JP2742436B2 - Method for producing compound superconducting stranded wire - Google Patents

Method for producing compound superconducting stranded wire

Info

Publication number
JP2742436B2
JP2742436B2 JP1033472A JP3347289A JP2742436B2 JP 2742436 B2 JP2742436 B2 JP 2742436B2 JP 1033472 A JP1033472 A JP 1033472A JP 3347289 A JP3347289 A JP 3347289A JP 2742436 B2 JP2742436 B2 JP 2742436B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
conductor
stranded
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1033472A
Other languages
Japanese (ja)
Other versions
JPH02213009A (en
Inventor
義光 池野
優 杉本
謙二 後藤
雅善 丹下
宰 河野
Original Assignee
超電導発電関連機器・材料技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超電導発電関連機器・材料技術研究組合 filed Critical 超電導発電関連機器・材料技術研究組合
Priority to JP1033472A priority Critical patent/JP2742436B2/en
Publication of JPH02213009A publication Critical patent/JPH02213009A/en
Application granted granted Critical
Publication of JP2742436B2 publication Critical patent/JP2742436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導発電機の界磁巻線などとして好適
な交流用の化合物系超電導撚線の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound superconducting stranded superconducting wire suitable for use as a field winding of a superconducting generator.

「従来の技術」 超電導線においては量子磁束線の運動などに起因して
発熱を生じる場合があり、このような場合に超電導線に
部分的に常電導の芽が発生し、超電導線の全体が常電導
状態に転位するおそれがある。そこで従来、このような
磁気的不安定性および常電導転位などを防止して超電導
線を安定化するために、以下に記載する技術が採用され
ている。
"Conventional technology" In a superconducting wire, heat may be generated due to the movement of quantum flux lines, and in such a case, normal conduction buds are partially generated in the superconducting wire, and the entire superconducting wire becomes There is a risk of dislocation to the normal conduction state. Therefore, in order to stabilize the superconducting wire by preventing such magnetic instability, normal conduction dislocation, and the like, conventionally, the following technology has been adopted.

超電導体を銅などの良導電性の安定化母材の内部に埋
設する。特に、安定化母材を高純度の銅から形成する。
A superconductor is buried inside a stable base material of good conductivity such as copper. In particular, the stabilizing matrix is formed from high-purity copper.

超電導体を数μ〜数十μmの径のフィラメント状に極
細化する。
The superconductor is made extremely thin into a filament having a diameter of several μm to several tens μm.

多心線をツイスト加工する。Twist multi-core wire.

編組や成形撚線の構造を採用する。Adopt a braided or formed stranded wire structure.

超電導線を交流用として使用する場合、Cu−Ni合金な
どの高抵抗金属材料から安定化母材を構成し、超電導フ
ィラメント間に生じる結合電流を抑制する。
When a superconducting wire is used for alternating current, a stabilizing base material is formed from a high-resistance metal material such as a Cu-Ni alloy to suppress a coupling current generated between superconducting filaments.

金属間化合物系の超電導体は極めて硬く、脆いので、
機械歪が加わると超電導特性が劣化する傾向があり、こ
のため超電導線に補強材を添設して機械歪が加わること
を阻止する。
Intermetallic compound superconductors are extremely hard and brittle,
When the mechanical strain is applied, the superconductivity tends to deteriorate. Therefore, a reinforcing material is added to the superconducting wire to prevent the mechanical strain from being applied.

以上のような背景から、従来、交流用の化合物系超電
導線において、撚線状の超電導線を製造する場合、超電
導金属間化合物を構成する元素のうち、少なくとも1つ
の元素を含む線材に、超電導金属間化合物を構成する元
素のうち、残りの元素を含む被覆層を形成して加工可能
な複合素線を形成し、この複合素線の段階で撚線化を行
い、撚線加工後に拡散熱処理を施して超電導撚線を製造
する方法が行なわれている。
From the above background, conventionally, in the case of manufacturing a stranded superconducting wire in a compound-based superconducting wire for alternating current, a wire containing at least one of the elements constituting the superconducting intermetallic compound is superconducting. Of the elements that constitute the intermetallic compound, a covering layer containing the remaining elements is formed to form a workable composite wire, twisting is performed at the stage of this composite wire, and diffusion heat treatment is performed after twisting. To produce a superconducting twisted wire.

