JPH08180752A - Nb3sn superconductive wire and manufacture thereof - Google Patents

Nb3sn superconductive wire and manufacture thereof

Info

Publication number
JPH08180752A
JPH08180752A JP7218953A JP21895395A JPH08180752A JP H08180752 A JPH08180752 A JP H08180752A JP 7218953 A JP7218953 A JP 7218953A JP 21895395 A JP21895395 A JP 21895395A JP H08180752 A JPH08180752 A JP H08180752A
Authority
JP
Japan
Prior art keywords
wire
bronze
composite
filament
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7218953A
Other languages
Japanese (ja)
Other versions
JP3063025B2 (en
Inventor
Takeshi Endo
壮 遠藤
Itaru Inoue
至 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7218953A priority Critical patent/JP3063025B2/en
Publication of JPH08180752A publication Critical patent/JPH08180752A/en
Application granted granted Critical
Publication of JP3063025B2 publication Critical patent/JP3063025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To provide a superconductive wire with excellent properties. CONSTITUTION: A secondary compounded composite billet 8 is produced by putting hexagonal wires 6 with 1.5-2.2 bronze ratio as a single core and hexagonal rods 7 in an oxygen-free copper pipe 4 while putting a Ta tube between the copper pipe and the wires and rods. The bronze ratio of the whole of the composite billet 8 is set to be 2.2-4.0. A composite wire produced by drawing the composite billet is heated to produce a Nb3 Sn superconductive wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特性に優れ、かつ加工性
に優れたNb3 Sn超電導線とその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Nb 3 Sn superconducting wire having excellent characteristics and workability, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、Nb3 Snは、Nb3 Al、V3
Ga等と同様、A3 B型化合物超電導体(A15型化合
物超電導体とも称される)と通常呼称され、これらは金
属間化合物であり加工が極めて困難であるため、超電導
線を製造するには、上記A3 B型化合物超電導体を構成
する高融点金属Aと低融点金属Bとからなる複合ビレッ
トに延伸加工を施して複合線材とし、次いで、前記高融
点金属Aの内部に前記低融点金属Bを拡散、反応させる
拡散熱処理により上記A3 B型化合物超電導体を反応生
成させる製造方法が採用されている。
2. Description of the Related Art Conventionally, Nb 3 Sn is Nb 3 Al, V 3
Similar to Ga and the like, it is usually called an A 3 B type compound superconductor (also called an A15 type compound superconductor). Since these are intermetallic compounds and are extremely difficult to process, it is necessary to manufacture a superconducting wire. The composite billet composed of the high melting point metal A and the low melting point metal B constituting the A 3 B type compound superconductor is stretched to obtain a composite wire, and then the low melting point metal A is placed inside the high melting point metal A. A manufacturing method of reacting and producing the above A 3 B type compound superconductor by diffusion heat treatment for diffusing and reacting B is adopted.

【0003】以下にNb3 Sn超電導線の製造方法とし
て代表的なブロンズ法を説明する。まず素線を用意す
る。その素線の製造方法は、通常は、マトリックスとし
てCu−Sn系合金(以下ブロンズと称する)製の棒に
穴をあけ、その中にNb芯材を挿入して1次複合ビレッ
トを形成し、次いで延伸加工を施して作製する。次にこ
の素線を安定化金属シース(管状体)やブロンズシース
の中に充填して2次複合ビレットを形成する。この2次
複合ビレットを延伸加工して複合線材を作製する。なお
この複合線材を素線とし、上述の工程を繰り返して更に
高次の複合ビレットを形成することもある。
A typical bronze method will be described below as a method of manufacturing an Nb 3 Sn superconducting wire. First, prepare the wires. The method for producing the strands is usually performed by forming a hole in a rod made of a Cu-Sn alloy (hereinafter referred to as bronze) as a matrix and inserting an Nb core material into the rod to form a primary composite billet. Then, it is stretched to be manufactured. Next, this strand is filled in a stabilizing metal sheath (tubular body) or a bronze sheath to form a secondary composite billet. This secondary composite billet is stretched to produce a composite wire. The composite wire may be used as an elemental wire and the above steps may be repeated to form a higher-order composite billet.

【0004】さて上記複合線材は、マトリックス中にN
bフィラメントが埋め込まれた構造になっており、この
複合線材に500℃〜750℃程度に加熱する熱処理を
施せばブロンズ中のSnがNbフィラメントと反応しN
3 Snが生成する。こうしてNbフィラメントが超電
導フィラメントであるNb3 Snフィラメントになり、
多芯超電導線が得られるのである。なお熱処理条件によ
っては超電導フィラメント内部に未反応のNbが残存し
ている。また前記複合線材の外周にSnを被覆してか
ら、拡散熱処理を施す方法(外部拡散法と呼ばれる)も
ある。
By the way, the above composite wire has N in the matrix.
It has a structure in which b filaments are embedded. When this composite wire is subjected to heat treatment at about 500 ° C to 750 ° C, Sn in the bronze reacts with the Nb filaments and N
b 3 Sn is generated. In this way, the Nb filament becomes a superconducting filament, Nb 3 Sn filament,
A multifilamentary superconducting wire can be obtained. Depending on the heat treatment conditions, unreacted Nb remains inside the superconducting filament. There is also a method of coating the outer periphery of the composite wire with Sn and then performing diffusion heat treatment (called an external diffusion method).

【0005】また、加工性が悪いブロンズを用いず、C
u、Sn、Nb等の単体を用いて複合ビレットを組み立
て、これを延伸加工後、拡散熱処理を施す製造方法も検
討されている。これらの製造方法は、Nb3 Sn以外の
3 B型化合物超電導体の場合にも同様に適用できる。
Further, without using bronze, which has poor workability, C
A manufacturing method of assembling a composite billet using a simple substance such as u, Sn, and Nb, stretching the composite billet, and subjecting the composite billet to diffusion heat treatment is also under study. These manufacturing methods can be similarly applied to the case of an A 3 B type compound superconductor other than Nb 3 Sn.

【0006】高い特性の超電導線を得る方法として、超
電導体であるNb3 Snを多く生成させることや、超電
導フィラメントを極細化する方法等が知られている。上
記ブロンズ法は、Nbフィラメントの径を数μm程度ま
で極細化することが比較的容易であるので交流損失の少
ない超電導線が得られる、押出加工等の量産技術の確立
が他の方法より早く進められている、等の利点があり実
用的に広く採用されている。
As a method for obtaining a superconducting wire having high characteristics, a method of producing a large amount of Nb 3 Sn, which is a superconductor, and a method of making a superconducting filament ultrafine are known. In the bronze method, it is relatively easy to make the diameter of the Nb filament to a few μm, so that a superconducting wire with less AC loss can be obtained, and mass production technology such as extrusion is established faster than other methods. It has advantages such as that it is widely used in practice.

【0007】しかしブロンズ法はCu−Sn系合金を用
いる欠点がある。延伸加工後の熱処理において、超電導
体であるNb3 Snを多く生成させるためにSn量を高
めたCu−Sn系合金を用いると、加工性が劣化してし
まう。現在ではSnが15wt%近くまで添加したCu
−Sn系合金が用いられる場合もあるが、これ以上の添
加は加工性の点で実用的でなくなる。
However, the bronze method has a drawback of using a Cu--Sn alloy. In the heat treatment after the drawing process, if a Cu—Sn based alloy having a high Sn content is used in order to generate a large amount of Nb 3 Sn which is a superconductor, the workability deteriorates. At present, Cu with Sn added up to about 15 wt%
In some cases, a --Sn alloy is used, but addition of more than this becomes impractical in terms of workability.

【0008】そこで複合線材のブロンズ比を高める方法
が採用される。複合線材のブロンズ比を高めるには、通
常、ブロンズ比の高い素線を用いて複合ビレットを組み
立てればよい。そうすると局所ブロンズ比が高くなる。
即ち製造される複合線材で、ブロンズ中にNbフィラメ
ントが疎に配置された構造になる。なおブロンズ比と
は、Nb3 Sn超電導線若しくは複合線材、或いは複合
素線において、Cu−Sn合金系マトリックスの体積を
フィラメントの体積で割った値である。製造工程上は、
複合ビレットの段階で、ブロンズの総体積/Nb芯材の
総体積、の値で計算される。
Therefore, a method of increasing the bronze ratio of the composite wire is adopted. In order to increase the bronze ratio of the composite wire, it is usually sufficient to assemble the composite billet by using a wire having a high bronze ratio. This will increase the local bronze ratio.
That is, the manufactured composite wire has a structure in which Nb filaments are sparsely arranged in bronze. The bronze ratio is a value obtained by dividing the volume of the Cu—Sn alloy-based matrix by the volume of the filament in the Nb 3 Sn superconducting wire, the composite wire, or the composite element wire. In the manufacturing process,
It is calculated by the value of the total volume of bronze / the total volume of Nb core material at the stage of the composite billet.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、ブロン
ズ比の高い素線を用いて複合ビレットを組み立て、この
複合ビレットに延伸加工を施して複合線材を作製する
と、Nb芯材とCu−Sn系合金との加工性に差が大き
いため、Nb芯材に異常変形が生じてしまうことがあっ
た。この異常変形は通常ソーセージングと呼ばれている
もので、作製した複合線材の長手方向にNbフィラメン
トの(従って熱処理後にあっては超電導フィラメント
の)断面積が不均一になることである。このソーセージ
ングは主に複合ビレットの熱間押出において生じ、以降
の伸線加工においても解消されない。超電導線の製造工
程上、Nbフィラメント(Nb芯材)が種々の原因によ
りある程度、断線等の問題を起こすことがあるが、この
ソーセージングはNb芯材(Nbフィラメント)の断線
の原因の一つと考えられている。従ってこのようなNb
フィラメントのソーセージングやその断線は製造した超
電導線の特性劣化の原因となると考えられ、その改善が
望まれていた。
However, when a composite billet is assembled by using a wire having a high bronze ratio and the composite billet is stretched to produce a composite wire, an Nb core material and a Cu-Sn alloy are produced. Since there is a large difference in workability between the Nb core material and the Nb core material, abnormal deformation may occur. This abnormal deformation is usually called sausaging, and it means that the cross-sectional area of the Nb filaments (and thus of the superconducting filaments after the heat treatment) becomes non-uniform in the longitudinal direction of the produced composite wire. This sausaging mainly occurs in the hot extrusion of the composite billet and is not eliminated even in the subsequent wire drawing. In the manufacturing process of superconducting wire, Nb filament (Nb core material) may cause problems such as disconnection to some extent due to various causes, but this sausage is one of the causes of disconnection of Nb core material (Nb filament). It is considered. Therefore, such Nb
It is considered that the sausage of the filament and the disconnection thereof cause the deterioration of the characteristics of the manufactured superconducting wire, and the improvement thereof has been desired.

【0010】[0010]

【課題を解決するための手段】本発明はかかる状況に鑑
み、鋭意研究を行った結果なされたもので、その目的
は、Nbフィラメントのソーセージングを抑制し、優れ
た特性を実現するNb3Sn超電導線とその製造方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention is in view of such circumstances, has been made result of intense study, its purpose is to suppress the sausaging of Nb filaments, Nb 3 realizes the excellent characteristics Sn It is to provide a superconducting wire and a manufacturing method thereof.

【0011】即ち本発明は、局所ブロンズ比が1.5〜
2.2の、Cu−Sn系合金マトリックス内にフィラメ
ントが埋設されたフィラメント埋設部を含み、全体のブ
ロンズ比が2.2〜4.0であるNb3 Sn超電導線を
提供する。またこの超電導線の製造方法として、Cu−
Sn系合金マトリックス部材とNb芯材とを含むブロン
ズ比が1.5〜2.2の単芯複合素線と、Cu−Sn系
合金マトリックス部材とを含む、ブロンズ比2.2〜
4.0の複合ビレットに延伸加工を施して複合線材を作
製し、前記複合線材に熱処理を施す方法を提供する。
That is, according to the present invention, the local bronze ratio is 1.5 to.
2.2 includes a filament embedded portion filament is embedded in the Cu-Sn based the alloy matrix, the overall bronze ratio provides a Nb 3 Sn superconducting wire is 2.2 to 4.0. In addition, as a method of manufacturing this superconducting wire, Cu-
A bronze ratio of 2.2 containing a single-core composite element wire having a bronze ratio of 1.5 to 2.2 containing an Sn-based alloy matrix member and an Nb core material and a Cu-Sn alloy matrix member.
Provided is a method for producing a composite wire rod by subjecting a 4.0 composite billet to a stretching process, and subjecting the composite wire rod to heat treatment.

【0012】通常、Nb3 Sn超電導線の分野におい
て、マトリックスと称されるのは、ブロンズ部分の他、
安定化金属部等である。その他、安定化金属部にSn等
が拡散するのを防ぐための拡散バリア材もマトリックス
を称されることもある。本発明において、Nb3 Sn超
電導線の全体のブロンズ比とは、超電導線のCu−Sn
合金系マトリックスの体積をフィラメントの体積で割っ
た値で計算される。また局所ブロンズ比とは、1本1本
のフィラメントとその周辺のブロンズの体積比と指す。
複合ビレットの段階においては、ビレット全体で考え
て、配置させたブロンズ部分(Cu−Sn合金系マトリ
ックス材)の体積を、配置させたNb芯材の体積で割っ
た値を複合ビレットの全体のブロンズ比と呼ぶ。複合ビ
レットの段階で局所ブロンズ比とは、Nb芯材の1本1
本とその周辺のブロンズの比を指す。
Generally, in the field of Nb 3 Sn superconducting wire, what is called a matrix is a bronze part,
A stabilizing metal part and the like. In addition, a diffusion barrier material for preventing Sn or the like from diffusing into the stabilizing metal portion may also be referred to as a matrix. In the present invention, the Nb 3 Sn superconducting wire overall bronze ratio of the superconducting wire Cu-Sn
It is calculated as the volume of the alloy-based matrix divided by the volume of the filament. The local bronze ratio is the volume ratio of each filament and its surrounding bronze.
At the stage of the composite billet, considering the entire billet, the volume of the arranged bronze part (Cu-Sn alloy-based matrix material) divided by the volume of the arranged Nb core material is the entire bronze of the composite billet. Call it the ratio. The local bronze ratio at the stage of the composite billet is one Nb core material 1
The ratio of the bronze between the book and its surroundings.

【0013】本発明のNb3 Sn超電導線の製造方法で
は、ブロンズ比が1.5〜2.2のCu−Sn系合金マ
トリックス部材とNb芯材とを含む複合素線として、単
芯の複合素線を採用している。この素線を用いて複合ビ
レットを組み立てた場合、上記複合素線のブロンズは複
合ビレットの局所ブロンズ比に相当する。このような単
芯の複合素線を用いると、複合ビレットの段階若しくは
延伸加工の途上において、Nb芯材(Nbフィラメン
ト)の周囲を局所的に見て、そのブロンズ比(即ち局所
ブロンズ比)をほぼ一定に調整することが容易であるか
らである。
In the method for producing an Nb 3 Sn superconducting wire of the present invention, a single core composite wire is used as a composite element wire containing a Cu-Sn alloy matrix member having a bronze ratio of 1.5 to 2.2 and an Nb core material. The wire is used. When a composite billet is assembled using this wire, the bronze of the composite wire corresponds to the local bronze ratio of the composite billet. When such a single-core composite element wire is used, the bronze ratio (that is, the local bronze ratio) is locally observed around the Nb core material (Nb filament) at the stage of the composite billet or during the drawing process. This is because it is easy to adjust it to a substantially constant value.

【0014】[0014]

【発明の実施の態様】Nb3 Sn超電導線の設計とし
て、安定化金属部をその超電導線の最外層若しくは中央
部等に配置することが多い。超電導線の製造途中に安定
化金属部がSn等の不純物による汚染を受けるのを抑制
するために、複合ビレットの組み立てに際しては、拡散
バリアを介して安定化金属部材を配置することが通常行
われている。この拡散バリアとしてはTaやNbが採用
されることが多い。ところでCu−Sn合金系マトリッ
クスは、その内に超電導フィラメントが埋設された超電
導フィラメント埋設部と、超電導フィラメントが埋設さ
れない部分とに存在する。がある。このCu−Sn合金
系マトリックス部は超電導線の中央部や、超電導フィラ
メント埋設部の外周部、或いは超電導フィラメント埋設
部の中に配置すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION In designing a Nb 3 Sn superconducting wire, a stabilizing metal portion is often arranged in the outermost layer or the central portion of the superconducting wire. In order to prevent the stabilizing metal part from being contaminated by impurities such as Sn during the manufacture of the superconducting wire, it is usual to arrange the stabilizing metal member via a diffusion barrier during assembly of the composite billet. ing. Ta or Nb is often used as the diffusion barrier. By the way, the Cu-Sn alloy-based matrix exists in the superconducting filament embedded portion in which the superconducting filament is embedded, and in the portion where the superconducting filament is not embedded. There is. The Cu-Sn alloy-based matrix portion may be arranged in the central portion of the superconducting wire, the outer peripheral portion of the superconducting filament embedded portion, or the superconducting filament embedded portion.

【0015】本発明では超電導線の全体のブロンズ比を
2.2〜4.0にする。2.2未満であると熱処理時の
Nb3 Snの生成においてSnが不足しやすい。従って
ブロンズ比は2.2以上がよい。一方ブロンズ比が4.
0を越えると、超電導線の断面積に対し超電導フィラメ
ントの占積断面積が小さくなる。このためブロンズ比の
上限は4.0に設定することが実用上望ましい。そして
本発明ではフィラメントが埋設されてなるフィラメント
埋設部の局所ブロンズ比は1.5〜2.2に設定する。
In the present invention, the overall superconducting wire has a bronze ratio of 2.2 to 4.0. When it is less than 2.2, Sn tends to be insufficient in the generation of Nb 3 Sn during heat treatment. Therefore, the bronze ratio is preferably 2.2 or more. On the other hand, the bronze ratio is 4.
When it exceeds 0, the occupied cross-sectional area of the superconducting filament becomes smaller than the cross-sectional area of the superconducting wire. Therefore, it is practically desirable to set the upper limit of the bronze ratio to 4.0. In the present invention, the local bronze ratio of the filament-embedded portion in which the filament is embedded is set to 1.5 to 2.2.

【0016】この局所ブロンズ比が2.2より大きい
と、熱処理時のNb3 Snの生成におけるSnの供給の
観点では有利であるが、加工の観点では、特に熱間押出
工程上でフィラメントのソーセージングを起こしやすく
なる。しかし局所ブロンズ比をあまり低い値に設定する
と、Snが供給不足になってしまう。
When the local bronze ratio is larger than 2.2, it is advantageous from the viewpoint of supplying Sn in the formation of Nb 3 Sn during heat treatment, but from the viewpoint of processing, especially in the hot extrusion step, the sausage of the filaments. It is easy to cause a ring. However, if the local bronze ratio is set to a too low value, Sn will be in short supply.

【0017】そこで本発明者らは鋭意研究の結果、局所
ブロンズ比を1.5〜2.2に設定することで、隣接す
るNb芯材同士の拘束力を高めてソーセージングの発生
を抑制し、更に超電導線のブロンズ比を2.2〜4.0
にすることでSnの供給を十分に保ち優れた特性を実現
させることができることを見いだしたのである。即ち超
電導線のブロンズ比を2.2〜4.0に設定すると同時
に局所ブロンズ比を1.5〜2.2に設定することで、
特性と加工性が両立し、フィラメントの異常変形の抑制
と熱処理における十分なSnの供給を可能にするのであ
る。
As a result of intensive studies, the inventors of the present invention set the local bronze ratio to 1.5 to 2.2 to enhance the binding force between adjacent Nb cores and suppress the occurrence of sausage. , And the bronze ratio of the superconducting wire is 2.2 to 4.0.
It has been found that, by satisfying the above conditions, the Sn supply can be sufficiently maintained and excellent characteristics can be realized. That is, by setting the bronze ratio of the superconducting wire to 2.2 to 4.0 and at the same time setting the local bronze ratio to 1.5 to 2.2,
The characteristics and workability are compatible, and it is possible to suppress abnormal deformation of the filament and to supply sufficient Sn in the heat treatment.

【0018】以上説明したような超電導線に関し、その
製造方法としては、Cu−Sn系合金と1本のNb芯材
とからなる素線、即ち単芯の素線を用いる方法が好適で
ある。こうすれば製造した超電導線の局所ブロンズ比を
ほぼ均一にすることも可能になり、フィラメントの異常
変形が一層抑制されソーセージングが起こりにくくな
る。
With respect to the superconducting wire as described above, a preferable method for manufacturing the superconducting wire is a wire made of a Cu--Sn alloy and one Nb core material, that is, a single core wire. By doing so, it is possible to make the local bronze ratio of the manufactured superconducting wire substantially uniform, and abnormal deformation of the filament is further suppressed, and sausage hardly occurs.

【0019】[0019]

【実施例】次に実施例を図1〜2を参照しながら説明す
る。Sn:14.5wt%、Ti:0.2wt%、残部
実質的にCuからなるブロンズ丸棒(径は210mm、
長さ600mm)に径106mmの貫通穴を同芯に設け
てブロンズ管を作製した。次いで上記貫通穴に径105
mmのNb棒を挿入してから両端に無酸素銅円板を溶接
し、内部を真空排気した後、密封して1次複合ビレット
を作製した。これに熱間静水圧処理を施してから外径を
200mmに切削加工し、次いで750℃で熱間押出加
工を施して径40mmにした後、伸線加工、皮剥き伸線
加工、焼鈍等を施して対辺距離1.2mmの6角素線を
製造した。なお前記皮剥き伸線加工により、製造した6
角素線のブロンズ比(製造後の超電導線にあっては局所
ブロンズ比に相当)を表1に示す値に調整した。図1は
6角素線の断面の一例を示したものであり、Nb芯材1
とCu−Sn合金2からなる。Cu−Sn合金2の断面
積/Nb芯材1の断面積が6角素線3のブロンズ比であ
る。なお図1では簡明を期するためNb芯材1の形状を
円形に描いてあるが、実際には少し歪んだものになる。
EXAMPLES Next, examples will be described with reference to FIGS. Sn: 14.5 wt%, Ti: 0.2 wt%, the balance substantially consisting of Cu bronze round bar (diameter 210 mm,
A bronze tube was prepared by concentrically forming a through hole having a diameter of 106 mm in a length of 600 mm). Then, the diameter 105
After inserting an Nb rod of mm, oxygen-free copper disks were welded to both ends, the interior was evacuated, and then sealed to produce a primary composite billet. After this is subjected to hot isostatic pressing, the outer diameter is cut to 200 mm, then hot extruded at 750 ° C. to a diameter of 40 mm, and then wire drawing, peeling wire drawing, annealing, etc. Then, a hexagonal element wire having a distance between opposite sides of 1.2 mm was manufactured. In addition, 6 manufactured by the above-mentioned peeling wire drawing process
The bronze ratio of the square wire (corresponding to the local bronze ratio in the superconducting wire after production) was adjusted to the value shown in Table 1. FIG. 1 shows an example of a cross section of a hexagonal element wire.
And Cu-Sn alloy 2. The cross-sectional area of the Cu—Sn alloy 2 / the cross-sectional area of the Nb core material 1 is the bronze ratio of the hexagonal wire 3. In FIG. 1, the Nb core material 1 is drawn in a circular shape for the sake of simplicity, but in reality, it is slightly distorted.

【0020】次に上述の6角素線3を用いて2次複合ビ
レットを組み立てた。図2は2次複合ビレットの断面の
一部を示す説明図である。外径128mm、内径122
mmのTa管5を外径220mm、内径130mmの無
酸素銅管4(安定金属シース)に挿入し、Ta管5の内
部に6角素線6および、この6角素線6と同寸法の6角
棒7(Sn:14.5wt%、Ti:0.2wt%、残
部実質的にCu)を充填して2次複合ビレット8を作製
した。図示するように無酸素銅管4内の中央部と、その
内壁周辺に6角棒7を所定本数配置充填したが、この本
数を換えれば全体のブロンズ比を調整することができ
る。また6角棒7は、上記中央部や内壁周辺以外にも、
例えばこれらの中間部等に配置することもできる。なお
図2では見やすいように6角素線6、6角棒7を大きめ
に描いてある。
Next, a secondary composite billet was assembled using the above hexagonal wire 3. FIG. 2 is an explanatory view showing a part of the cross section of the secondary composite billet. Outer diameter 128 mm, inner diameter 122
mm Ta tube 5 is inserted into an oxygen-free copper tube 4 (stable metal sheath) having an outer diameter of 220 mm and an inner diameter of 130 mm, and a hexagonal wire 6 and the same size as the hexagonal wire 6 are provided inside the Ta tube 5. A hexagonal rod 7 (Sn: 14.5 wt%, Ti: 0.2 wt%, the balance being substantially Cu) was filled to produce a secondary composite billet 8. As shown in the figure, a predetermined number of hexagonal rods 7 are arranged and filled in the central portion of the oxygen-free copper pipe 4 and around the inner wall thereof. However, if this number is changed, the overall bronze ratio can be adjusted. Also, the hexagonal bar 7 is used in addition to the central portion and the inner wall periphery,
For example, they can be arranged in the intermediate portion or the like. In FIG. 2, the hexagonal wires 6 and the hexagonal bars 7 are drawn in a large size for easy viewing.

【0021】上述の2次複合ビレット8の両端に図示し
ない無酸素銅円板を取り付け、内部を真空排気した後、
溶接密封した。更に熱間静水圧処理を施してから外径を
200mmに切削加工した。次に680℃で熱間押出加
工を施して径40mmにした後、伸線加工等を施して
0.8mmの複合線材を約25kg(約5400m)製
造した。この際、フィラメント断線に起因する超電導線
の断線の回数を調べた。この回数を加工性の評価として
表1に示しておく。なお、超電導線の断線箇所を顕微鏡
で観察すれば、それがフィラメント断線に起因するもの
かどうかは判断できる。
Oxygen-free copper disks (not shown) were attached to both ends of the above-mentioned secondary composite billet 8, and the inside was evacuated,
Welded and sealed. Further, after hot isostatic treatment was performed, the outer diameter was cut to 200 mm. Next, hot extrusion was performed at 680 ° C. to obtain a diameter of 40 mm, and then wire drawing was performed to produce about 25 kg (about 5400 m) of a 0.8 mm composite wire. At this time, the number of disconnection of the superconducting wire due to the filament disconnection was examined. This number is shown in Table 1 as an evaluation of workability. By observing the broken portion of the superconducting wire with a microscope, it can be determined whether or not it is caused by the broken filament.

【0022】次に上述の複合線材にAr雰囲気で650
℃×200hrの熱処理を施してNb3 Sn超電導線を
製造した。この超電導線のブロンズ比、非銅部当たりの
臨界電流密度(Jc)、n値を表1に併記する。ここで
n値とは所定の長さの超電導線の両端に電流を流し、超
電導状態が破れたときの、電流値に対する電圧値の変化
率のことである。
Next, 650 is applied to the above composite wire in an Ar atmosphere.
A Nb 3 Sn superconducting wire was manufactured by performing a heat treatment at ℃ × 200 hours. Table 1 also shows the bronze ratio, critical current density (Jc) per non-copper portion, and n value of this superconducting wire. Here, the n value is the rate of change of the voltage value with respect to the current value when a current is applied to both ends of a superconducting wire having a predetermined length and the superconducting state is broken.

【0023】表1から明らかなように、本発明例No1
〜6は何れも良好なJcが得られており、またフィラメ
ントの健全性を示す指標であるn値も高い値が得られて
いる。またフィラメントの異常変形に起因する超電導線
の断線もなく、優れた加工性が得られている。これらの
超電導線の断面を観察したところ、何れも良好であり、
フィラメントのソーセージングは特に認められなかっ
た。
As is clear from Table 1, the invention sample No. 1
In all of Nos. 6 to 6, good Jc was obtained, and a high n value, which is an index showing the soundness of the filament, was obtained. Further, there is no disconnection of the superconducting wire due to abnormal deformation of the filament, and excellent workability is obtained. When observing the cross section of these superconducting wires, all are good,
No sausage of the filament was observed.

【0024】一方、比較例No7、10、12、13は
断面観察の結果、フィラメントのソーセージングは特に
認められなかったが、十分なJcが得られなかった。比
較例No10は局所ブロンズ比こそ1.8と高いものの
超電導線の全体のブロンズ比が低く、また比較例No
7、12、13は局所ブロンズ比が小さいため、高いJ
cが得られなかったと考えられる。
On the other hand, in Comparative Examples Nos. 7, 10, 12, and 13, as a result of observing the cross section, the sausaging of the filament was not particularly recognized, but sufficient Jc was not obtained. Comparative Example No. 10 has a high local bronze ratio of 1.8, but has a low overall bronze ratio of the superconducting wire, and Comparative Example No.
7, 12 and 13 have a small local bronze ratio, so high J
It is considered that c was not obtained.

【0025】比較例No8、9、14は、Jcは比較的
高くなったがn値が相当に低くなった。またフィラメン
トの異常変形に起因する断線数も多かった。これらの超
電導線の断面を観察すると、フィラメントのソーセージ
ングが認められ、これが原因でJc、n値および加工性
が劣化したものと考えられる。比較例No11は必要以
上にブロンズが多いためJcが低いものになり実用的と
は言えない。
In Comparative Examples Nos. 8, 9 and 14, Jc was relatively high, but the n value was considerably low. Also, the number of wire breakages due to abnormal deformation of the filament was large. When observing the cross section of these superconducting wires, sausaging of the filaments was recognized, and it is considered that the Jc, n value and workability were deteriorated due to this. Since Comparative Example No. 11 has more bronze than necessary, it has a low Jc and is not practical.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上詳述したように、本発明のNb3
n超電導線およびその製造方法は、優れた加工性を実現
し、また優れた特性を有する超電導線を提供するもので
あり、その工業上の貢献は著しいものである。
As described above in detail, the Nb 3 S of the present invention is used.
The n superconducting wire and the method for producing the same provide a superconducting wire having excellent workability and excellent characteristics, and its industrial contribution is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の6角素線の断面を示す説明図
である。
FIG. 1 is an explanatory diagram showing a cross section of a hexagonal element wire according to an embodiment of the present invention.

【図2】本発明の実施例の2次複合ビレットの一部を示
す説明図である。
FIG. 2 is an explanatory view showing a part of the secondary composite billet of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Nb芯材 2 Cu−Sn合金 3 6角素線 4 無酸素銅管 5 Ta管 6 6角素線 7 6角棒 8 2次複合ビレット 1 Nb core material 2 Cu-Sn alloy 3 Hexagonal element wire 4 Oxygen-free copper tube 5 Ta tube 6 Hexagonal element wire 7 Hexagonal rod 8 Secondary composite billet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 局所ブロンズ比が1.5〜2.2の、C
u−Sn系合金マトリックス内にフィラメントが埋設さ
れたフィラメント埋設部を含み、全体のブロンズ比が
2.2〜4.0であるNb3 Sn超電導線。
1. A C having a local bronze ratio of 1.5 to 2.2.
includes a filament embedded portion filament is embedded in the u-Sn system the alloy matrix, the overall bronze ratio Nb 3 Sn superconducting wire is 2.2 to 4.0.
【請求項2】 Cu−Sn系合金マトリックス部材とN
b芯材とを含むブロンズ比が1.5〜2.2の単芯複合
素線と、Cu−Sn系合金マトリックス部材とを含む、
ブロンズ比2.2〜4.0の複合ビレットに延伸加工を
施して複合線材を作製し、前記複合線材に熱処理を施す
Nb3 Sn超電導線の製造方法。
2. A Cu—Sn alloy matrix member and N
a single-core composite element wire having a bronze ratio of 1.5 to 2.2 including a b-core material, and a Cu-Sn alloy matrix member.
Subjected to stretching the composite billet bronze ratio from 2.2 to 4.0 to prepare a composite wire, a manufacturing method of the heat treatment to the composite wire is subjected Nb 3 Sn superconducting wire.
JP7218953A 1994-10-26 1995-08-28 Nb3Sn superconducting wire and method of manufacturing the same Expired - Fee Related JP3063025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7218953A JP3063025B2 (en) 1994-10-26 1995-08-28 Nb3Sn superconducting wire and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-262751 1994-10-26
JP26275194 1994-10-26
JP7218953A JP3063025B2 (en) 1994-10-26 1995-08-28 Nb3Sn superconducting wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08180752A true JPH08180752A (en) 1996-07-12
JP3063025B2 JP3063025B2 (en) 2000-07-12

Family

ID=26522842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218953A Expired - Fee Related JP3063025B2 (en) 1994-10-26 1995-08-28 Nb3Sn superconducting wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3063025B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181744A (en) * 2008-01-29 2009-08-13 Kobe Steel Ltd Nb OR Nb-BASED ALLOY ROD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE BY BRONZE METHOD, PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE, ITS MANUFACTURING METHOD, AND Nb3Sn SUPERCONDUCTING WIRE
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank
EP2466660A3 (en) * 2010-12-14 2013-10-23 SH Copper Products Co., Ltd. Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, Nb3Sn superconductor wire, and superconducting magnet system
WO2019132698A1 (en) * 2017-12-28 2019-07-04 Акционерное Общество "Твэл" Blank for manufacturing a superconducting composite wire based on nb3sn
CN116460165A (en) * 2023-06-20 2023-07-21 西安聚能超导线材科技有限公司 Tantalum tube preparation method, tantalum tube and superconducting wire
CN116612930A (en) * 2023-07-20 2023-08-18 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire
CN116682612A (en) * 2023-08-03 2023-09-01 西安聚能超导线材科技有限公司 Reinforced bronze Nb method 3 Preparation method of Sn superconducting wire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181744A (en) * 2008-01-29 2009-08-13 Kobe Steel Ltd Nb OR Nb-BASED ALLOY ROD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE BY BRONZE METHOD, PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE, ITS MANUFACTURING METHOD, AND Nb3Sn SUPERCONDUCTING WIRE
EP2466660A3 (en) * 2010-12-14 2013-10-23 SH Copper Products Co., Ltd. Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, Nb3Sn superconductor wire, and superconducting magnet system
US8778841B2 (en) 2010-12-14 2014-07-15 Sh Copper Products Co., Ltd. Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, Nb3Sn superconductor wire, and superconducting magnet system
US20140221215A1 (en) * 2010-12-14 2014-08-07 Sh Copper Products Co., Ltd. Precursor for a nb3sn superconductor wire, method for manufacturing the same, nb3sn superconductor wire, and superconducting magnet system
US9177700B2 (en) 2010-12-14 2015-11-03 Sh Copper Products Co., Ltd. Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, Nb3Sn superconductor wire, and superconducting magnet system
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank
WO2019132698A1 (en) * 2017-12-28 2019-07-04 Акционерное Общество "Твэл" Blank for manufacturing a superconducting composite wire based on nb3sn
RU2741783C1 (en) * 2017-12-28 2021-01-28 Акционерное Общество "Твэл" Workpiece for production of superconducting composite wire based on nb3sn
CN116460165A (en) * 2023-06-20 2023-07-21 西安聚能超导线材科技有限公司 Tantalum tube preparation method, tantalum tube and superconducting wire
CN116460165B (en) * 2023-06-20 2024-03-19 西安聚能超导线材科技有限公司 Tantalum tube preparation method, tantalum tube and superconducting wire
CN116612930A (en) * 2023-07-20 2023-08-18 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire
CN116612930B (en) * 2023-07-20 2023-09-15 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire
CN116682612A (en) * 2023-08-03 2023-09-01 西安聚能超导线材科技有限公司 Reinforced bronze Nb method 3 Preparation method of Sn superconducting wire

Also Published As

Publication number Publication date
JP3063025B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP4728245B2 (en) Method for manufacturing (Nb, Ti) 3Sn wire using Ti source rod
JP2019537189A (en) Diffusion barrier for metal superconducting wires
CN109564802B (en) Production of multifilament Nb3Method for Sn superconducting wire
US4665611A (en) Method of fabricating superconductive electrical conductor
US5127149A (en) Method of production for multifilament niobium-tin superconductors
JP2006004684A (en) Manufacturing method of superconductive wire rod
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
US5001020A (en) Multifilament superconducting wire of NB3 AL
JP3510351B2 (en) A3 Method for producing B-type compound superconducting wire
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JPH065130A (en) Composite multi-core nbti superconductive wire
JPH11111081A (en) Oxide superconducting wire
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH0419919A (en) Manufacture of nb3sn superconductor wire
JP2005056734A (en) Powder method nb3sn superconductive wire rod
JP2005032631A (en) Powder method nb3sn superconducting wire rod
JPH07282650A (en) Compound superconductor
JPH0745135A (en) A3 b type compound superconducting wire and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees