the vicinity of the matrix member is set to be larger than the diameter of the A metal core material arranged in other portions. Do A 3
It is a method for producing a B-type compound superconducting wire.

【0016】請求項3記載の発明は外部拡散法によるA
3 B型化合物超電導線を製造する場合で、上記同様の複
合線材の外周に、A金属芯材と反応するB金属の供給源
(の一つ)としてB金属を被覆してから拡散熱処理を施
す場合は、前記マトリックス部材の近傍および最外シー
スの近傍に配置されるA金属芯材の径をその他の部分に
配置されるA金属芯材の径より大きくなるようにするA
3 B型化合物超電導線の製造方法である。
The third aspect of the invention is to use the external diffusion method A
3 In the case of manufacturing a B-type compound superconducting wire, the outer periphery of a composite wire similar to the above is coated with B metal as a source (one of) of B metal that reacts with the A metal core material, and then subjected to diffusion heat treatment. In this case, the diameter of the A metal core material arranged in the vicinity of the matrix member and the outermost sheath is made larger than the diameter of the A metal core material arranged in the other portion A
3 A method for producing a B-type compound superconducting wire.

【0017】[0017]

【作用】本発明者らは、本発明に係る超電導線の断面を
顕微鏡で観察したところ、B金属を含有するマトリック
ス部の近傍に配置された超電導フィラメントでは、その
他の部分に配置された超電導フィラメントに比べ、A3
B型化合物超電導体の生成量が多いことを見いだした。
これはB金属の供給源である前記マトリックス部の近傍
に配置されていた前者の超電導フィラメントには、後者
の超電導フィラメントに比べより多くのB金属が拡散、
反応したためであると考えられる。
When the present inventors observed the cross section of the superconducting wire according to the present invention with a microscope, the superconducting filaments arranged in the vicinity of the matrix portion containing B metal contained superconducting filaments in other portions. Compared to A 3
It was found that the amount of B-type compound superconductor produced was large.
This is because a larger amount of B metal diffuses into the former superconducting filament that was arranged in the vicinity of the matrix portion, which is the source of B metal, than the latter superconducting filament.
It is thought that this is because of the reaction.

【0018】しかし本発明の超電導線は、より多くのA
3 B型化合物超電導体が生成される部分、即ち、前記B
金属を含有するマトリックス部の近傍に配置される超電
導フィラメントの径を、その他の部分に配置される超電
導フィラメントの径より大きくしてあるので、後者の超
電導フィラメントの部分で十分な量のA3 B型化合物超
電導体が生成されるまで拡散熱処理を施しても、前者の
超電導フィラメントの部分でA金属を残存させておくこ
とが可能である。
However, the superconducting wire of the present invention has more A
3 B-type compound superconductor is generated, that is, B
Since the diameter of the superconducting filaments arranged in the vicinity of the metal-containing matrix portion is made larger than the diameter of the superconducting filaments arranged in other portions, the latter superconducting filament portion has a sufficient amount of A 3 B. Even if the diffusion heat treatment is performed until the type compound superconductor is produced, it is possible to leave the A metal in the former superconducting filament.

【0019】このため前記B金属を含有するマトリック
ス部の近傍に配置されていない超電導フィラメントであ
っても必要以上のA金属部分を残存させず、十分なA3
B型化合物超電導体を生成させる拡散熱処理を施すこと
が可能になる。従って、より高い超電導特性を実現する
3 B型化合物超電導線が得られるのである。
Therefore, even if the superconducting filament is not arranged in the vicinity of the matrix portion containing the B metal, the A metal portion more than necessary is not left and a sufficient A 3
It becomes possible to perform a diffusion heat treatment that produces a B-type compound superconductor. Therefore, an A 3 B type compound superconducting wire that realizes higher superconducting properties can be obtained.

【0020】また本発明のA3 B型化合物超電導線を製
造するには、安定化金属材またはB金属を含有するマト
リックス部材からなる最外シースの中に、素線と必要な
ら、B金属を含有するマトリックス部材、安定化金属
材、バリア材等を配置充填して複合ビレットを組み立て
る際、前記マトリックス部材の近傍にA金属芯材の径の
大きい素線を配置すればよい。例えば最外シースとして
B金属を含有するマトリックス金属を用いた場合、この
最外シースの近傍には、A金属芯材の径の大きい素線を
配置する。
In order to manufacture the A 3 B type compound superconducting wire of the present invention, the element wire and, if necessary, the B metal are placed in the outermost sheath made of a matrix material containing a stabilizing metal material or a B metal. When the composite billet is assembled by arranging and filling the contained matrix member, the stabilizing metal material, the barrier material, etc., it is sufficient to dispose a wire having a large diameter of the metal A core material in the vicinity of the matrix member. For example, when a matrix metal containing B metal is used as the outermost sheath, a wire having a large diameter of the A metal core material is arranged near the outermost sheath.

【0021】[0021]

【実施例】次に本発明を実施例により詳細に説明する。
実施例ではA金属としてNbを、B金属としてSnを選
び、Nb3 Sn化合物超電導線を製造した。この際、用
意した素線は2種類で、何れも6角素線とした。まず6
角素線(α)は、外径200mm、内径125mmのブ
ロンズ管(Cu−14wt%Sn)の中に外径124m
mのNb棒を挿入し、延伸加工後、対辺距離1.7mm
としたものである。6角素線(β)は、外径200m
m、内径140mmのブロンズ管(Cu−14wt%S
n)の中に外径139mmのNb棒を挿入し、延伸加工
後、対辺距離1.7mmとしたものである。
EXAMPLES The present invention will now be described in detail with reference to Examples.
In the examples, Nb was selected as the A metal and Sn was selected as the B metal to manufacture a Nb 3 Sn compound superconducting wire. At this time, there were two types of prepared strands, and all were hexagonal strands. First 6
The rectangular wire (α) has an outer diameter of 124 m in a bronze tube (Cu-14 wt% Sn) having an outer diameter of 200 mm and an inner diameter of 125 mm.
After inserting the Nb rod of m and stretching, the distance between opposite sides is 1.7 mm
It is what Hexagonal wire (β) has an outer diameter of 200 m
m, 140 mm inner diameter bronze tube (Cu-14 wt% S
A Nb rod having an outer diameter of 139 mm was inserted in n), and the opposite side distance was 1.7 mm after stretching.

【0022】図2、図3はそれぞれ6角素線(α)、6
角素線(β)の断面を模式的に示した説明図である。図
では、6角素線(α)6のNb部5、6角素線(β)9
のNb部8は何れも完全な円形断面になっているが、実
際には多少歪んだ形状になっている。
2 and 3 are hexagonal wires (α) and 6 respectively.
It is explanatory drawing which showed the cross section of a square element wire ((beta)) typically. In the figure, the Nb portion 5 of the hexagonal wire (α) 6 and the hexagonal wire (β) 9
Each of the Nb portions 8 has a perfect circular cross section, but actually has a slightly distorted shape.

【0023】次に図1に示すように、最外シース1とし
て、外径200mm、内径178mmのブロンズ管(C
u−14wt%Sn)を用意し、この中に上記6角素線
(α)および6角素線(β)を配置充填して複合ビレッ
トを組み立てた。図1では充填する6角素線2の一部を
模式的に描いてあり、また実際より大きく描いてある。
Next, as shown in FIG. 1, as the outermost sheath 1, a bronze tube (C having an outer diameter of 200 mm and an inner diameter of 178 mm) (C
u-14 wt% Sn) was prepared, and the hexagonal filament (α) and the hexagonal filament (β) were arranged and filled therein to assemble a composite billet. In FIG. 1, a part of the hexagonal wire 2 to be filled is schematically drawn and is drawn larger than it actually is.

【0024】さて本発明例に係る複合ビレットは3種
類、No1〜3を用意した。複合ビレットNo1は最外
シース1の中央部に複数本の6角素線(α)を配置し、
その6角素線(α)の束が概ね外径162mmとなるよ
うにした。そしてその外側とこの最外シース1の内壁と
の間に複数本の6角素線(β)を配置して形成した。複
合ビレットNo2はこの最外シース1の中央部に安定化
金属材(厚さ3mmのTaバリアを外周に配した径87
mmの無酸素銅棒)を配置し、その外周に複数本の6角
素線(α)を配置し、その6角素線(α)の束が概ね外
径162mmとなるようにした。そしてこの束の外側と
この最外シース1の内壁との間に複数本の6角素線
(β)を配置して形成した。複合ビレットNo3はこの
最外シース1の中央部に安定化金属材(周囲に厚さ3m
mのTaバリアを外周に配した径87mmの無酸素銅
棒)を配置し、その外周に外径105mm、内径95m
mのブロンズ管(Cu−14wt%Sn)を被せ、更に
その外周に複数本の6角素線(α)を配置し、その6角
素線(α)の束が概ね外径162mmとなるようにし
た。そして本発明例2と同様、その外側とこの最外シー
ス1の内壁との間に複数本の6角素線(β)を配置して
形成した。
Three types of composite billets according to the present invention, No. 1 to No. 3, were prepared. The composite billet No1 has a plurality of hexagonal wires (α) arranged in the center of the outermost sheath 1.
The hexagonal wire (α) bundle was made to have an outer diameter of approximately 162 mm. Then, a plurality of hexagonal wires (β) were arranged between the outer side and the inner wall of the outermost sheath 1. The composite billet No. 2 has a stabilizing metal material (diameter 87 in which a Ta barrier having a thickness of 3 mm is arranged on the outer periphery) at the center of the outermost sheath 1.
mm oxygen-free copper rod), and a plurality of hexagonal filaments (α) were arranged on the outer periphery thereof so that the bundle of hexagonal filaments (α) had an outer diameter of approximately 162 mm. Then, a plurality of hexagonal strands (β) were arranged between the outer side of this bundle and the inner wall of the outermost sheath 1. The composite billet No. 3 has a stabilizing metal material (thickness of 3 m around the periphery of the outermost sheath 1).
87 mm diameter oxygen-free copper rod with a Ta barrier of m on the outer circumference is arranged, and the outer circumference is 105 mm in outer diameter and 95 m in inner diameter.
m bronze tube (Cu-14wt% Sn) is covered, and a plurality of hexagonal wires (α) are further arranged on the outer circumference thereof so that the bundle of the hexagonal wires (α) has an outer diameter of approximately 162 mm. I chose Then, as in the case of Example 2 of the present invention, a plurality of hexagonal wires (β) were arranged between the outer side and the inner wall of the outermost sheath 1.

【0025】また従来例に係る複合ビレットを3種類
(No4〜6)を用意した。これらは上記複合ビレット
No1〜3の組み立てにおいて、6角素線(β)に替わ
り6角素線(α)のみを使用したもので、各々複合ビレ
ットNo4〜6と称する。
Three types of composite billets (Nos. 4 to 6) according to the conventional example were prepared. These are the ones in which only the hexagonal element wires (α) are used instead of the hexagonal element wires (β) in the assembly of the composite billet Nos. 1 to 3 and are referred to as composite billet Nos 4 to 6, respectively.

【0026】次いで上記複合ビレットNo1〜6に延伸
加工を施して径0.7mmの複合線材を得た。これらの
複合線材に表1に示す拡散熱処理を施してNb3 Sn超
電導線を製造した。次に製造したNb3 Sn超電導線の
端部を硫酸で溶解して超電導フィラメントを露出させ、
当該超電導フィラメントが超電導接続に耐えられる程度
の靱性を有しているか調べた。その結果、条件bの拡散
熱処理を施したNo4〜6(従来例)は相当数の超電導
フィラメントが十分な靱性を有していないことが判っ
た。これら十分な靱性を有していない超電導フィラメン
トは中央部に未反応なA金属部分を殆ど残していなかっ
た。
Next, the composite billets No. 1 to 6 were subjected to a drawing process to obtain composite wire rods having a diameter of 0.7 mm. These composite wires were subjected to the diffusion heat treatment shown in Table 1 to produce Nb 3 Sn superconducting wires. Next, the end of the manufactured Nb 3 Sn superconducting wire is dissolved with sulfuric acid to expose the superconducting filament,
It was examined whether the superconducting filament had a toughness to withstand superconducting connection. As a result, it was found that in Nos. 4 to 6 (conventional examples) which had been subjected to the diffusion heat treatment under the condition b, a considerable number of superconducting filaments did not have sufficient toughness. These superconducting filaments which did not have sufficient toughness left almost no unreacted A metal portion in the central portion.

【0027】しかし従来例No4〜6の内、条件aの拡
散熱処理を施したものは、殆どの超電導フィラメントが
十分な靱性を有していることが判った。従って従来例N
o4〜6の内、超電導接続が実用的に可能なものは条件
aの拡散熱処理を施したものだけである。
However, among the conventional examples Nos. 4 to 6, it was found that most of the superconducting filaments which had been subjected to the diffusion heat treatment under the condition a had sufficient toughness. Therefore, conventional example N
Of o4 to 6, the only one that can be practically used for superconducting connection is the one that has been subjected to the diffusion heat treatment under the condition a.

【0028】一方、本発明例No1〜3の場合、条件
a、bのいずれの拡散熱処理を施したものでも、殆どの
超電導フィラメントが十分な靱性を有していることが判
った。従って条件a、bのいずれの拡散熱処理を施した
ものも、超電導接続が実用的に可能なものである。
On the other hand, in the case of Examples 1 to 3 of the present invention, it was found that most of the superconducting filaments have sufficient toughness regardless of the diffusion heat treatment under the conditions a and b. Therefore, the superconducting connection is practically feasible in any of those subjected to the diffusion heat treatment under the conditions a and b.

【0029】またNo1〜3の内、条件bの拡散熱処理
を施した超電導線と、No4〜6の内、条件aの拡散熱
処理を施した超電導線の断面を観察し、超電導フィラメ
ントの断面積に対する、Nb3 Snとなっている部分の
断面積の比(以下反応率と称する)を調べた。なおこの
断面積比は体積比と実質的には同じである。観察した超
電導フィラメントは、当該超電導線の半径方向にそって
選びだし、前記面積比の最小値と最大値を表1に記し
た。
Further, among Nos. 1 to 3, the superconducting wires subjected to the diffusion heat treatment under the condition b and the cross sections of the superconducting wires subjected to the diffusion heat treatment under the condition a among Nos. , Nb 3 Sn, the ratio of the cross-sectional areas (hereinafter referred to as the reaction rate) was examined. The cross-sectional area ratio is substantially the same as the volume ratio. The observed superconducting filaments were selected along the radial direction of the superconducting wire, and the minimum value and the maximum value of the area ratio are shown in Table 1.

【0030】更に上記面積比を調べたNb3 Sn超電導
線に関しては、非銅部における臨界電流密度も測定し
た。非銅部における臨界電流密度とは、臨界電流値を、
超電導線の断面積から安定化金属材に相当する部分の面
積を除いた面積で割った値である。
Regarding the Nb 3 Sn superconducting wire whose area ratio was examined, the critical current density in the non-copper part was also measured. The critical current density in the non-copper part is the critical current value,
It is a value obtained by dividing the cross-sectional area of the superconducting wire by the area excluding the area corresponding to the stabilizing metal material.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、本発明例は反応
率のバラツキが小さく、超電導線の断面全体に渡り、ほ
ぼ均等にNb部分を残した超電導フィラメントを有する
ものになったことが判る。一方従来例では反応率のバラ
ツキが大きく、不必要に多くのNbを残した超電導フィ
ラメントが多数存在するために、本発明例より臨界電流
密度が低くなった。なお反応率が小さかったのは、Sn
を含有するマトリックス部の近傍に位置しない超電導フ
ィラメントであった。
As is clear from Table 1, the present invention has a small variation in the reaction rate, and has a superconducting filament in which the Nb portion is left substantially evenly over the entire cross section of the superconducting wire. On the other hand, in the conventional example, the variation of the reaction rate was large, and there were many superconducting filaments that left unnecessarily large amounts of Nb, so that the critical current density was lower than that of the inventive example. The reaction rate was small because Sn
It was a superconducting filament that was not located near the matrix portion containing.

【0033】このように本発明のA3 B型化合物超電導
線は優れた特性を実現するものである。また以上の実施
例は、複合ビレットの形成に際し、ブロンズ管を最外シ
ースとした場合であるが、無酸素銅シースを用いた場合
は、その近傍にNb部の大きな素線を配置する必要はな
い。しかし、複合ビレットを延伸加工してなる複合線材
にSn被覆してから拡散熱処理する場合(外部拡散法の
場合)は、最外シースが無酸素銅であっても、その近傍
にはNb部の大きな素線を配置する必要がある。この場
合でも同様に優れた特性を実現できることはいうまでも
ない。
As described above, the A 3 B type compound superconducting wire of the present invention realizes excellent characteristics. In the above examples, the bronze tube was used as the outermost sheath when forming the composite billet. However, when an oxygen-free copper sheath is used, it is not necessary to dispose a large strand of Nb in the vicinity thereof. Absent. However, when Sn is coated on the composite wire rod obtained by drawing the composite billet and then the diffusion heat treatment (in the case of the external diffusion method), even if the outermost sheath is oxygen-free copper, the Nb portion near the outermost sheath is Large wires need to be placed. Needless to say, even in this case, similarly excellent characteristics can be realized.

【0034】以上の実施例はA金属としてNb、B金属
としてSnを用いた例を説明したが、その他のA3 B型
化合物超電導線の場合でも同様の効果が得られる。
In the above embodiments, the case where Nb is used as the A metal and Sn is used as the B metal has been described, but the same effect can be obtained in the case of other A 3 B type compound superconducting wires.

【0035】[0035]

【発明の効果】以上詳述したように、本発明のA3 B型
化合物超電導線は、A3 B型化合物の生成量に対する未
反応のA金属の残存量の割合をほぼ均一に制御すること
ができ、優れた超電導特性を実現させることができるも
のである。このように本発明はA3 B型化合物超電導線
の高特性化を実現するもので、その工業上の貢献は著し
いものである。
As described in detail above, in the A 3 B type compound superconducting wire of the present invention, the ratio of the amount of unreacted A metal remaining to the amount of A 3 B type compound produced is controlled to be substantially uniform. It is possible to realize excellent superconducting properties. As described above, the present invention realizes high characteristics of the A 3 B type compound superconducting wire, and its industrial contribution is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合ビレットの組み立てを説明する説
明図である。
FIG. 1 is an explanatory diagram illustrating assembly of a composite billet of the present invention.

【図2】実施例の6角素線(α)を説明する説明図であ
る。
FIG. 2 is an explanatory diagram illustrating a hexagonal wire (α) according to an embodiment.

【図3】実施例の6角素線(β)を説明する説明図であ
る。
FIG. 3 is an explanatory diagram illustrating a hexagonal wire (β) of an example.

【符号の説明】[Explanation of symbols]

1 最外シース 2 6角素線 3 複合ビレット 4 ブロンズ部 5 Nb部 6 6角素線(α) 7 ブロンズ部 8 Nb部 9 6角素線(β) 1 Outermost sheath 2 Hexagonal wire 3 Composite billet 4 Bronze part 5 Nb part 6 Hexagonal wire (α) 7 Bronze part 8 Nb part 9 Hexagonal wire (β)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のA3 B型化合物フィラメントがマ
トリックス金属中に埋設されてなるフィラメント集合部
と、B金属を含有するマトリックス部とを有するA3
型化合物超電導線であって、 前記フィラメント集合部内の、前記マトリックス部の近
傍に配置される前記A 3 B型化合物フィラメントの径
が、その他の部分に配置されるA3 B型化合物フィラメ
ントの径より大きいことを特徴とするA3 B型化合物超
電導線。
1. A plurality of A's3B type compound filament
Filament assembly embedded in Trix metal
And A having a matrix portion containing B metal3B
-Type compound superconducting wire, which is in the vicinity of the matrix portion in the filament assembly portion.
The A placed near 3Diameter of B type compound filament
Is placed in the other part A3B-type compound philame
A that is larger than the diameter of the component3B type compound over
Conductive wire.
【請求項2】 A金属芯材およびマトリックス金属から
なる素線をB金属を含むマトリックス部材または安定化
金属材からなる最外シースの中に配置して組み立てた複
合ビレット、またはA金属芯材およびマトリックス金属
からなる素線と、B金属を含有するマトリックス部材ま
たは安定化金属材とを、B金属を含有するマトリックス
部材または安定化金属材からなる最外シースの中に配置
して組み立てた複合ビレットに、延伸加工を施して複合
線材を得、該複合線材に拡散熱処理を施してA3 B型化
合物超電導線を製造する方法において、 前記マトリックス部材の近傍に配置されるA金属芯材の
径をその他の部分に配置されるA金属芯材の径より大き
くなるようにすることを特徴とするA3 B型化合物超電
導線の製造方法。
2. A composite billet assembled by disposing an elemental wire made of an A metal core material and a matrix metal in a matrix member containing a B metal or an outermost sheath made of a stabilized metal material, or an A metal core material and A composite billet in which an elemental wire made of a matrix metal and a matrix member or a stabilizing metal material containing the B metal are arranged in an outermost sheath made of the matrix member containing the B metal or the stabilizing metal material and assembled. In the method for producing a composite wire rod by subjecting the composite wire rod to a drawing treatment and subjecting the composite wire rod to a diffusion heat treatment to produce an A 3 B type compound superconducting wire, the diameter of the A metal core material arranged in the vicinity of the matrix member is A method for producing an A 3 B type compound superconducting wire, characterized in that the diameter is made larger than the diameter of the A metal core material arranged in the other portion.
【請求項3】 A金属芯材およびマトリックス金属から
なる素線をB金属を含有するマトリックス部材または安
定化金属材からなる最外シースの中に配置して組み立て
た複合ビレット、またはA金属芯材およびマトリックス
金属からなる素線と、B金属を含有するマトリックス部
材または安定化金属材とを、B金属を含有するマトリッ
クス部材または安定化金属材からなる最外シースの中に
配置して組み立てた複合ビレットに、延伸加工を施して
複合線材を得、該複合線材の外周にB金属を被覆させた
後に拡散熱処理を施してA3 B型化合物超電導線を製造
する方法において、 前記マトリックス部材の近傍および前記最外シースの近
傍に配置されるA金属芯材の径をその他の部分に配置さ
れるA金属芯材の径より大きくなるようにすることを特
徴とするA3 B型化合物超電導線の製造方法。
3. A composite billet assembled by disposing an elemental wire composed of an A metal core material and a matrix metal in an outermost sheath composed of a matrix member containing B metal or a stabilized metal material, or an A metal core material. And a composite made by disposing an elemental wire made of a matrix metal and a matrix member or a stabilizing metal material containing the B metal in an outermost sheath made of the matrix member containing the B metal or the stabilizing metal material. In a method for producing a composite wire rod by subjecting a billet to a drawing process, coating the outer periphery of the composite wire rod with a B metal, and then subjecting it to a diffusion heat treatment to produce an A 3 B type compound superconducting wire, The diameter of the A metal core material arranged in the vicinity of the outermost sheath is set to be larger than the diameter of the A metal core material arranged in other portions. Method for producing a A 3 B type compound superconductor to symptoms.
JP6140146A 1994-06-22 1994-06-22 A3b type compound superconductive wire rod and manufacture thereof Pending JPH087681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140146A JPH087681A (en) 1994-06-22 1994-06-22 A3b type compound superconductive wire rod and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140146A JPH087681A (en) 1994-06-22 1994-06-22 A3b type compound superconductive wire rod and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH087681A true JPH087681A (en) 1996-01-12

Family

ID=15261947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140146A Pending JPH087681A (en) 1994-06-22 1994-06-22 A3b type compound superconductive wire rod and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH087681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964132A (en) * 1988-06-07 1990-10-16 Siemens Aktiengesellschaft Laser arrangement with frequency stabilized and intensity stabilized laser emission
JP2010129453A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd BRONZE METHOD NB3Sn SUPERCONDUCTIVE WIRE ROD
US9816716B2 (en) 2013-12-13 2017-11-14 Pax Water Technologies Inc. Ventilation devices and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964132A (en) * 1988-06-07 1990-10-16 Siemens Aktiengesellschaft Laser arrangement with frequency stabilized and intensity stabilized laser emission
JP2010129453A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd BRONZE METHOD NB3Sn SUPERCONDUCTIVE WIRE ROD
US9816716B2 (en) 2013-12-13 2017-11-14 Pax Water Technologies Inc. Ventilation devices and methods

Similar Documents

Publication Publication Date Title
US3699647A (en) Method of manufacturing long length composite superconductors
KR101097714B1 (en) Method for producing NbTi3Sn wire by use of Ti source rods
JPS6047684B2 (en) Superconducting composite and its manufacturing method
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JPH09245540A (en) Precursor of nb-sn compound superconducting wire, its manufacture, and manufacture of nb-sn compound superconducting wire
US5753862A (en) Compound superconducting wire and method for manufacturing the same
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4084989A (en) Method for producing a stabilized electrical superconductor
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
JP2007311126A (en) Compound superconductor, and its manufacturing method
US4094059A (en) Method for producing composite superconductors
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH11238418A (en) Compound superconductive wire
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPH02126519A (en) Superconducting conductor
EP0169078A2 (en) Superconductor prepared from Nb3Sn compound
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JP2845905B2 (en) Compound conducting wire for alternating current