「発明が解決しようとする課題」 ところで、交流用の超電導線において、安定性を向上
させる目的で、1度撚線化したものを複数本集合した後
に再び撚線化して構成する2次撚線構造を採用すること
が試みられている。
[Problems to be Solved by the Invention] By the way, in the superconducting wire for AC, a secondary stranded wire constituted by assembling a plurality of once-twisted wires and then re-twisting them for the purpose of improving stability. Attempts have been made to adopt a structure.

このような場合、従来では、前記複合素線を複数本集
合して1次撚線化し、続いて1次撚線を複数本集合した
後に2次撚線とした後に、巻線加工などを行い、この後
に拡散熱処理を行って超電導金属間化合物を生成させ、
交流用の超電導撚線を得るようにしている。
In such a case, conventionally, a plurality of the composite strands are assembled into a primary stranded wire, and subsequently, a plurality of the primary stranded wires are assembled into a secondary stranded wire, and then a winding process is performed. , Followed by a diffusion heat treatment to generate a superconducting intermetallic compound,
A superconducting stranded wire for AC is obtained.

ところが、前述した如く撚線状に形成する交流用の超
電導線にあっては、安定化のために超電導線の1本あた
りの断面積を極めて小さく形成するので、拡散熱処理を
施す以前の加工が可能な複合素線の状態であっても、複
数回の撚線加工中に断線などのトラブルを引き起こし易
い問題があった。
However, as described above, in the superconducting wire for alternating current formed in a stranded form, the cross-sectional area per superconducting wire is formed extremely small for stabilization. Even in the state of a possible composite strand, there has been a problem that troubles such as disconnection are likely to occur during a plurality of times of twisting.

一方、従来、超電導発電機用の超電導線の一構造例と
して、Nb−Ti線等の線材を撚線化する方法などが採用さ
れているが、Nb3Snなどの化合物系の超電導線材におい
ては機械歪に弱い欠点があるために、交流用超電導発電
機の導体としての応用例はほとんど見られなかった。
On the other hand, conventionally, as an example of the structure of the superconducting wire for a superconducting generator, but a method of stranded wire of the wire of Nb-Ti wire and the like is employed, the compound superconducting wire, such as Nb 3 Sn is Because of the weakness of mechanical strain, there were few applications as conductors for AC superconducting generators.

そこで、化合物系超電導線の超電導発電機用としての
応用について検討してみると、最大の課題はコイル加工
した場合の機械歪に対する対策と通電時の交流損失を低
減することである。
Therefore, when examining the application of the compound superconducting wire for a superconducting generator, the biggest problems are to countermeasure mechanical distortion in coil processing and to reduce AC loss during energization.

ここでコイル加工時の歪特性の低減には、Nb3Sn超電
導体を導体の中心側に配置し、外側部に安定化導体を配
置する構造を採用するならば、コイル加工時の超電導体
の曲がり量を最小にできるので歪を低減し得るが、この
構造を採用した場合、安定化導体を中心側に配置し、そ
の外側部に超電導体を配置した構造の超電導線に比較し
て交流損失が増加する問題がある。
Here, in order to reduce the distortion characteristics during coil processing, if a structure in which the Nb 3 Sn superconductor is arranged on the center side of the conductor and the stabilizing conductor is arranged on the outer side is adopted, if the superconductor during coil processing is adopted. Since the amount of bending can be minimized, distortion can be reduced.However, when this structure is adopted, the AC loss is lower than that of a superconducting wire in which a stabilizing conductor is placed on the center side and a superconductor is placed on the outside. There is a problem that increases.

本発明は前記課題を解決するためになされたもので、
超電導発電機用などの交流用として好適な超電導撚線を
提供すること、並びに、撚線加工を複数回行って超電導
撚線を製造した場合であっても、製造中に断線を生じな
いようにすることができる化合物系超電導撚線の製造方
法を提供することを目的とする。
The present invention has been made to solve the above problems,
To provide a superconducting stranded wire suitable for AC such as for a superconducting generator, and even if a superconducting stranded wire is manufactured by performing stranded wire processing a plurality of times, so as not to cause disconnection during manufacturing. It is an object of the present invention to provide a method for producing a compound superconducting stranded wire that can be used.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するため
に、超電導金属間化合物を構成する複数の元素のうち、
少なくとも1つの元素を含む線材に、前記超電導金属間
化合物を構成する複数の元素のうち、残りの元素を含む
被覆層を形成してなる複合素線を用意し、この複合素線
を撚線化したものを更に集合して撚線化する操作を必要
回数行って撚線導体を作成し、次いでこの撚線導体に、
超電導金属間化合物を生成させる拡散熱処理を施して超
電導撚線を製造する方法において、 前記撚線加工前の複合素線あるいは2回目以降の撚線
加工を行う前の撚線導体に、超電導金属間化合物を生成
させる拡散熱処理温度よりも低い温度の低温熱処理を施
して被覆層の元素を素線内部に拡散させる低温熱処理を
行い、この低温熱処理の後に更に撚線加工を施し、次い
で拡散熱処理を施すものである。
"Means for Solving the Problem" In order to solve the problem, the invention described in claim 1 includes, among a plurality of elements constituting a superconducting intermetallic compound,
A composite wire is prepared by forming a coating layer containing the remaining elements of the plurality of elements constituting the superconducting intermetallic compound on a wire containing at least one element, and twisting the composite wire. The necessary operation is repeated as many times as necessary to form a stranded conductor, and then a stranded conductor is formed.
A method for producing a superconducting stranded wire by performing a diffusion heat treatment for generating a superconducting intermetallic compound, comprising: adding a superconducting metal to the composite element wire before the stranded wire processing or the stranded wire conductor before performing the second or subsequent stranded wire processing. A low-temperature heat treatment is performed at a temperature lower than the diffusion heat treatment temperature at which the compound is generated, and a low-temperature heat treatment is performed to diffuse the elements of the coating layer into the inside of the strand. After this low-temperature heat treatment, further twisting is performed, followed by a diffusion heat treatment Things.

「作用」 一方、撚線加工の前に行う低温熱処理によって被覆層
の元素が素線内部に拡散して素線と被覆層が一体化さ
れ、複合素線は機械的強度が向上するので撚線加工中の
断線が防止される。更に安定化導体に形成されている拡
散防止層は、熱処理時に、コア導体側への不要元素の拡
散を防止する。
[Operation] On the other hand, the element of the coating layer diffuses into the strand by low-temperature heat treatment performed before the twisting processing, and the strand and the coating layer are integrated. Disconnection during processing is prevented. Further, the diffusion preventing layer formed on the stabilized conductor prevents unnecessary elements from diffusing into the core conductor during heat treatment.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

第1図ないし第3図は本発明方法をNb3Sn系の交流用
超電導撚線を製造する場合に適用した例について説明す
るためのもので、この例の方法を実施するには、まず、
第1図に示す安定化導体1を用意する。
FIGS. 1 to 3 are for explaining an example in which the method of the present invention is applied to the case of manufacturing an Nb 3 Sn-based superconducting stranded twisted wire for alternating current.
A stabilizing conductor 1 shown in FIG. 1 is prepared.

この安定化導体1は、純銅からなるコア導体2と、こ
のコア導体2の外周面を被覆して設けられた拡散防止層
3と、この拡散防止層3の外周面を被覆して設けられた
合金層4とから構成されている。前記拡散防止層3はコ
ア導体2を構成する純銅との間に不要な化合物などを生
じない材料であって、融点の高いTaあるいはNbなどの金
属材料からなり、後述する拡散熱処理時にコア導体2に
外部から不要な元素が拡散しないようにするために設け
られる。また、前記合金層4は電気抵抗の高いCu−Ni合
金あるいはCu−Sn合金などからなるものである。
The stabilizing conductor 1 is provided by covering a core conductor 2 made of pure copper, an anti-diffusion layer 3 provided to cover the outer peripheral surface of the core conductor 2, and an outer peripheral surface of the anti-diffusion layer 3. And an alloy layer 4. The diffusion preventing layer 3 is a material that does not generate an unnecessary compound or the like between the pure copper constituting the core conductor 2 and is made of a metal material such as Ta or Nb having a high melting point. Is provided to prevent unnecessary elements from diffusing from the outside. The alloy layer 4 is made of a Cu--Ni alloy or a Cu--Sn alloy having a high electric resistance.

なお、前記コア導体2の外方に拡散防止層3と合金層
4を形成するには、コア導体1の外方にメッキ処理を施
すか、あるいは、コア導体1の外方に前記材料からなる
テープあるいは箔などを被せて伸線加工するなどの手段
により容易に形成することができる。
In order to form the diffusion preventing layer 3 and the alloy layer 4 outside the core conductor 2, plating is performed on the outside of the core conductor 1, or the material is formed on the outside of the core conductor 1. It can be easily formed by means such as drawing with a tape or foil.

次に前記安定化導体1の外方に撚線化して設けられる
複合素線を用意する。この例では、複合素線としてSnメ
ッキされたインサイチュー線を用いる。インサイチュー
線は、所定成分のCu−Nb合金あるいはCu−Nb−Sn合金な
どを溶製して得られた第2図に示すインサイチューイン
ゴット6を線引加工することにより作成される。前記イ
ンサイチューインゴット6は、CuあるいはCu−Sn製の金
属基地の内部に、Nbからなる無数の樹枝状晶が分散され
た構造をなすもので、このインサイチューインゴット6
を線引加工することで金属基地内に繊維状のNbフィラメ
ントが分散された構造の第3図に示すインサイチュー線
7を得ることができる。
Next, a composite element wire which is provided by twisting outside the stabilizing conductor 1 is prepared. In this example, an in-situ wire plated with Sn is used as the composite wire. The in-situ wire is formed by drawing an in-situ ingot 6 shown in FIG. 2 obtained by melting a predetermined component of a Cu-Nb alloy or a Cu-Nb-Sn alloy. The in-situ ingot 6 has a structure in which a myriad of dendrites made of Nb are dispersed inside a metal base made of Cu or Cu-Sn.
The in-situ wire 7 shown in FIG. 3 having a structure in which fibrous Nb filaments are dispersed in a metal matrix can be obtained by wire drawing.

次にこのインサイチュー線7の外周面にメッキ処理に
よってSnの被覆層を形成して第4図に示すメッキインサ
イチュー線(複合素線)8を形成する。このメッキイン
サイチュー線8を用意したならば、メッキインサイチュ
ー線8を複数本用意してこれらを前記安定化導体1の外
方に撚線化して設けることにより第5図に示すような断
面構造の1次撚線導体10を得る。
Next, a coating layer of Sn is formed on the outer peripheral surface of the in-situ wire 7 by plating to form a plated in-situ wire (composite strand) 8 shown in FIG. When the plated in-situ wire 8 is prepared, a plurality of plated in-situ wires 8 are prepared, and these are provided in a twisted form outside the stabilizing conductor 1 to provide a cross-sectional structure as shown in FIG. To obtain the primary stranded conductor 10.

1次撚線導体10を作成したならば、この1次撚線導体
10を180〜450℃の温度に所定時間加熱する低温熱処理を
施して被覆層の元素をインサイチュー線7の内部に拡散
させる。この低温熱処理において、Snの融点(231.9
℃)以上の温度に最初から加熱するとSnの被覆層がイン
サイチュー線7から溶け落ちるので、低温熱処理におい
ては、Snの融点よりも低い温度で、かつ、Snの拡散が進
行し易い温度、即ち、180〜220℃程度の温度で1次加熱
処理を数時間〜数十時間行って被覆層のSnをインサイチ
ュー線7の内部に十分に拡散させて被覆層を消失させる
ことが好ましい。この後に300〜450℃程度の温度で数時
間〜数十時間の熱処理を行ってSnの拡散を促進するとと
もに、インサイチュー線7内におけるCuとSnの不要な化
合物相の生成を抑制してインサイチュー線7の金属基地
を安定なCu−Sn合金相とする。なお、前記低温熱処理に
おいて、450℃より高い温度で熱処理すると、SnとNbの
拡散反応が進行してNb3Snが生成し始め、インサイチュ
ー線7の加工性が低下するので好ましくない。
Once the primary stranded conductor 10 has been created,
10 is subjected to a low-temperature heat treatment of heating to a temperature of 180 to 450 ° C. for a predetermined time to diffuse the elements of the coating layer into the in-situ wire 7. In this low-temperature heat treatment, the melting point of Sn (231.9
° C) or more from the beginning, the coating layer of Sn melts off from the in-situ wire 7, so in the low-temperature heat treatment, the temperature is lower than the melting point of Sn, and the temperature at which the diffusion of Sn is easy to proceed, that is, It is preferable to perform primary heat treatment at a temperature of about 180 to 220 ° C. for several hours to several tens of hours to sufficiently diffuse Sn of the coating layer into the inside of the in-situ wire 7 so that the coating layer disappears. Thereafter, heat treatment is performed at a temperature of about 300 to 450 ° C. for several hours to several tens of hours to promote the diffusion of Sn, and to suppress the generation of unnecessary compound phases of Cu and Sn in the in-situ wire 7 to perform in-situ heating. The metal matrix of the Chu wire 7 is a stable Cu-Sn alloy phase. In the low-temperature heat treatment, if the heat treatment is performed at a temperature higher than 450 ° C., the diffusion reaction between Sn and Nb proceeds, and Nb 3 Sn starts to be generated, which undesirably lowers the workability of the in-situ wire 7.

次に低温熱処理を行った1次撚線導体10を更に複数本
集合し、撚線化して第6図に示す2次撚線導体11を作成
する。この2次撚線導体11を作成する場合、前記低温熱
処理により1次撚線導体9におけるSnの被覆層が消失さ
れてインサイチュー線7の内部にSnが拡散され、インサ
イチュー線7が強化されているので、径の小さなインサ
イチュー線7を使用した場合であっても撚線加工中に断
線することはない。
Next, a plurality of primary stranded conductors 10 that have been subjected to a low-temperature heat treatment are further assembled and stranded to form a secondary stranded conductor 11 shown in FIG. When the secondary stranded conductor 11 is formed, the Sn coating layer in the primary stranded conductor 9 is lost by the low-temperature heat treatment, and Sn is diffused into the in-situ wire 7 to strengthen the in-situ wire 7. Therefore, even when the in-situ wire 7 having a small diameter is used, the wire is not broken during the twisting process.

次いでこの2次撚線導体11を500〜700℃に数十〜数百
時間加熱する拡散熱処理を施し、インサイチュー線7の
内部側に拡散させたSnとNbフィラメントを反応させ、Nb
3Sn超電導金属間化合物のフィラメントを生成させるこ
とによりインサイチュー線7を超電導導体9とすること
により、第6図に示す2次撚線導体11と同等の断面構造
の2次撚線状の超電導撚線12を得ることができる。な
お、拡散熱処理時において、合金層4に含有されている
SnあるいはNi、または、被覆層に含まれているSnが安定
化導体1の内部側にも拡散しようとするが、拡散防止層
3で内部側への拡散を阻止されるので、純Cu製のコア導
体2がSnなどの不要元素で汚染されることがない。な
お、コア導体2がSnで汚染されると極低温におけるコア
導体2の電気抵抗が上昇してコア導体2の安定化導体と
しての性能が低下するので好ましくない。
Next, the secondary stranded conductor 11 is subjected to a diffusion heat treatment of heating to 500 to 700 ° C. for several tens to several hundred hours, and the Sn and the Nb filament diffused into the inside of the in-situ wire 7 are reacted with each other.
By forming the in-situ wire 7 as the superconducting conductor 9 by generating a filament of the 3 Sn superconducting intermetallic compound, a secondary stranded superconducting conductor having a cross-sectional structure equivalent to that of the secondary stranded conductor 11 shown in FIG. A stranded wire 12 can be obtained. In addition, it is contained in the alloy layer 4 during the diffusion heat treatment.
Although Sn, Ni, or Sn contained in the coating layer attempts to diffuse into the inside of the stabilizing conductor 1, the diffusion to the inside is prevented by the diffusion preventing layer 3. The core conductor 2 is not contaminated with unnecessary elements such as Sn. If the core conductor 2 is contaminated with Sn, the electric resistance of the core conductor 2 at an extremely low temperature increases, and the performance of the core conductor 2 as a stabilizing conductor is deteriorated.

以上のように製造された超電導撚線は、2次撚線化さ
れた構造であるために、交流用として安定性が高い。ま
た、インサイチュー線7から作成された超電導導体部分
とコア導体2とが高電気抵抗の合金層4で遮断されてい
るので超電導導体部分とコア導体2との間に生じようと
する渦電流損失を低減することができる。更に、インサ
イチュー線7から超電導導体部分を製造しているので、
臨界電流特性に優れ、機械歪を受けても超電導特性の劣
化が少ないなど機械強度の面でも優れている。
Since the superconducting stranded wire manufactured as described above has a secondary stranded structure, it has high stability for AC use. Further, since the superconducting conductor portion formed from the in-situ wire 7 and the core conductor 2 are interrupted by the alloy layer 4 having a high electric resistance, an eddy current loss that tends to occur between the superconducting conductor portion and the core conductor 2 Can be reduced. Furthermore, since the superconducting conductor portion is manufactured from the in-situ wire 7,
It has excellent critical current characteristics and is excellent in mechanical strength, such as little deterioration of superconductivity even when subjected to mechanical strain.

従って前記構造の超電導撚線は超電導発電機の界磁巻
線用などとの交流用として好適である。
Therefore, the superconducting stranded wire having the above-described structure is suitable for alternating current with a field winding of a superconducting generator.

ところで、前記の例では、2次撚線導体11を拡散熱処
理したが、1次撚線導体10に拡散熱処理を施して超電導
金属間化合物を生成させて超電導撚線を製造しても良い
のは勿論である。
By the way, in the above example, the secondary stranded conductor 11 is subjected to diffusion heat treatment, but the primary stranded conductor 10 may be subjected to diffusion heat treatment to generate a superconducting intermetallic compound, thereby producing a superconducting stranded wire. Of course.

なお、前記の例においては、超電導導体部分をインサ
イチュー線7を用いて形成したが、Nbの芯材にSnパイプ
を被せて縮径する操作を複数回行って製造した複合多心
線をインサイチュー線7の代用として用いても良いのは
勿論である。
In the above-described example, the superconducting conductor portion was formed using the in-situ wire 7. However, a composite multi-core wire manufactured by performing a plurality of operations of reducing the diameter by covering an Nb core material with a Sn pipe is performed in an in-situ manner. Of course, it may be used as a substitute for the chewing wire 7.

更に前記の例においては、本発明の方法をNb3Sn系の
超電導撚線の製造方法に適用した例について説明した
が、本発明の方法をV3Ga系、Nb3Ge、Nb3Alなどの化合物
系超電導撚線の製造方法として適用できることは勿論で
ある。
Furthermore, in the above example, an example was described in which the method of the present invention was applied to a method for producing a Nb 3 Sn-based superconducting stranded wire, but the method of the present invention was applied to V 3 Ga-based, Nb 3 Ge, Nb 3 Al, etc. Of course, it can be applied as a method for producing a compound superconducting stranded wire.

「実施例」 Cu−40wt%Nbの組成を有する棒状のインサイチューイ
ンゴットを溶製し、これに鍛造加工と押出加工と線引加
工を施し、更にその外周面に厚さ8μmのSnメッキ層を
被覆して直径0.2mmのインサイチュー線を得た。また、
純度99.9%の無酸素銅製のコア導体の周囲にNb層とCu−
Ni合金層を被覆してなる直径1.3mmの安定化導体を用意
し、この安定化導体の周囲に前記インサイチュー線を成
形撚線化して1次撚線導体を作成した。
"Example" A rod-shaped in-situ ingot having a composition of Cu-40wt% Nb was melted, forged, extruded, and drawn, and an Sn plating layer having a thickness of 8 µm was further formed on the outer peripheral surface thereof. Coating yielded a 0.2 mm diameter in-situ wire. Also,
Nb layer and Cu- around the 99.9% pure oxygen-free copper core conductor
A stabilized conductor having a diameter of 1.3 mm, which was coated with a Ni alloy layer, was prepared, and the in-situ wire was formed into a twist around the stabilized conductor to prepare a primary stranded conductor.

この後N2ガス雰囲気中において180℃で96時間加熱し
た後に、400℃で48時間加熱する低温熱処理を行ってイ
ンサイチュー線の内部にSnを拡散させてインサイチュー
線の一体化を行った。
Thereafter, after heating at 180 ° C. for 96 hours in an N 2 gas atmosphere, a low-temperature heat treatment of heating at 400 ° C. for 48 hours was performed to diffuse Sn into the in-situ wires to integrate the in-situ wires.

この後に前記1時撚線導体を第3図に示すように5本
用いて2次撚線化を行い厚さ3mm、幅5mmの2次撚線導体
を得た。この2時撚線導体を製造する場合、インサイチ
ュー線の断線は生じなかった。また、この2次撚線導体
においては、巻線加工を容易に行うことができた。
Thereafter, as shown in FIG. 3, five 1-time stranded conductors were used to form a secondary stranded wire to obtain a secondary stranded conductor having a thickness of 3 mm and a width of 5 mm. In the case of manufacturing this two-hour stranded conductor, no breakage of the in-situ wire occurred. Moreover, in this secondary stranded conductor, winding processing could be easily performed.

前記巻線加工後、500〜550℃に150〜200時間加熱する
Nb3Sn生成用の拡散熱処理を施して高流用のNb3Sn超電導
撚線を得ることができた。
After the winding process, heat to 500-550 ° C for 150-200 hours
Diffusion heat treatment for Nb 3 Sn generation was performed, and a Nb 3 Sn superconducting stranded wire for high flow was obtained.

「発明の効果」 以上説明したように請求項1に記載した発明によれ
ば、線材と被覆層からなる複合素線を撚線加工する場
合、あるいは、前記複合素線を撚線化した撚線導体を更
に撚線加工する場合において、撚線加工の前に低温熱処
理によって複合素線と被覆層を一体化して強化してから
撚線加工するので、複合素線あるいは撚線導体を断線さ
せることなく撚線加工することができる。
[Effects of the Invention] As described above, according to the invention described in claim 1, in the case where the composite wire composed of the wire and the coating layer is twisted, or the composite wire in which the composite wire is twisted is formed. When the conductor is further twisted, the composite strand and the coating layer are integrated and strengthened by low-temperature heat treatment before stranding, and then the strand is processed, so that the composite strand or the twisted conductor is broken. It can be processed without twisting.

従って超電導発電機の界磁巻線などの交流用として優
れた超電導撚線を製造中に断線させることなく製造する
ことができる。
Therefore, a superconducting stranded wire excellent for AC use, such as a field winding of a superconducting generator, can be manufactured without breaking during manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第6図は本発明方法をNb3Sn径の超電導撚
線の製造方法に適用した一例を説明するためのもので、
第1図は安定化導体の断面図、第2図はインサイチュー
インゴットの断面図、第3図はインサイチュー線の断面
図、第4図はメッキインサイチュー線の断面図、第5図
は1次撚線導体の断面図、第6図は2次撚線導体の断面
図である。 1……安定化導体、2……コア導体、3……拡散防止
層、4……合金層、6……インサイチューインゴット、
7……インサイチュー線、8……メッキインサイチュー
線(複合素線)、9……超電導導体、10……1次撚線導
体、11……2次撚線導体。
1 to 6 are diagrams for explaining an example in which the method of the present invention is applied to a method for producing a superconducting stranded wire having an Nb 3 Sn diameter.
1 is a cross-sectional view of a stabilizing conductor, FIG. 2 is a cross-sectional view of an in-situ ingot, FIG. 3 is a cross-sectional view of an in-situ wire, FIG. 4 is a cross-sectional view of a plated in-situ wire, and FIG. FIG. 6 is a sectional view of a secondary stranded conductor, and FIG. 6 is a sectional view of a secondary stranded conductor. 1 stabilizing conductor, 2 core conductor, 3 diffusion preventing layer, 4 alloy layer, 6 in-situ ingot,
7 ... in-situ wire, 8 ... plated in-situ wire (composite strand), 9 ... superconducting conductor, 10 ... primary stranded conductor, 11 ... secondary stranded conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹下 雅善 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭60−39705(JP,A) 特開 昭54−119681(JP,A) 特開 昭60−250506(JP,A) 特開 昭60−62011(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Masayoshi Tange 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Satoshi Kono 1-1-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire (56) References JP-A-60-39705 (JP, A) JP-A-54-119681 (JP, A) JP-A-60-250506 (JP, A) JP-A-60-62011 (JP, A A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導金属間化合物を構成する複数の元素
のうち、少なくとも1つの元素を含む線材に、前記超電
導金属間化合物を構成する元素のうち、残りの元素を含
む被覆層を形成してなる複合素線を用意し、この複合素
線を撚線化したものを更に集合して撚線化する操作を必
要回数行って撚線導体を作成し、次いでこの撚線導体
に、超電導金属間化合物を生成させる拡散熱処理を施し
て超電導撚線を製造する方法において、 前記撚線加工前の複合素線あるいは2回目以降の撚線加
工を行う前の撚線導体に、超電導金属間化合物を生成さ
せる拡散熱処理よりも低い温度の低温熱処理を施して被
覆層の元素を素線内部に拡散させる低温熱処理を行い、
この低温熱処理の後に更に撚線加工を施し、次いで拡散
熱処理を施すことを特徴とする化合物系超電導撚線の製
造方法。
1. A wire containing at least one of a plurality of elements constituting a superconducting intermetallic compound, on a wire rod comprising a coating layer containing the remaining elements among the elements constituting the superconducting intermetallic compound. A composite strand is prepared, and the operation of twisting the composite strand is further performed as necessary to produce a stranded conductor, and then a stranded conductor is formed on the stranded conductor. A method for producing a superconducting stranded wire by performing a diffusion heat treatment for producing a compound, comprising: forming a superconducting intermetallic compound on the composite element wire before the stranded wire processing or on the stranded wire conductor before the second or subsequent stranded wire processing. Perform a low-temperature heat treatment at a lower temperature than the diffusion heat treatment to diffuse the elements of the coating layer inside the strand,
A method for producing a compound superconducting stranded wire, characterized by further performing a twisting process after the low-temperature heat treatment and then performing a diffusion heat treatment.
JP1033472A 1989-02-13 1989-02-13 Method for producing compound superconducting stranded wire Expired - Fee Related JP2742436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033472A JP2742436B2 (en) 1989-02-13 1989-02-13 Method for producing compound superconducting stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033472A JP2742436B2 (en) 1989-02-13 1989-02-13 Method for producing compound superconducting stranded wire

Publications (2)

Publication Number Publication Date
JPH02213009A JPH02213009A (en) 1990-08-24
JP2742436B2 true JP2742436B2 (en) 1998-04-22

Family

ID=12387485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033472A Expired - Fee Related JP2742436B2 (en) 1989-02-13 1989-02-13 Method for producing compound superconducting stranded wire

Country Status (1)

Country Link
JP (1) JP2742436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171941A (en) * 1990-03-30 1992-12-15 The Furukawa Electric Co., Ltd. Superconducting strand for alternating current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119681A (en) * 1978-03-09 1979-09-17 Showa Electric Wire & Cable Co Method of producing super conductor
JPS6039705A (en) * 1983-08-15 1985-03-01 日本原子力研究所 Aluminum stabilized superconductive conductor
JPS60250506A (en) * 1984-05-28 1985-12-11 株式会社東芝 Compound superconductive wire blank

Also Published As

Publication number Publication date
JPH02213009A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
US4990411A (en) Compound superconducting wire and method of manufacturing the same
EP0067591B1 (en) Al-stabilized superconductor, and method of producing the same
CN109564802B (en) Production of multifilament Nb3Method for Sn superconducting wire
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2742421B2 (en) Superconducting wire and its manufacturing method
JP2845905B2 (en) Compound conducting wire for alternating current
JPH05804B2 (en)
JP2525016B2 (en) Superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JPH0146963B2 (en)
JP2874955B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPH02103811A (en) Compound superconducting wire
JPS6212606B2 (en)
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees