JP2742421B2 - Superconducting wire and its manufacturing method - Google Patents

Superconducting wire and its manufacturing method

Info

Publication number
JP2742421B2
JP2742421B2 JP63123360A JP12336088A JP2742421B2 JP 2742421 B2 JP2742421 B2 JP 2742421B2 JP 63123360 A JP63123360 A JP 63123360A JP 12336088 A JP12336088 A JP 12336088A JP 2742421 B2 JP2742421 B2 JP 2742421B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
stabilizing base
layer
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63123360A
Other languages
Japanese (ja)
Other versions
JPH01294310A (en
Inventor
優 杉本
宰 河野
義光 池野
伸行 定方
隆 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63123360A priority Critical patent/JP2742421B2/en
Publication of JPH01294310A publication Critical patent/JPH01294310A/en
Application granted granted Critical
Publication of JP2742421B2 publication Critical patent/JP2742421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、粒子加速器あるいは該磁気共鳴診断装置
などに利用されている超電導磁石用線材として好適であ
って、特に高臨界電流密度を示し、機械強度も高い超電
導線およびその製造方法に関する。
The present invention is suitable as a wire for a superconducting magnet used in a particle accelerator or a magnetic resonance diagnostic apparatus, and has a particularly high critical current density. The present invention relates to a superconducting wire having high mechanical strength and a method for manufacturing the same.

「従来の技術」 超電導線においては量子磁束線の運動などに起因して
発熱を生じる場合があり、このような場合に超電動線に
部分的に常電導の芽が発生し、超電導線の全体が常電導
状態に転位するおそれがある。そこで従来、このような
磁気的不安定性および常電導転位などを防止して超電導
線を安定化するために、以下に記載する技術が採用され
ている。
"Conventional technology" In a superconducting wire, heat may be generated due to the movement of a quantum flux line, and in such a case, buds of normal conduction are partially generated in the superconducting wire, and the entire superconducting wire is May be transposed to a normal conduction state. Therefore, in order to stabilize the superconducting wire by preventing such magnetic instability, normal conduction dislocation, and the like, conventionally, the following technology has been adopted.

超電導体を銅などの良導電性の安定化母材の内部に埋
没する。特に、安定化母材を高純度の銅から形成する。
A superconductor is buried in a stable base material of good conductivity such as copper. In particular, the stabilizing matrix is formed from high-purity copper.

超電導体を数μ〜数十μmの径のフィラメント状に微
細化する。
The superconductor is refined into a filament having a diameter of several μm to several tens μm.

多心線をツイスト加工する。Twist multi-core wire.

編組や成形撚線の構造を採用する。Adopt a braided or formed stranded wire structure.

超電導線を交流用として使用する場合、Cu−Ni合金な
どの高抵抗金属材料から安定化母材を構成し、超電導フ
ィラメント間に生じる結合電流を抑制する。
When a superconducting wire is used for alternating current, a stabilizing base material is formed from a high-resistance metal material such as a Cu-Ni alloy to suppress a coupling current generated between superconducting filaments.

化合物系などの超電導体は機械歪が加わると超電導特
性が劣化するので、超電導線に補強材を添設して機械歪
が加わることを阻止する。
Since superconducting characteristics of a superconductor made of a compound or the like deteriorate when mechanical strain is applied, a reinforcing material is added to the superconducting wire to prevent mechanical strain from being applied.

このような背景から、従来、交流用の化合物系超電導
線として第2図に示す構造の超電導線Aが提供されてい
る。
From such a background, conventionally, a superconducting wire A having a structure shown in FIG. 2 has been provided as a compound superconducting wire for alternating current.

第2図に示す超電導線Aは、銅からなる安定化母材の
内部に多数の化合物系超電導フィラメントを配して超電
導素線2を構成するとともに、この超電導素線2を複数
本用意し、無酸素銅製の安定化材3の周囲に撚線化して
添設し、各超電導素線2をはんだなどのろう付け金属4
で安定化材3に固定した構造となっている。即ち、この
構造の超電導線Aにあっては、安定化材3が各超電導素
線2と安定化をなすとともに超電導素線2の補強材とも
なっている。
The superconducting wire A shown in FIG. 2 constitutes a superconducting wire 2 by arranging a large number of compound superconducting filaments inside a stabilized base material made of copper, and prepares a plurality of superconducting wires 2. Each superconducting element wire 2 is brazed to a brazing metal 4 such as a solder by adding a twisted wire around a stabilizing material 3 made of oxygen-free copper.
Thus, the structure is fixed to the stabilizer 3. That is, in the superconducting wire A having this structure, the stabilizing material 3 stabilizes the superconducting wires 2 and also serves as a reinforcing material for the superconducting wires 2.

「発明が解決しようとする課題」 ところで、第2図に示す従来の超電導線Aを製造する
場合、安定化材3の周囲に超電導素線2を撚線化する際
に、脆い超電導素線2に応力を加える問題があり、超電
導素線2の超電導特性に劣化を来す欠点があった。ま
た、超電導素線2自体は脆く低強度であるので、補強を
十分に行う必要があり、このため第2図に示す超電導線
Aでは安定化材3が補強材を兼ねた構造となっている
が、補強材3を大きくすると全体の断面積が増大して導
体が大型化する問題がある。
[Problems to be Solved by the Invention] By the way, when the conventional superconducting wire A shown in FIG. 2 is manufactured, when the superconducting wire 2 is twisted around the stabilizing material 3, the brittle superconducting wire 2 There is a problem that stress is applied to the superconducting wire 2 and the superconducting properties of the superconducting wire 2 are deteriorated. Further, since the superconducting wire 2 itself is brittle and has low strength, it is necessary to sufficiently reinforce it. Therefore, the superconducting wire A shown in FIG. 2 has a structure in which the stabilizing material 3 also serves as a reinforcing material. However, when the reinforcing member 3 is made large, there is a problem that the entire sectional area increases and the conductor becomes large.

本発明は、前記課題を解決するためになされたもの
で、超電導特性の安定性が高く、高い臨界電流密度を示
すとともに、機械強度が高く、コンパクトな構造の化合
物系超電導線およびその製造を提供することを目的とす
る。
The present invention has been made to solve the above problems, and provides a compound-based superconducting wire having high stability of superconducting characteristics, high critical current density, high mechanical strength, and compact structure, and a production thereof. The purpose is to do.

「課題を解決するための手段」 本発明は、前記課題を解決するために、良導電性金属
材料からなる複数の安定化母材と、これらの安定化母材
を個々に覆う拡散防止層と、前記拡散防止層付きの複数
の前記安定化母材を個々に離間配置させた状態で覆う遮
蔽層と、この遮蔽層を覆う拡散防止層とを具備してなる
芯部と、この芯部を覆って設けられ、金属基地の内部に
超電導体のフィラメントを配して形成された超電導部を
具備してなることを特徴とする。
"Means for Solving the Problems" The present invention provides, in order to solve the above problems, a plurality of stabilizing base materials made of a good conductive metal material, and a diffusion prevention layer individually covering these stabilizing base materials. A shielding layer that covers the plurality of stabilizing base materials with the diffusion preventing layer in a state where they are separately spaced from each other, a core part including a diffusion preventing layer that covers the shielding layer, and the core part. It is characterized by comprising a superconducting portion provided so as to cover and formed by arranging a superconducting filament inside a metal base.

また、請求項2に記載の発明は、超電導金属間化合物
を構成する複数の元素のうち、1つ以上の元素からなる
樹枝状晶を金属基地の内部に配してなるインサイチュ線
を作成するとともに、銅などの良導電性金属材料からな
る安定化母材の外方に、Ta,Nbなどからなる拡散防止管
と高抵抗金属製の被覆管を被せて安定化素材を形成し、
この安定化素材を複数本集合して拡散防止管に挿入して
縮径することにより、良導電性金属材料からなる複数の
安定化母材と、これらの安定化母材を個々に覆う拡散防
止層と、前記拡散防止層付きの複数の前記安定化母材を
個々に離間配置させた状態で覆う高抵抗金属製の遮蔽層
と、この遮蔽層を覆う拡散防止層とを具備してなる複合
部材を形成し、この複合部材の外周に、前記インサイチ
ュ線を複数本配置し、更に全体を縮径して複合線を作成
した後に、複合線の外周に前記超電導金属間化合物を構
成する複数の元素のうち、残りの元素からなる被覆層を
形成し、更に熱処理を施して被覆層の元素をインサイチ
ュ線からなる圧密体の内部側に拡散させて超電導金属間
化合物を生成することを特徴とするものである。
In addition, the invention according to claim 2 creates an in-situ wire in which dendrites composed of one or more elements are arranged inside a metal matrix among a plurality of elements constituting a superconducting intermetallic compound. , A stabilizing material is formed by covering a diffusion prevention tube made of Ta, Nb, etc. and a high resistance metal cladding tube on the outside of a stabilizing base material made of a good conductive metal material such as copper,
A plurality of these stabilizing materials are assembled, inserted into a diffusion prevention tube, and reduced in diameter, so that a plurality of stabilizing base materials made of a good conductive metal material and a diffusion preventing material that individually covers these stabilizing base materials. A composite layer comprising: a layer; a high-resistance metal shielding layer that covers the plurality of stabilizing base materials with the diffusion preventing layer in a state where they are separately spaced; and a diffusion preventing layer that covers the shielding layer. A member is formed, a plurality of the in-situ wires are arranged on the outer periphery of the composite member, and a diameter of the entire in-situ wire is reduced to form a composite wire. Forming a coating layer made of the remaining elements among the elements, and further performing a heat treatment to diffuse the elements of the coating layer into the inside of the compact formed of in-situ wire to produce a superconducting intermetallic compound. Things.

「作用」 安定化母材が拡散防止層で覆われるので不要元素によ
る安定化母材の汚染が防止される。また、安定化母材が
高抵抗金属材料製の遮蔽層で個々に分離されるので交流
損失が低減されて超電導線の安定性が高まる。更にイン
サイチュ線を基に超電導部を製造するので機械強度の高
い臨界電流密度の高い超電導線が得られる。
[Operation] Since the stabilizing base material is covered with the diffusion preventing layer, contamination of the stabilizing base material by unnecessary elements is prevented. Further, since the stabilizing base materials are individually separated by the shielding layer made of a high-resistance metal material, the AC loss is reduced, and the stability of the superconducting wire is improved. Further, since the superconducting portion is manufactured based on the in-situ wire, a superconducting wire having high mechanical strength and high critical current density can be obtained.

また、安定化母材は複数設けられて個々に拡散防止層
で覆われ、更に拡散防止層の外側の遮蔽層も更にその外
側の拡散防止層で覆われるので、安定化母材は拡散防止
層で2重に覆われて拡散熱処理時の拡散元素による汚染
が防止されるとともに、遮蔽層も拡散防止層に覆われて
いるので、拡散熱処理時の拡散元素による遮蔽層の汚染
も防止される。また、高抵抗金属材料製の遮蔽層の元素
が安定化母材側に拡散することも阻止される。
In addition, a plurality of stabilizing base materials are provided and individually covered with the diffusion preventing layer, and the shielding layer outside the diffusion preventing layer is further covered with the diffusion preventing layer outside the diffusion preventing layer. And the contamination by the diffusion element during the diffusion heat treatment is prevented, and the shielding layer is also covered by the diffusion prevention layer. Therefore, the contamination of the shielding layer by the diffusion element during the diffusion heat treatment is also prevented. Further, diffusion of the element of the shielding layer made of a high-resistance metal material to the stabilizing base material side is also prevented.

次に、本発明方法によれば、前述の優れた作用を奏す
る超電導線を得ることができる。
Next, according to the method of the present invention, it is possible to obtain a superconducting wire having the above-described excellent action.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

第1図(a)〜(i)は、本発明をNb3Sn系の超電導
線の製造方法に適用した一例を説明するためのもので、
本発明を実施して超電導線を製造するには、まず、無酸
素銅製のロッド状の安定化母材10の外周に、第1図
(a)に示すようにNbあるいはTaなどからなる拡散防止
層11を被せ、更にその外周に、Cu−Ni合金からなる被覆
管12を被せて複合材13を得る。
FIGS. 1A to 1I are views for explaining an example in which the present invention is applied to a method for manufacturing an Nb 3 Sn-based superconducting wire.
In order to manufacture a superconducting wire by carrying out the present invention, first, as shown in FIG. 1 (a), a diffusion preventing material such as Nb or Ta is formed on the outer periphery of a rod-shaped stabilizing base material 10 made of oxygen-free copper. The composite material 13 is obtained by covering the layer 11 and further covering the outer periphery thereof with a cladding tube 12 made of a Cu-Ni alloy.

ここで拡散防止管11の構成材料としてTaあるいはNbを
選択したが、この理由は、後の工程で施す拡散熱処理時
に、被覆管12に含有されるNiが安定化母材10側に拡散す
ることを阻止して安定化母材10の汚染を防止する目的
と、拡散熱処理時に安定化母材10の構成元素との間で不
要な化合物を生じないようにする目的でTaあるいはNbを
選択した。また、被覆管12を構成する合金は、銅の電気
抵抗を増加させるNiあるいはTi,Zr,Hfなどの周期律表IV
a族元素あるいはAl,Ga,Inなどの周期律表III b族元素
のうち、少なくとも1種を銅に添加してなる合金が用い
られる。
Here, Ta or Nb was selected as a constituent material of the diffusion prevention tube 11 because Ni contained in the cladding tube 12 diffuses to the stabilizing base material 10 side during a diffusion heat treatment performed in a later step. Ta or Nb was selected for the purpose of preventing contamination of the stabilized base material 10 by preventing the occurrence of unnecessary compounds and preventing the formation of unnecessary compounds between the constituent elements of the stabilized base material 10 during the diffusion heat treatment. Further, the alloy constituting the cladding tube 12 is made of Ni or Ti, Zr, Hf or the like which increases the electric resistance of copper.
An alloy is used in which at least one of Group IIIa elements and Group IIIb elements of the Periodic Table III such as Al, Ga, and In is added to copper.

次に前記複合材13を溝ロール加工あるいは鍛造加工な
どの縮径加工法により縮径して第1図(b)に示す安定
化素材14を得る。
Next, the diameter of the composite material 13 is reduced by a diameter reducing method such as a groove roll process or a forging process to obtain a stabilized material 14 shown in FIG. 1 (b).

次にこの安定化素材14を複数本(図面では7本)集合
し、TaあるいはNbからなる拡散防止管15と純銅製の管体
16を重ねた2重管の内部に第1図(c)に示すように挿
入し、縮径加工を施して第1図(f)に示す複合部材17
を得る。
Next, a plurality of the stabilizing materials 14 (seven in the drawing) are assembled, and a diffusion prevention tube 15 made of Ta or Nb and a pure copper tube body
As shown in FIG. 1 (c), the composite member 17 shown in FIG.
Get.

一方、第1図(d)に示すインサイチュインゴット20
を作成する。このインサイチュインゴット20は所定成分
のCu−Nb合金を溶製することにより作成され、Cu製の金
属基地の内部に、Nbからなる無数の樹枝状晶が分散され
た構造をなしている。インサイチュインゴット20を作成
したならば、これを縮径して第1図(e)に示すインサ
イチュ線21を作成する。
On the other hand, the in-situ ingot 20 shown in FIG.
Create The in-situ ingot 20 is made by melting a predetermined component of a Cu-Nb alloy, and has a structure in which a myriad of dendrites composed of Nb are dispersed inside a metal base made of Cu. After the in-situ ingot 20 is created, the diameter of the in-situ ingot 20 is reduced to create an in-situ line 21 shown in FIG.

次いで前記複合部材17の外周に複数のインサイチュ線
21を配し、更に銅からなる管体22に第1図(f)に示す
ように挿入するとともに、これを縮径する。これにより
第1図(g)に示すように、複合部材17を圧密縮径して
形成された芯部23とその周囲を囲むインサイチュ線21の
圧密体24からなる複合線25が得られる。次いで更に外周
にメッキ法などによりSnからなる被覆層26を形成して第
1図(g)に示す被覆複合線27を作成する。
Next, a plurality of in-situ wires are provided around the outer periphery of the composite member 17.
21 is arranged and further inserted into a copper tube 22 as shown in FIG. 1 (f), and the diameter thereof is reduced. Thus, as shown in FIG. 1 (g), a composite wire 25 comprising a core portion 23 formed by consolidating and reducing the diameter of the composite member 17 and a compacted body 24 of an in-situ wire 21 surrounding the core portion is obtained. Next, a coating layer 26 made of Sn is further formed on the outer periphery by plating or the like to form a coating composite wire 27 shown in FIG. 1 (g).

次にこの被覆複合線27を100℃以上でSnの融点(231
℃)より低い温度、更に好ましくは、180〜220℃で数十
〜数百時間程度加熱する第1熱処理を施す。この第1熱
処理によって被覆層26中のSnが被覆複合線27の内部側に
拡散して被覆層26は消失する。なお、この熱処理時にSn
の融点より高い温度で加熱すると被覆層26が溶け落ちる
ので好ましくなく、100℃以下の温度で熱処理を行うとS
nの拡散に時間がかかるので好ましくない。次いで好ま
しくはこの線材を300〜450℃に数十時間〜数百時間加熱
する熱処理を行ってSnの拡散を促進し、不要な化合物の
発生を防止する。
Next, the coated composite wire 27 was heated to a melting point of Sn (231
C.), and more preferably, a first heat treatment for heating at 180 to 220 ° C. for several tens to several hundred hours. By this first heat treatment, Sn in the coating layer 26 diffuses into the inside of the coating composite wire 27 and the coating layer 26 disappears. During this heat treatment, Sn
When heated at a temperature higher than the melting point, the coating layer 26 is undesirably melted off.
It is not preferable because it takes time to diffuse n. Then, preferably, the wire is subjected to a heat treatment of heating to 300 to 450 ° C. for several tens to several hundred hours to promote the diffusion of Sn and prevent the generation of unnecessary compounds.

次いでこの線材を500〜700℃に数十〜数百時間加熱す
る拡散熱処理を施し、圧密体24の内部側に拡散させたSn
とNbフィラメントを反応させ、Nb3Sn超電導金属間化合
物のフィラメントを生成させて第1図(h)に示す超電
導線Bを得る。この超電導線Bは、外周側の超電導部28
とその中心部に設けられた芯部23とからなる構造となっ
ている。
Next, a diffusion heat treatment of heating the wire to 500 to 700 ° C. for several tens to several hundreds hours is performed, and Sn diffused to the inner side of the compact 24 is formed.
And the Nb filament react to generate a filament of the Nb 3 Sn superconducting intermetallic compound to obtain a superconducting wire B shown in FIG. 1 (h). The superconducting wire B is connected to the superconducting portion 28 on the outer peripheral side.
And a core 23 provided at the center thereof.

この芯部23の断面構造は第1図(i)に示すように、
銅からなる内被層30の内側にTaあるいはNb製の拡散防止
層31が形成され、その内部にCu−Ni製の遮蔽層33が充填
され、遮蔽層33の内部に、各々拡散防止層34に囲まれた
純銅製の安定化母材35が分散配置された構造となってい
る。なお、熱処理時に被覆層26から被覆複合線24の内部
に拡散されたSnは、管体22を通過してインサイチュ線か
らなる圧密体24の内部側まで拡散するが、芯部23の外周
部側に存在する拡散防止層31によってその拡散を阻止さ
れ、芯部23の内部側へのSnの拡散は阻止される。また、
安定化母材35は、拡散防止層31と拡散防止層34によって
2重に覆われた構造であるので、拡散熱処理時のSnの拡
散は完全に阻止される。なお、Snが芯部23の内部側に拡
散して安定化母材35がSnで汚染されると極低温における
安定化母材35の電気抵抗が上昇するので好ましくない。
また、安定化母材35は個々に拡散防止層34により遮蔽層
33から区画されているので、遮蔽層33に含まれているNi
が安定化母材35を汚染することも防止される。
The cross-sectional structure of the core portion 23 is as shown in FIG.
A diffusion preventing layer 31 made of Ta or Nb is formed inside an inner coating layer 30 made of copper, and a shielding layer 33 made of Cu-Ni is filled therein. Inside the shielding layer 33, a diffusion preventing layer 34 is formed. The structure has a structure in which a stabilized base material 35 made of pure copper surrounded by is dispersed. Note that Sn diffused from the coating layer 26 into the coated composite wire 24 during the heat treatment passes through the pipe 22 and diffuses to the inside of the compacted body 24 made of an in-situ wire. The diffusion is prevented by the diffusion prevention layer 31 existing in the core portion 23, and the diffusion of Sn into the inside of the core portion 23 is prevented. Also,
Since the stabilizing base material 35 has a structure that is double-covered by the diffusion preventing layer 31 and the diffusion preventing layer 34, the diffusion of Sn during the diffusion heat treatment is completely prevented. It is not preferable that Sn diffuses into the inside of the core portion 23 and the stabilized base material 35 is contaminated with Sn because the electric resistance of the stabilized base material 35 at an extremely low temperature increases.
In addition, the stabilizing base material 35 is individually shielded by the diffusion prevention layer 34.
33, the Ni contained in the shielding layer 33
Is also prevented from contaminating the stabilized base material 35.

以上のように製造された超電導線Bは、インサイチュ
線21を基に製造されているので、臨界電流特性に優れ、
機械歪を受けても超電導特性の劣化が少ないなど機械強
度の面でも優れている。また、超電導線Bはその中心部
に芯部23を配しているので芯部23で補強された構造とな
っており、機械強度も高い構造となっている。このため
超電線Bは第2図に示す従来の超電導線Aのように特別
な補強材を必要としないために、従来より導体全体をコ
ンパクトにすることができる。
Since the superconducting wire B manufactured as described above is manufactured based on the in-situ wire 21, it has excellent critical current characteristics,
It is also excellent in mechanical strength, such as little deterioration of superconductivity even when subjected to mechanical strain. Further, the superconducting wire B has a structure in which the core portion 23 is provided at the center thereof, so that the superconducting wire B has a structure reinforced by the core portion 23 and has a high mechanical strength. Therefore, the superconducting wire B does not require a special reinforcing material unlike the conventional superconducting wire A shown in FIG. 2, so that the entire conductor can be made more compact than before.

前記超電導線Bは液体ヘリウムなどの冷媒で極低温に
冷却された状態で使用される。そして、超電導部28の一
部が何等かの原因で常電導状態に転位しようとした場合
に芯部23に電流を流して発熱を防止できるようになって
いる。
The superconducting wire B is used in a state where the superconducting wire B is cooled to an extremely low temperature by a coolant such as liquid helium. When a part of the superconducting portion 28 attempts to transpose to the normal conducting state for some reason, a current flows through the core portion 23 to prevent heat generation.

なお、前記超電導線Bを交流用として使用し、超電導
部28の一部が常電導状態に転位しようとした場合、安定
化母材35…に交流電流が流れるが、各安定化母材35を高
抵抗のCu−Ni製の遮蔽層33で分離した構造となっている
ために、安定化母材35…間に生じようとする交流損失を
減少することができる。このために超電導線Bは交流用
として極めて優れた安定性を発揮する。
When the superconducting wire B is used for alternating current and a part of the superconducting portion 28 tries to transpose to the normal conducting state, an alternating current flows through the stabilizing base materials 35. Since the structure is separated by the shielding layer 33 made of high resistance Cu-Ni, the AC loss that is likely to occur between the stabilizing base materials 35 can be reduced. Therefore, superconducting wire B exhibits extremely excellent stability for AC use.

ところで前記の例では本発明の構造をNb3Sn系の超電
導線の構造に適用した例に着いて説明したが、本発明の
構造をV3Ga系、Nb3Ge、Nb3Alなどの化合物系超電導線の
構造として適用できることは勿論であり、Nb−Ti系など
の合金系超電導線に適用することもできる。また、本発
明の方法はNb3Sn系の他にV3Ga系などの一般の化合物系
超電導線の製造方法として適用することができる。
By the way, in the above example, the structure of the present invention was applied to the structure of the Nb 3 Sn superconducting wire, but the structure of the present invention was applied to a compound such as V 3 Ga, Nb 3 Ge, Nb 3 Al. Of course, the present invention can be applied to the structure of a superconducting wire based on an alloy, and can also be applied to a superconducting wire based on an alloy such as Nb-Ti. Further, the method of the present invention can be applied as a method for producing a general compound-based superconducting wire such as a V 3 Ga-based as well as an Nb 3 Sn-based.

なおまた前記の例では、超電導部28の内部に1つの芯
部23を配する超電導線の構造について説明したが、超電
導部28の内部に複数の芯部23を配する構造の超電導線に
この発明を適用しても良いのは勿論である。
In addition, in the above-described example, the structure of the superconducting wire in which one core portion 23 is disposed inside the superconducting portion 28 has been described. However, the superconducting wire having the structure in which the plurality of core portions 23 are disposed inside the superconducting portion 28 has Of course, the invention may be applied.

「実施例」 Cu−30wt%Nbの組成を有し、直径50mmの棒状のインサ
イチュインゴットを溶製し、これに鍛造加工と押出加工
と線引加工を施して直径2mmのインサイチュ線を得た。
また、純度99.9%の無酸素銅製のロッドに、外径15mm、
内径14mmのNb管と、Cu−30wt%Niの組成を有し外径20mm
内径16mmの管体を被せて線引加工を施して直径1.1mmの
安定化素材を得た。
"Example" A rod-shaped in-situ ingot having a composition of Cu-30 wt% Nb and a diameter of 50 mm was melted and subjected to forging, extrusion and drawing to obtain an in-situ wire having a diameter of 2 mm.
In addition, a 99.9% pure oxygen-free copper rod has an outer diameter of 15 mm,
Nb tube with inner diameter of 14mm, composition of Cu-30wt% Ni, outer diameter of 20mm
A stabilizing material having a diameter of 1.1 mm was obtained by drawing a wire over a tube having an inner diameter of 16 mm.

次に前記安定化素材を91本集合し、外径15mm、内径14
mmのTa管の内部に挿入し、更に外径18mm、内径16mmの無
酸素銅製の管体の内部に挿入した後に全体を縮径して直
径11mmの複合部材を得た。
Next, 91 stabilizing materials were assembled to form an outer diameter of 15 mm and an inner diameter of 14
It was inserted into a Ta tube having a diameter of 1 mm, further inserted into an oxygen-free copper tube having an outer diameter of 18 mm and an inner diameter of 16 mm, and then reduced in diameter to obtain a composite member having a diameter of 11 mm.

次いでこの複合部材を外径18mm、内径16mmの無酸素銅
製の管体の中心部に配し、その周囲に18本の前記インサ
イチュ線を配し、全体を縮径して直径0.25mmの複合線を
得た。なお、縮径加工の途中において線径0.3mmの段階
でピッチ10mmとなるようなツイスト加工を施した。更に
この外周に電気メッキ法により厚さ8μmのSnメッキ層
を形成してメッキ複合線を得た。
Next, the composite member is arranged at the center of an oxygen-free copper tube having an outer diameter of 18 mm and an inner diameter of 16 mm, and the above-mentioned 18 in-situ wires are arranged around the tube. I got In the middle of the diameter reduction processing, twist processing was performed so that the pitch became 10 mm at the stage of the wire diameter of 0.3 mm. Further, a Sn plating layer having a thickness of 8 μm was formed on the outer periphery by an electroplating method to obtain a plated composite wire.

次にこのメッキ複合線を180℃で4日間加熱し、次い
で400℃で2日間加熱し、更に550℃で5日管加熱する熱
処理を行って通電導線を製造した。
Next, the plated composite wire was heated at 180 ° C. for 4 days, then heated at 400 ° C. for 2 days, and further heat-treated by heating the tube at 550 ° C. for 5 days to produce a current-carrying wire.

得られた超電導線を10T(テスラ)の磁場のもとで液
体ヘリウムで4.2Kに冷却して臨界電流密度を測定したと
ころ、1.5×105A/cm2の優秀な値を示した。
When the obtained superconducting wire was cooled to 4.2 K with liquid helium under a magnetic field of 10 T (tesla) and the critical current density was measured, it showed an excellent value of 1.5 × 10 5 A / cm 2 .

なお、この超電導線の内部をX線マイクロアナライザ
で分析したところ、線材の表面から約50μm〜60μmま
でSnが拡散していることが判明した。また、中心部の安
定化母材はその周囲に存在するNiにより汚染されていな
いことも確認できた。
When the inside of the superconducting wire was analyzed with an X-ray microanalyzer, it was found that Sn had diffused from the surface of the wire to about 50 μm to 60 μm. It was also confirmed that the stabilized base metal at the center was not contaminated by Ni present around it.

「発明の効果」 以上説明したように本発明は、良導電性金属材料製の
複数の安定化母材と、安定化母材を個々に覆う拡散防止
層と、安定化母材を個々に離間配置させた状態で覆う遮
蔽層と、この遮蔽層を覆う拡散防止層とを具備してなる
芯部と、この芯部を覆って設けられ、金属基地の内部に
超電導体のフィラメントを配して形成された超電導部を
具備してなるので、拡散熱処理時に安定化母材が汚染さ
れることが防止され、更に、高抵抗金属製の遮蔽層によ
り安定化母材の交流損失も低減した構造となっているの
で、臨界電流密度が高く交流用として優れた特徴があ
る。更に、安定化母材に加えて遮蔽層も拡散防止層で覆
っているので、拡散熱処理時の遮蔽層の元素汚染を防止
できるとともに、安定化母材を拡散防止層で2重に覆っ
ているので、拡散熱処理時の安定化母材の元素汚染を完
全に排除できる。また、遮蔽層の構成元素が拡散熱処理
時に安定化母材を汚染することもない。従って安定性の
高い臨界電流密度の高い交流用として好適な超電導線を
提供できる。また、芯部が配されているので機械的に強
く、かつ、コンパクトな構造となっている。従ってこの
発明の超電導線は交流用超電導線として極めて優れてい
る。
[Effects of the Invention] As described above, the present invention provides a plurality of stabilizing base materials made of a good conductive metal material, a diffusion preventing layer individually covering the stabilizing base materials, and a stabilizing base material separated from each other. A shielding layer that covers the shielding layer in a state where it is disposed, a core portion including a diffusion prevention layer that covers the shielding layer, and a filament that is provided to cover the core portion and that is provided with a superconductor filament inside the metal base. With the superconducting part formed, the stabilizing base material is prevented from being contaminated during the diffusion heat treatment, and further, the AC loss of the stabilizing base material is reduced by the shielding layer made of a high-resistance metal. Therefore, it has a feature that the critical current density is high and the AC current is excellent. Furthermore, since the shielding layer is covered with the diffusion preventing layer in addition to the stabilizing base material, elemental contamination of the shielding layer during the diffusion heat treatment can be prevented, and the stabilized base material is covered twice with the diffusion preventing layer. Therefore, elemental contamination of the stabilized base material during the diffusion heat treatment can be completely eliminated. Further, the constituent elements of the shielding layer do not contaminate the stabilized base material during the diffusion heat treatment. Therefore, it is possible to provide a superconducting wire suitable for AC with high stability and high critical current density. In addition, since the core is provided, it is mechanically strong and has a compact structure. Therefore, the superconducting wire of the present invention is extremely excellent as an AC superconducting wire.

また、本発明の方法によれば、インサイチュ線から製
造した超電導部を有しているので臨界電流密度が高く、
機械歪による超電導特性の劣化が少なく強度の高い超電
導線を製造することができる。また、良導電性金属材料
からなる複数の安定化母材と、これらの安定化母材を個
々に覆う拡散防止層と、前記拡散防止層付きの複数の前
記安定化母材を個々に離間配置させた状態で覆う高抵抗
金属製の遮蔽層と、この遮蔽層を覆う拡散防止層とを具
備してなる構造となるので、拡散熱処理時の安定化母材
の汚染を防止でき、更に、高抵抗金属製の遮蔽層で安定
化母材を覆って交流損失も低減した構造となっているの
で、交流用として臨界電流密度が高い超電導線を製造で
きる効果がある。更に、安定化母材に加えて遮蔽層も拡
散防止層で覆っているので、拡散熱処理時の遮蔽層の元
素汚染を防止できるとともに、安定化母材を拡散防止層
で2重に覆っているので、拡散熱処理時の安定化母材の
元素汚染を完全に排除できる。また、拡散熱処理時に遮
蔽層の構成元素が安定化母材側に拡散するおそれもな
い。従って安定性の高い臨界電流密度の高い超電導線を
提供できる。また、内部に芯部を配するので機械強度も
高くコンパクトな構造の超電導線を製造できる。
According to the method of the present invention, the critical current density is high because of having the superconducting portion manufactured from the in-situ wire,
A superconducting wire having high strength with little deterioration of superconducting characteristics due to mechanical strain can be manufactured. Further, a plurality of stabilizing base materials made of a good conductive metal material, a diffusion preventing layer individually covering these stabilizing base materials, and a plurality of the stabilizing base materials with the diffusion preventing layers are separately arranged. Since it has a structure including a shielding layer made of a high-resistance metal and a diffusion preventing layer covering the shielding layer, contamination of the stabilized base material during diffusion heat treatment can be prevented. Since the structure is such that the AC loss is reduced by covering the stabilizing base material with the shielding layer made of a resistance metal, there is an effect that a superconducting wire having a high critical current density for AC can be manufactured. Furthermore, since the shielding layer is covered with the diffusion preventing layer in addition to the stabilizing base material, elemental contamination of the shielding layer during the diffusion heat treatment can be prevented, and the stabilized base material is covered twice with the diffusion preventing layer. Therefore, elemental contamination of the stabilized base material during the diffusion heat treatment can be completely eliminated. Further, there is no danger that the constituent elements of the shielding layer will diffuse to the stabilized base material side during the diffusion heat treatment. Therefore, a superconducting wire having high stability and high critical current density can be provided. Further, since the core is disposed inside, a superconducting wire having a high mechanical strength and a compact structure can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)ないし第1図(i)は、本発明の一例を説
明するためのもので、第1図(a)は安定化母材の被覆
状態を示す断面図、第1図(b)は安定化素材を示す断
面図、第1図(c)は安定化素材の集合状態を示す断面
図、第1図(d)はインサイチュインゴットを示す断面
図、第1図(e)はインサイチュ線を示す断面図、第1
図(f)は安定化素材とインサイチュ線の集合状態を示
す断面図、第1図(g)は複合線を示す断面図、第1図
(h)は超電導線の断面図、第1図(i)は第1図
(h)に示す超電導線の中心部構造を示す拡大断面図、
第2図は従来の化合物系超電導線の一構造例を示す断面
図である。 B……超電導線、 10……安定化母材、15……拡散防止管、 20……インサイチュインゴット、 21……インサイチュ線、23……芯部、 24……圧密体、26……被覆層、 27……メッキ複合線、28……超電導部、 31……拡散防止層、33……遮蔽層、 34……拡散防止層、35……安定化母材。
FIGS. 1 (a) to 1 (i) are for explaining an example of the present invention, and FIG. 1 (a) is a cross-sectional view showing a coated state of a stabilizing base material, and FIG. FIG. 1 (b) is a sectional view showing a stabilizing material, FIG. 1 (c) is a sectional view showing an assembled state of the stabilizing material, FIG. 1 (d) is a sectional view showing an in-situ ingot, and FIG. Sectional view showing in-situ line, first
FIG. 1 (f) is a sectional view showing an assembled state of the stabilizing material and the in-situ wire, FIG. 1 (g) is a sectional view showing a composite wire, FIG. 1 (h) is a sectional view of a superconducting wire, FIG. i) is an enlarged cross-sectional view showing the central structure of the superconducting wire shown in FIG.
FIG. 2 is a sectional view showing one structural example of a conventional compound superconducting wire. B: superconducting wire, 10: stabilizing base material, 15: anti-diffusion tube, 20: in-situ ingot, 21: in-situ wire, 23: core, 24: compacted body, 26: coating layer , 27 ... plated composite wire, 28 ... superconducting part, 31 ... diffusion prevention layer, 33 ... shielding layer, 34 ... diffusion prevention layer, 35 ... stabilized base material.

フロントページの続き (72)発明者 定方 伸行 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 斎藤 隆 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭60−250513(JP,A) 特開 昭60−250506(JP,A) 特開 昭62−243745(JP,A) 特開 昭62−252012(JP,A)Continued on the front page (72) Inventor Nobuyuki Sadakata 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (56) References JP-A-60-250513 (JP, A) JP-A-60-250506 (JP, A) JP-A-62-243745 (JP, A) JP-A-62-252012 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】良導電性金属材料からなる複数の安定化母
材と、これらの安定化母材を個々に覆う拡散防止層と、
前記拡散防止層付きの複数の前記安定化母材を個々に離
間配置させた状態で覆う遮蔽層と、この遮蔽層を覆う拡
散防止層とを具備してなる芯部と、この芯部を覆って設
けられ、金属基地の内部に超電導体のフィラメントを配
して形成された超電導部を具備してなることを特徴とす
る超電導線。
1. A plurality of stabilizing base materials made of a good conductive metal material, a diffusion preventing layer individually covering these stabilizing base materials,
A core comprising: a shielding layer covering the plurality of stabilizing base materials with the diffusion preventing layer in a state where they are separately arranged; a diffusion preventing layer covering the shielding layer; and a core covering the core. And a superconducting portion formed by arranging a superconducting filament inside a metal base.
【請求項2】超電導金属間化合物を構成する複数の元素
のうち、1つ以上の元素からなる樹枝状晶を金属基地の
内部に配してなるインサイチュ線を作成するとともに、 銅などの良導電性金属材料からなる安定化母材の外方
に、Ta,Nbなどからなる拡散防止管と高抵抗金属製の被
覆管を被せて安定化素材を形成し、この安定化素材を複
数本集合して拡散防止管に挿入して縮径することによ
り、良導電性金属材料からなる複数の安定化母材と、こ
れらの安定化母材を個々に覆う拡散防止層と、前記拡散
防止層付きの複数の前記安定化母材を個々に離間配置さ
せた状態で覆う高抵抗金属製の遮蔽層と、この遮蔽層を
覆う拡散防止層とを具備してなる複合部材を形成し、こ
の複合部材の外周に、前記インサイチュ線を複数本配置
し、更に全体を縮径して複合線を作成した後に、複合線
の外周に前記超電導金属間化合物を構成する複数の元素
のうち、残りの元素からなる被覆層を形成し、更に熱処
理を施して被覆層の元素をインサイチュ線からなる圧密
体の内部側に拡散させて超電導金属間化合物を生成する
ことを特徴とする超電導線の製造方法。
2. An in-situ wire in which dendrites composed of one or more elements among a plurality of elements constituting a superconducting intermetallic compound are arranged inside a metal matrix, and a good conductive material such as copper is formed. A stabilizing material is formed by covering a diffusion prevention tube made of Ta, Nb, etc. and a high-resistance metal cladding tube outside the stabilizing base material made of a conductive metal material. A plurality of stabilizing base materials made of a good conductive metal material, a diffusion preventing layer individually covering these stabilizing base materials, Forming a composite member comprising a high-resistance metal shielding layer that covers the plurality of stabilizing base materials in a state where they are separately spaced from each other, and a diffusion prevention layer that covers the shielding layer. On the outer circumference, arrange a plurality of the in-situ wires, and further reduce the entire diameter After forming the joining wire, of the plurality of elements constituting the superconducting intermetallic compound, forming a coating layer composed of the remaining elements on the outer periphery of the composite wire, and further performing a heat treatment to convert the elements of the coating layer from the in-situ wire. A method for producing a superconducting wire, characterized in that a superconducting intermetallic compound is generated by diffusing the compound into the inside of a compact.
JP63123360A 1988-05-20 1988-05-20 Superconducting wire and its manufacturing method Expired - Lifetime JP2742421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123360A JP2742421B2 (en) 1988-05-20 1988-05-20 Superconducting wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123360A JP2742421B2 (en) 1988-05-20 1988-05-20 Superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01294310A JPH01294310A (en) 1989-11-28
JP2742421B2 true JP2742421B2 (en) 1998-04-22

Family

ID=14858656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123360A Expired - Lifetime JP2742421B2 (en) 1988-05-20 1988-05-20 Superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2742421B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8412721D0 (en) * 1984-05-18 1984-06-27 Standard Telephones Cables Ltd Fibre optic cables
JPS60250506A (en) * 1984-05-28 1985-12-11 株式会社東芝 Compound superconductive wire blank
JPH0735560B2 (en) * 1986-04-16 1995-04-19 株式会社フジクラ Method for producing fiber-dispersed superconducting wire

Also Published As

Publication number Publication date
JPH01294310A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH0377609B2 (en)
US4743713A (en) Aluminum-stabilized NB3SN superconductor
US4757161A (en) Composite superconducting conductor with several conductor strands and a method for manufacturing the same
US4094059A (en) Method for producing composite superconductors
JP2742421B2 (en) Superconducting wire and its manufacturing method
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2742436B2 (en) Method for producing compound superconducting stranded wire
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JP3425018B2 (en) Nb3Al-based multi-core superconducting wire
JP2845905B2 (en) Compound conducting wire for alternating current
US4426550A (en) Multiwire conductor having greatly increased interwire resistance and method for making same
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2874955B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11