JPH11111081A - Oxide superconducting wire - Google Patents
Oxide superconducting wireInfo
- Publication number
- JPH11111081A JPH11111081A JP9266698A JP26669897A JPH11111081A JP H11111081 A JPH11111081 A JP H11111081A JP 9266698 A JP9266698 A JP 9266698A JP 26669897 A JP26669897 A JP 26669897A JP H11111081 A JPH11111081 A JP H11111081A
- Authority
- JP
- Japan
- Prior art keywords
- sheath
- wire
- oxide
- buffer metal
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、酸化物超電導体の
芯線が被覆層に包まれた断面構造を示す酸化物超電導線
材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire having a cross-sectional structure in which a core wire of an oxide superconductor is surrounded by a coating layer.
【0002】[0002]
【従来の技術】従来より超電導物質として金属系材料が
知られているが、近年この金属系超電導材料よりも超電
導転移温度が高く、また上部臨界磁場(超電導性を保持
できる最高磁場)の高い酸化物超電導体が見出されてい
る。該酸化物超電導体のうち例えばBi系酸化物は、1
00T以上の上部臨界磁場を有することが見込まれてお
り、また21T以上の高磁場中においても、105 A/
cm2 の高い電流密度が得られることが報告されてい
る。尚金属系超電導線材のNb3 Sn線材は高磁場用の
代表的なものとして知られているが、該Nb3 Sn線材
でさえ、上記の21T以上の磁場中においては実用レベ
ル(104 A/cm2 )の電流密度を流すことが困難で
ある。2. Description of the Related Art Metal-based materials have been known as superconducting materials. Recently, however, oxidation has a higher superconducting transition temperature and a higher upper critical magnetic field (the highest magnetic field capable of maintaining superconductivity) than this metal-based superconducting material. Superconductors have been found. Among the oxide superconductors, for example, Bi-based oxide is 1
It is expected to have an upper critical magnetic field of 00 T or more, and even in a high magnetic field of 21 T or more, 10 5 A /
It is reported that a high current density of cm 2 can be obtained. Incidentally, the Nb 3 Sn wire of the metallic superconducting wire is known as a typical one for a high magnetic field, but even the Nb 3 Sn wire can be used at a practical level (10 4 A / cm 2 ).
【0003】この様な酸化物超電導体の特長を活かして
様々な応用が期待されているが、例えば酸化物超電導体
を線材とし、強磁場マグネットのコイルとして用いるこ
とが考えられている。この得られた酸化物超電導マグネ
ットは、金属系超電導物質をコイルとして用いた金属系
超電導マグネットよりも高い磁場を発生する。[0003] Various applications are expected to take advantage of such features of the oxide superconductor. For example, it has been considered that the oxide superconductor is used as a wire and used as a coil of a strong magnetic field magnet. The obtained oxide superconducting magnet generates a higher magnetic field than a metal-based superconducting magnet using a metal-based superconducting material as a coil.
【0004】ところで高い磁場を利用した分析装置とし
て核磁気共鳴(NMR)分析装置があるが、該NMR分
析装置とは、複雑な高分子タンパク質の分子構造ですら
これを決定できる装置であり、磁場が高ければ高いほど
情報量が増加して、より詳細な分子構造の決定が可能と
なり、また測定に要する時間も短縮される。There is a nuclear magnetic resonance (NMR) analyzer as an analyzer utilizing a high magnetic field. The NMR analyzer is an apparatus capable of determining even the molecular structure of a complicated polymer protein. The higher the value, the greater the amount of information increases, allowing more detailed determination of the molecular structure, and the time required for measurement is reduced.
【0005】上記の様に酸化物超電導線材は臨界電流密
度(Jc)が高く、従って大電流を流すことができ、よっ
て強磁場を発生することができるから、この様な酸化物
超電導線材を用いることにより一層高性能なNMR用超
電導マグネットの製作が期待される。[0005] As described above, the oxide superconducting wire has a high critical current density (Jc), so that a large current can flow and a strong magnetic field can be generated. Therefore, such an oxide superconducting wire is used. Thus, the production of a superconducting magnet for NMR with higher performance is expected.
【0006】しかし強磁場のもとで大電流を流すと強大
な電磁力が働き、このとき線材に働く引張応力は例えば
数百MPa と大きいために、酸化物超電導体自体が容易に
変形し、この変形によって臨界電流密度が急激に低下す
る。However, when a large current is applied under a strong magnetic field, a strong electromagnetic force acts. At this time, the tensile stress acting on the wire is large, for example, several hundred MPa, so that the oxide superconductor itself is easily deformed. This deformation sharply lowers the critical current density.
【0007】そこで十分な機械的強度を有し、上記応力
に打ち勝って変形しない酸化物超電導線材が特開平8−
241635号に提案されている(従来例)。この従
来例の酸化物超電導線材は、酸化物超電導体の芯線
(以下、酸化物芯と称することがある)の周囲にAg
(一般に純銀)シースを配して芯鞘構造とし、この芯鞘
構造の単位芯線を複数本束ねた周囲に更にAg合金シー
スを配したダブルシース構造の線材である。該酸化物超
電導線材は、上記Ag合金シース中の添加元素が酸化物
超電導材料と反応して特性劣化を招くことがない様に上
記Agシースによってこれを防止しつつ、上記Ag合金
シースによって高強度を確保するというものであり、こ
の構造によって高機械的強度且つ高臨界電流密度が実現
されている。Therefore, an oxide superconducting wire having sufficient mechanical strength and not being deformed by overcoming the above-mentioned stress has been disclosed in Japanese Patent Application Laid-Open No. Hei 8-
No. 241635 (conventional example). This conventional oxide superconducting wire has an Ag superconductor around a core wire (hereinafter, sometimes referred to as an oxide core).
(Generally pure silver) A double-sheath structure wire in which a sheath is arranged to form a core-sheath structure, and an Ag alloy sheath is further arranged around a bundle of a plurality of unit core wires of the core-sheath structure. The oxide superconducting wire has a high strength by the Ag alloy sheath while preventing the additive element in the Ag alloy sheath from reacting with the oxide superconducting material and causing deterioration of the characteristics by the Ag sheath. This structure achieves high mechanical strength and high critical current density.
【0008】従来例の酸化物超電導線材の製造方法
は、酸化物超電導体原料粉末を封入したAgパイプを、
更にAg合金で包んで複合体とし、該複合体を伸線加工
した後、熱処理を行うというものであり、該熱処理によ
って上記原料粉末が焼結されて酸化物超電導体になる。A conventional method for manufacturing an oxide superconducting wire is as follows.
Further, the composite is wrapped with an Ag alloy to form a composite, and after the composite is drawn, heat treatment is performed. The heat treatment sinters the raw material powder to form an oxide superconductor.
【0009】尚、NMR用超電導マグネットには、上記
の様に発生磁場が高いということの他に、高い磁場安定
性が要求される。そこで市販のNMR用金属系超電導マ
グネットにおいては、上記磁場安定性を長時間保つため
に、永久電流モードで運転を行っている。この永久電流
モードとは、所定電流まで外部電源から電流を供給し、
その後電源を取り外した状態で電流を超電導コイルに流
し続けるモードである。The superconducting magnet for NMR is required to have high magnetic field stability in addition to the high generated magnetic field as described above. Therefore, a commercially available metal-based superconducting magnet for NMR is operated in a permanent current mode in order to maintain the magnetic field stability for a long time. In this permanent current mode, current is supplied from an external power supply up to a predetermined current,
In this mode, the current continues to flow through the superconducting coil with the power supply removed.
【0010】[0010]
【発明が解決しようとする課題】ところで酸化物超電導
線材を用いたNMR用超電導マグネットにおいては、前
述の様に酸化物超電導線材が高い臨界電流密度(Jc),
及び高い機械的強度を示すという特性に加えて、以下に
述べる様に高いn値を示すという特性が求められる。In an NMR superconducting magnet using an oxide superconducting wire, the oxide superconducting wire has a high critical current density (Jc), as described above.
In addition to the property of exhibiting high mechanical strength, a property of exhibiting a high n value as described below is required.
【0011】n値とは、通電電流密度と発生電場を夫々
対数プロットした場合における傾きに相当する値であ
り、線材中の電流分布についての長手方向の均一性を反
映した量である。つまり線材の断面構造、特に酸化物芯
(酸化物超電導材料)の形状が長手方向に均一である
程、上記n値が高くなり、永久電流モードの動作に有利
となる。The n value is a value corresponding to a slope when the current density and the generated electric field are logarithmically plotted, and is an amount reflecting the longitudinal uniformity of the current distribution in the wire. In other words, the more the cross-sectional structure of the wire, particularly the shape of the oxide core (oxide superconducting material), is uniform in the longitudinal direction, the higher the n value becomes, which is advantageous for the operation in the permanent current mode.
【0012】例えば、複数の酸化物芯を夫々Agシース
で包み、更にAg合金シースで包んだ酸化物超電導線材
(従来例)において、酸化物芯の断面形状や断面積が
長手方向で不均一なときは、ある断面においてある酸化
物芯の臨界電流がその酸化物芯に流れる電流を上回って
いるとしても、別の断面におけるその臨界電流が通電電
流を下回れば、当該酸化物芯から臨界電流に余裕のある
別の酸化物芯に分流が生じることになる。その時、電流
が常電導部分(Agシース部分)に流れて抵抗が発生
し、全体としてコイル中に流れる電流が減衰し、その結
果、永久電流モードで動作させることが困難となる。従
ってこの様な分流を防ぐためにも酸化物芯の形状が長手
方向に均一である方が良いと考えられている。For example, in an oxide superconducting wire (conventional example) in which a plurality of oxide cores are wrapped with an Ag sheath and further wrapped with an Ag alloy sheath, the cross-sectional shape and cross-sectional area of the oxide core are not uniform in the longitudinal direction. Sometimes, even if the critical current of an oxide core in one cross section is higher than the current flowing through the oxide core, if the critical current in another cross section is lower than the conduction current, the oxide core changes to a critical current. A diversion will occur in another oxide core that has room. At that time, a current flows through the normal conducting portion (Ag sheath portion) to generate resistance, and the current flowing through the coil as a whole is attenuated. As a result, it is difficult to operate in the permanent current mode. Therefore, it is considered that the shape of the oxide core should be uniform in the longitudinal direction in order to prevent such branching.
【0013】ところで上記従来例においては、線材を
構成する材料の硬度が大きく異なっている。例えば加工
された線材をビッカース硬度で示すと、酸化物芯:28
Hv、Agシース:38Hv、Ag合金シース(Ag−
0.3wt%Mg−0.3wt%Ni):95Hvであ
る。この様に酸化物芯やAgの低硬度部分と、それを被
うAg合金の高硬度部分との硬度差が大きいと、伸線加
工の際に加わる応力のバランスが少し乱れるだけで、酸
化物芯の形状に大きな乱れが生じる。その結果上記n値
が低くなるという問題が生じる。By the way, in the above-mentioned conventional example, the hardness of the material constituting the wire differs greatly. For example, when the processed wire is represented by Vickers hardness, oxide core: 28
Hv, Ag sheath: 38Hv, Ag alloy sheath (Ag-
0.3 wt% Mg-0.3 wt% Ni): 95 Hv. As described above, when the hardness difference between the low hardness portion of the oxide core or Ag and the high hardness portion of the Ag alloy covering the oxide core or Ag is large, the balance of the stress applied during wire drawing is slightly disturbed, and A large disturbance occurs in the shape of the core. As a result, there is a problem that the above-mentioned n value becomes low.
【0014】一般に内部に硬度分布を有する材料を加工
する場合においては、加工材の最外周の硬度が高く、該
最外周から硬度の最も低い部分に向けて徐々に硬度が低
下するような構造が良く、この様な構造であれば加工の
際の応力が線材に均一に伝わって比較的一様な加工製品
が得られる。In general, when processing a material having a hardness distribution inside, a structure in which the hardness of the outermost periphery of the processed material is high and the hardness gradually decreases from the outermost periphery toward a portion having the lowest hardness. With such a structure, the stress at the time of processing is uniformly transmitted to the wire, and a relatively uniform processed product can be obtained.
【0015】しかしながら、上記従来例においては上
述の様に硬度の段差が大きく、加えて酸化物芯をAgシ
ースで包んだ単位芯線を複数本束ねたものにあっては、
この束ねられた特に中心部(低い硬度)においては周囲
のAg合金シース(高い硬度)までの距離が長いため
に、加工の際の応力が上記中心部まで均一に伝わり難
く、従って加工製品が不均一なものとなり易い。However, in the conventional example described above, the hardness step is large as described above, and in addition, a plurality of unit core wires in which an oxide core is wrapped in an Ag sheath are bundled.
Since the distance to the surrounding Ag alloy sheath (high hardness) is long especially at the central portion (low hardness), it is difficult for the stress at the time of processing to be transmitted uniformly to the central portion. It tends to be uniform.
【0016】一方、上記分流を防止した酸化物超電導線
材が、特開平7−169342号に提案されている(従
来例)。該酸化物超電導線材は、酸化物芯を安定化材
層(Ag等)の中に複数配置したものであって、上記酸
化物芯と上記安定化材層の間に高比抵抗のAg−Al合
金またはAg−Mg合金層を設けたものである。この従
来例は、上記Ag−Al合金(またはAg−Mg合
金)層によって酸化物芯間の横断抵抗を高め、分流を低
減するというものである。On the other hand, an oxide superconducting wire in which the above-mentioned branching is prevented has been proposed in Japanese Patent Application Laid-Open No. Hei 7-169342 (conventional example). The oxide superconducting wire has a plurality of oxide cores arranged in a stabilizing material layer (Ag or the like), and has a high specific resistance Ag-Al between the oxide core and the stabilizing material layer. An alloy or an Ag-Mg alloy layer is provided. In this conventional example, the Ag-Al alloy (or Ag-Mg alloy) layer increases the cross resistance between the oxide cores and reduces the shunt.
【0017】しかしながら、従来例は酸化物芯とAg
合金が接触しているため、上記の様に加工時の熱処理中
にAg合金内の添加元素が酸化物芯に拡散し、酸化物超
電導材料の良好な結晶化を阻害してしまい、その結果、
臨界電流密度の低下を招くという問題がある。However, in the conventional example, an oxide core and Ag
Since the alloy is in contact, the additional element in the Ag alloy diffuses into the oxide core during the heat treatment during processing as described above, and hinders good crystallization of the oxide superconducting material.
There is a problem that the critical current density is reduced.
【0018】加えて従来例は、酸化物芯に向かって徐
々に硬度が減少するという構造ではなく、硬度の低いA
g(安定化材層)が最外周に存在し、硬いAg合金が高
度の低い酸化物芯を覆う構造となっているから、伸線加
工の際にAg(安定化材層)や酸化物芯が優先的に加工
され、Ag合金が加工されずに取り残されるという問題
も生じる。In addition, the conventional example does not have a structure in which the hardness gradually decreases toward the oxide core, but has a low hardness A
g (stabilizing material layer) exists on the outermost periphery and has a structure in which a hard Ag alloy covers a low-grade oxide core. Is processed preferentially, and there is also a problem that the Ag alloy is left without being processed.
【0019】そこで本発明は以上の様な問題に鑑みてな
されたものであり、高n値,高臨界電流密度,高機械的
強度の全ての特性を満足する酸化物超電導線材を提供す
ることを目的とする。The present invention has been made in view of the above problems, and an object of the present invention is to provide an oxide superconducting wire which satisfies all the characteristics of a high n value, a high critical current density, and a high mechanical strength. Aim.
【0020】[0020]
【課題を解決するための手段】本発明に係る酸化物超電
導線材は、酸化物超電導体の芯線(酸化物芯)の周囲に
Agシースを配した単位芯線を、更にAg合金シースで
包囲した断面構造を有する酸化物超電導線材において、
前記単位芯線が緩衝金属シースで包囲され、該緩衝金属
シースが高比抵抗であり、且つ前記Agシースより硬く
前記Ag合金シースより軟らかいものであることを要旨
とする(第1の発明)。An oxide superconducting wire according to the present invention has a cross section in which a unit core wire in which an Ag sheath is arranged around a core wire (oxide core) of an oxide superconductor is further surrounded by an Ag alloy sheath. In an oxide superconducting wire having a structure,
The gist is that the unit core wire is surrounded by a buffer metal sheath, and the buffer metal sheath has a high specific resistance and is harder than the Ag sheath and softer than the Ag alloy sheath (first invention).
【0021】この様に緩衝金属シースを介することによ
って、線材の最外周のAg合金シースから酸化物芯に向
かって徐々に硬度が低下する構造となり、従って伸線加
工の際の応力が酸化物芯まで均一に伝わるようになり、
均一な加工が容易にできる様になる。その結果n値が向
上する。By interposing the buffer metal sheath in this way, the structure is such that the hardness gradually decreases from the outermost Ag alloy sheath of the wire toward the oxide core, so that the stress at the time of wire drawing is reduced by the oxide core. Until it reaches evenly,
Uniform processing can be easily performed. As a result, the n value is improved.
【0022】また高比抵抗の緩衝金属シースが単位芯線
の周囲を囲んでいるから、酸化物芯−酸化物芯間の電気
抵抗が大きくなって、分流を抑制することができる。従
ってJc overallが向上する。尚Jc overallとは臨界電流
を線材の全断面積で除したものである。Further, since the buffer metal sheath of high specific resistance surrounds the periphery of the unit core wire, the electric resistance between the oxide cores becomes large, and the shunt can be suppressed. Therefore, Jc overall is improved. Note that Jc overall is obtained by dividing the critical current by the total cross-sectional area of the wire.
【0023】一方酸化物芯の周囲をAgシース層が覆っ
ているから、熱処理中に緩衝金属シースの成分が酸化物
芯に拡散することがなく、従って臨界電流密度を低下さ
せることがない。On the other hand, since the Ag sheath layer covers the periphery of the oxide core, the components of the buffer metal sheath do not diffuse into the oxide core during the heat treatment, so that the critical current density does not decrease.
【0024】また従来例のAgシースの厚みの一部を
上記緩衝金属シースにすれば、従来例に比べてAg合
金シースの断面積比が低減しないので、機械的強度が低
下しないばかりでなく、Agシースよりも緩衝金属シー
スの方が高強度であるから、むしろ機械的強度が向上す
る。If a part of the thickness of the conventional Ag sheath is made of the above-mentioned buffer metal sheath, the cross-sectional area ratio of the Ag alloy sheath is not reduced as compared with the conventional example, so that not only the mechanical strength does not decrease, but also Since the buffer metal sheath has higher strength than the Ag sheath, the mechanical strength is rather improved.
【0025】更に本発明においては、複数の前記単位芯
線の夫々を前記緩衝金属シースで包囲したものが束ねら
れ、前記Ag合金シース中に配設されたものであること
が好ましい。Further, in the present invention, it is preferable that a plurality of the unit core wires surrounded by the buffer metal sheath be bundled and disposed in the Ag alloy sheath.
【0026】従来例の様に低硬度の単位芯線(酸化物
芯及びAgシース)を束ねた場合では、この束(低硬度
部分)全体において中心までの距離が長くなり、上述の
様に加工時の応力が中心まで伝わり難くなる。しかし本
発明では上記の様に中間の硬度の緩衝金属シースで個々
の単位芯線(酸化物芯及びAgシース)を覆っているか
ら、低硬度部分としては細いものとなり、低硬度部分
(単位芯線)の中心までの距離は短いものとなる。即
ち、緩衝金属シースは中間の硬度ではあるが、この中間
硬度部分を低硬度の単位芯線間に介在させることによっ
て、伸線加工時の応力が酸化物芯の中心まで均一に伝わ
る様になる。従って均一な加工が行われ、よってn値が
向上する。When unit core wires (oxide core and Ag sheath) of low hardness are bundled as in the conventional example, the distance to the center becomes long in the whole bundle (low hardness portion), and as described above, Is difficult to transmit to the center. However, in the present invention, since the individual unit cores (the oxide core and the Ag sheath) are covered with the buffer metal sheath having an intermediate hardness as described above, the low-hardness portion becomes thin and the low-hardness portion (the unit core) The distance to the center is short. That is, although the buffer metal sheath has an intermediate hardness, the stress during wire drawing is transmitted uniformly to the center of the oxide core by interposing the intermediate hardness portion between the low hardness unit core wires. Therefore, uniform processing is performed, and the n value is improved.
【0027】また本発明に係る酸化物超電導線材は、酸
化物超電導体の芯線の周囲にAgシースを配した単位芯
線を、更にAg合金シースで包囲した断面構造を有する
酸化物超電導線材において、前記単位芯線が複数本束ね
られた周囲に、緩衝金属マトリックスが配された断面構
造を有し、該緩衝金属マトリックスが高比抵抗であり、
且つ前記Agシースより硬く前記Ag合金シースより軟
らかいものであることを要旨とする(第2の発明)。[0027] The oxide superconducting wire according to the present invention is the oxide superconducting wire having a sectional structure in which a unit core having an Ag sheath disposed around a core of the oxide superconductor and further surrounded by an Ag alloy sheath. Around a plurality of unit core wires bundled, has a cross-sectional structure in which a buffer metal matrix is arranged, the buffer metal matrix has a high specific resistance,
The gist of the invention is that it is harder than the Ag sheath and softer than the Ag alloy sheath (second invention).
【0028】緩衝金属マトリックスが単位芯線の周囲に
配されているから、前述と同様にAg合金シースから酸
化物芯まで徐々に硬度が低下する構造となり、均一な加
工ができ、よってn値が向上する。Since the buffer metal matrix is disposed around the unit core wire, the structure is such that the hardness gradually decreases from the Ag alloy sheath to the oxide core as described above, and uniform processing can be performed, and the n value is improved. I do.
【0029】更に前記複数本の単位芯線の周囲に緩衝金
属マトリックスが配されたものが複数本束ねられ、これ
を前記Ag合金シースで包囲した断面構造を有すること
が好ましい。Further, it is preferable that a plurality of unit core wires each having a buffer metal matrix arranged around the bundle are bundled, and have a cross-sectional structure surrounded by the Ag alloy sheath.
【0030】或いは本発明に係る酸化物超電導線材は、
酸化物超電導体の芯線の周囲にAgシースを配した単位
芯線の複数本と、高比抵抗で且つ前記Agシースより硬
く前記Ag合金シースより軟らかいものである緩衝金属
線材の複数本を有し、前記複数本の単位芯線と前記複数
本の緩衝金属線材が、分散状態で束ねられてAg合金シ
ースで包囲された断面構造を有することを要旨とする
(第3の発明)。Alternatively, the oxide superconducting wire according to the present invention comprises:
A plurality of unit core wires in which an Ag sheath is disposed around the core wire of the oxide superconductor, and a plurality of buffer metal wires having a high specific resistance and being harder than the Ag sheath and softer than the Ag alloy sheath, The gist is that the plurality of unit core wires and the plurality of buffer metal wires have a cross-sectional structure bundled in a dispersed state and surrounded by an Ag alloy sheath (third invention).
【0031】この様に複数の緩衝金属線材が複数の単位
芯線に分散して束ねられているから、緩衝金属線材が疑
似的に単位芯線を囲む様になり、上述と同様に伸線加工
時の応力が酸化物芯まで均一に伝わり、均一加工できる
様になる。その結果n値が向上する。また緩衝金属線材
の存在によって前述と同様に、ある酸化物芯から他の酸
化物芯に電流が横断しようとする際の電気抵抗を大きく
することができ、分流を抑制することが可能となる。As described above, since the plurality of buffer metal wires are dispersed and bundled in the plurality of unit core wires, the buffer metal wires simulately surround the unit core wire. The stress is transmitted uniformly to the oxide core, and uniform processing can be performed. As a result, the n value is improved. In addition, due to the presence of the buffer metal wire, similarly to the above, it is possible to increase the electric resistance when a current crosses from one oxide core to another oxide core, and it is possible to suppress the shunt.
【0032】更に本発明においては、前記単位芯線の夫
々の周囲が緩衝金属シースで包囲され、該緩衝金属シー
スが高比抵抗で且つ前記Agシースより硬く前記Ag合
金シースより軟らかいものであることが好ましい。Further, in the present invention, each of the unit core wires is surrounded by a buffer metal sheath, and the buffer metal sheath has a high specific resistance, is harder than the Ag sheath, and is softer than the Ag alloy sheath. preferable.
【0033】この様に高比抵抗の上記緩衝金属線材と高
比抵抗の上記緩衝金属シースを併用することによって、
n値をより一層向上させることができ、またJc overall
や機械的強度もより高くすることができる。By using the above-mentioned buffer metal wire having a high specific resistance and the above-mentioned buffer metal sheath having a high specific resistance together,
n value can be further improved, and Jc overall
Also, the mechanical strength can be higher.
【0034】また本発明においては、前記緩衝金属マト
リックスまたは前記緩衝金属線材を隔てて最も隣接する
前記酸化物超電導体芯線同士の間隔をD、該酸化物超電
導体芯線の断面最大径をdとするとき、1.3<D/d
≦5.0であることが好ましい。より好ましくはD/d
が1.5以上であり、またD/dが2.5以下である。[0034] In the present invention, the distance between the oxide superconductor core wires closest to each other across the buffer metal matrix or the buffer metal wire is D, and the maximum cross-sectional diameter of the oxide superconductor core wire is d. When 1.3 <D / d
It is preferred that ≦ 5.0. More preferably D / d
Is 1.5 or more, and D / d is 2.5 or less.
【0035】D/dの値が低過ぎると、Jc overallは向
上するが、n値は低下する。逆にD/dの値が高過ぎる
と、n値は向上するが、Jc overallが低下する。従って
上記範囲とした。更に本発明においては、前記酸化物超
電導線材を複数本束ね、更にAg合金シースで包囲した
ものであっても良い。If the value of D / d is too low, Jc overall improves, but the n value decreases. Conversely, if the value of D / d is too high, the n value will increase, but the Jc overall will decrease. Therefore, the above range was set. Further, in the present invention, a plurality of the oxide superconducting wires may be bundled and further surrounded by an Ag alloy sheath.
【0036】尚上記緩衝金属シースや上記緩衝金属マト
リックスまたは上記緩衝金属線材が高比抵抗であると
は、Agに比べて比抵抗が高いということであり、例え
ば4.2Kにおいて5.0×10-10 Ωm以上の比抵抗
を有することが望ましい。The phrase "the buffer metal sheath, the buffer metal matrix, or the buffer metal wire has a high specific resistance" means that the specific resistance is higher than that of Ag, for example, 5.0 × 10 at 4.2K. It is desirable to have a specific resistance of -10 Ωm or more.
【0037】上記緩衝金属シースや緩衝金属マトリック
スとしては、Ag−Ni合金,Ag−Mg−Ni合金,
Pt,Pd等が適している。尚これらとAgについての
ビッカース硬度及び比抵抗を下記表1に示す。The buffer metal sheath and the buffer metal matrix include an Ag—Ni alloy, an Ag—Mg—Ni alloy,
Pt, Pd and the like are suitable. Table 1 below shows the Vickers hardness and specific resistance of these and Ag.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【発明の実施の形態及び実施例】以下、実施例を挙げて
本発明に係る酸化物超電導線材を更に詳細に説明する
が、下記実施例は本発明を制限するものではなく、前・
後記の主旨を逸脱しない範囲で適宜変更を加えて実施す
ることもでき、それらは全て本発明の技術的範囲に包含
される。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the oxide superconducting wire according to the present invention will be described in more detail with reference to examples, but the following examples do not limit the present invention.
The present invention can be implemented with appropriate modifications without departing from the gist of the following description, and they are all included in the technical scope of the present invention.
【0040】<実施例1(第1の発明)>図1は本第1
の発明の実施例1に係る酸化物超電導線材を示す模式断
面図である。図1に示す様に実施例1の酸化物超電導線
材は、酸化物芯10がAgシース11で囲まれて更に緩
衝金属シース12(Ag-0.1wt%Ni) で包囲されており、こ
の単位芯線が19本集められ、その回りをAg合金シー
ス(Ag-0.3wt%Mg-0.3wt%Ni)13が被った3重シースの断
面構造となっている。<Embodiment 1 (First Invention)> FIG.
1 is a schematic sectional view showing an oxide superconducting wire according to Example 1 of the present invention. As shown in FIG. 1, the oxide superconducting wire of Example 1 has an oxide core 10 surrounded by an Ag sheath 11 and further surrounded by a buffer metal sheath 12 (Ag-0.1 wt% Ni). Are collected, and a triple sheath structure in which an Ag alloy sheath (Ag-0.3wt% Mg-0.3wt% Ni) 13 covers the periphery thereof is provided.
【0041】上記緩衝金属シース12のAg−0.1w
t%Niは、比抵抗が1.0×10 -9Ωmと高く、また
室温における硬度が65Hvであって、Agシース11
の硬度38Hv(室温)とAg合金シース(Ag-0.3wt%Mg
-0.3wt%Ni)13の硬度95Hv(室温)の間である。Ag-0.1 w of the buffer metal sheath 12
t% Ni has a specific resistance of 1.0 × 10 -9Ωm and high
The hardness at room temperature is 65 Hv, and the Ag sheath 11
Hardness 38Hv (room temperature) and Ag alloy sheath (Ag-0.3wt% Mg
(−0.3 wt% Ni) 13 with a hardness of 95 Hv (room temperature).
【0042】次にこの実施例1の酸化物超電導線材の製
造方法について説明する。酸化物超電導材料としてBi
2 Sr2 CaCu2 Ox を用い、この酸化物超電導材料
の仮焼粉末をAgパイプ内に充填し、これを更に上記緩
衝金属シース用としてのAg合金(Ag−0.1wt%
Ni)のパイプで被い、この酸化物超電導粉末入りの2
重パイプを断面6角形となる様にしつつ伸線加工した。Next, a method of manufacturing the oxide superconducting wire of Example 1 will be described. Bi as oxide superconducting material
Using 2 Sr 2 CaCu 2 O x , a calcined powder of this oxide superconducting material is filled in an Ag pipe, and this is further mixed with an Ag alloy (Ag-0.1 wt%) for the buffer metal sheath.
Ni) with a pipe made of the oxide superconducting powder.
The heavy pipe was wire-drawn while having a hexagonal cross section.
【0043】該伸線後、切断して19本束ね、これを筒
状のAg−0.3wt%Mg−0.3wt%Ni(Ag
合金シース用)内にセットし、ビレットを組み立てた。
該ビレットを静水圧押出しに付して一体化と減面加工を
行い、更に所定の寸法まで伸線加工を行い、外径1.3
mmの19芯丸線材を得た。After the wire drawing, it was cut and bundled into 19 pieces, and this was made into a cylindrical Ag-0.3 wt% Mg-0.3 wt% Ni (Ag
(For alloy sheath) to assemble a billet.
The billet is subjected to hydrostatic extrusion to perform integration and surface reduction, and further, wire-drawing to a predetermined size, and an outer diameter of 1.3.
mm 19-core round wire was obtained.
【0044】<実施例2(第1の発明)>実施例2は上
記実施例1の緩衝金属シース用のAg−0.1wt%N
iに換えて、Ptを用いたものであり、本実施例2に係
る酸化物超電導線材も図1と同様の断面構造を呈してい
る。即ち酸化物芯10をAgシース11と緩衝金属シー
ス12(Pt)で2重に被い、更にAg合金シース13
で囲んだ3重シースの断面構造となっている。<Embodiment 2 (first invention)> In Embodiment 2, Ag-0.1 wt% N for the buffer metal sheath of Embodiment 1 is used.
In place of i, Pt is used, and the oxide superconducting wire according to the second embodiment also has a cross-sectional structure similar to that of FIG. That is, the oxide core 10 is covered twice with an Ag sheath 11 and a buffer metal sheath 12 (Pt), and further, an Ag alloy sheath 13
It has a cross-sectional structure of a triple sheath surrounded by.
【0045】上記緩衝金属シース12のPtは、比抵抗
が5.5×10-10 Ωmと高く、また硬度が63Hv
(室温)であって、Agシース11とAg合金シース(A
g-0.3wt%Mg-0.3wt%Ni)13の間の硬さである。The Pt of the buffer metal sheath 12 has a high specific resistance of 5.5 × 10 −10 Ωm and a hardness of 63 Hv.
(Room temperature), the Ag sheath 11 and the Ag alloy sheath (A
g-0.3wt% Mg-0.3wt% Ni).
【0046】次にこの実施例2の製造方法について述べ
る。酸化物超電導材料(Bi2 Sr2 CaCu2 Ox )
の仮焼粉末をAgパイプ内に充填し、これにPtメッキ
を施し、断面6角形となる様にしつつ伸線加工した。尚
この際実施例2におけるAgシース11と緩衝金属シー
ス12(Pt)の厚さの合計が、上記実施例1における
Agシース11と緩衝金属シース12(Ag−0.1w
t%Ni)の厚さの合計と等しくなる様にした。更に上
記と同様にして19芯丸線材を得た。Next, the manufacturing method of the second embodiment will be described. Oxide superconducting material (Bi 2 Sr 2 CaCu 2 O x )
Was calcined in an Ag pipe, Pt plating was applied thereto, and wire drawing was performed so that the cross section became hexagonal. In this case, the total thickness of the Ag sheath 11 and the buffer metal sheath 12 (Pt) in the second embodiment is equal to the Ag sheath 11 and the buffer metal sheath 12 (Ag-0.1w) in the first embodiment.
t% Ni). Further, a 19-core round wire was obtained in the same manner as above.
【0047】<実施例3(第3の発明)>図2は実施例
3に係る酸化物超電導線材を示す模式断面図である。図
2に示す様に本実施例3の線材は、酸化物芯10の周囲
にAgシース11が配された単位芯線15と、緩衝金属
線材(Ag-0.3wt%Ni)14が、夫々複数本分散状態で束ね
られ、これが更にAg合金シース(Ag-0.3wt%Mg-0.3%Ni)
13で包囲されたものである。Third Embodiment (Third Invention) FIG. 2 is a schematic sectional view showing an oxide superconducting wire according to a third embodiment. As shown in FIG. 2, the wire according to the third embodiment includes a unit core wire 15 having an Ag sheath 11 disposed around an oxide core 10 and a plurality of buffer metal wires (Ag-0.3 wt% Ni) 14. It is bundled in a dispersed state, and this is further Ag alloy sheath (Ag-0.3wt% Mg-0.3% Ni)
13.
【0048】緩衝金属線材14の比抵抗は1.5×10
-9Ωmと高く、硬度は78Hv(室温)であって、Ag
シース11の硬度38Hv(室温)とAg合金シース1
3の硬度95Hv(室温)の間である。また緩衝金属線
材14を隔てて隣接する酸化物芯10同士の間隔をD、
酸化物芯10の断面直径をdとすると、実施例3におけ
るD/dは1.2であった。The specific resistance of the buffer metal wire 14 is 1.5 × 10
-9 Ωm, hardness is 78 Hv (room temperature), and Ag
Hardness 38Hv (room temperature) of sheath 11 and Ag alloy sheath 1
And a hardness of 95 Hv (room temperature). The distance between the adjacent oxide cores 10 across the buffer metal wire 14 is D,
Assuming that the sectional diameter of the oxide core 10 is d, D / d in Example 3 was 1.2.
【0049】次に実施例3の酸化物超電導線材の製造方
法について述べる。酸化物超電導材料としてBi2 Sr
2 CaCu2 Ox を用い、この酸化物超電導材料の仮焼
粉末をAgパイプ内に充填し、断面6角形となる様にし
つつ伸線加工した後、42本に切断した(単位芯線1
5)。また緩衝金属線材用としてAg合金(Ag−0.
3wt%Ni)棒を同じく断面6角形となる様にしつつ
伸線加工した後、13本に切断した(緩衝金属線材1
4)。13本の緩衝金属線材14と42本の単位芯線1
5を分散状態にして束ね、筒状のAg−0.3wt%M
g−0.3wt%Ni(Ag合金シース用)内にセット
し、ビレットを作製した。該ビレットを静水圧押出しに
付して一体化と減面加工を行い、更に所定の寸法まで伸
線加工を行い、外径1.3mmの42芯の丸線材を得
た。Next, a method of manufacturing the oxide superconducting wire of Example 3 will be described. Bi 2 Sr as oxide superconducting material
Using 2CaCu 2 O x , the calcined powder of this oxide superconducting material was filled in an Ag pipe, drawn into a hexagonal cross section, and cut into 42 pieces (unit core wire 1).
5). Further, an Ag alloy (Ag-0.
(3 wt% Ni) rod was drawn while similarly forming a hexagonal cross section, and then cut into 13 pieces (buffer metal wire 1).
4). 13 buffer metal wires 14 and 42 unit core wires 1
5 in a dispersed state and bundled, cylindrical Ag-0.3 wt% M
It was set in g-0.3 wt% Ni (for Ag alloy sheath) to produce a billet. The billet was subjected to hydrostatic extrusion to perform integration and surface reduction, followed by wire drawing to a predetermined size to obtain a 42-core round wire having an outer diameter of 1.3 mm.
【0050】<実施例4(第3の発明)>酸化物芯10
の径dを上記実施例3よりも細くしてD/d=2.5と
し、これ以外は上記実施例3と同様にして、外径が1.
3mmの42芯の丸線材を作製した。Example 4 (Third Invention) Oxide Core 10
Is smaller than that of the third embodiment, and D / d = 2.5. Other than the above, the outer diameter is 1.
A 3 mm 42-core round wire was produced.
【0051】<実施例5(第2の発明)>図3は実施例
5に係る酸化物超電導線材を示す模式断面図である。実
施例5の線材は、酸化物芯10の回りにAgシース11
が配された単位芯線15が複数本束ねられて緩衝金属マ
トリックス(Ag-0.3wt%Ni)16で被われ、この19芯線
材が7本束ねられて更にAg合金シース(Ag-0.3wt%Mg-
0.3wt%Ni)13で包囲された断面構造を有する。Embodiment 5 (Second Invention) FIG. 3 is a schematic sectional view showing an oxide superconducting wire according to Embodiment 5. The wire of Example 5 has an Ag sheath 11 around the oxide core 10.
Are bundled and covered with a buffer metal matrix (Ag-0.3wt% Ni) 16, and seventeen of these 19-core wires are bundled to form an Ag alloy sheath (Ag-0.3wt% Mg). -
It has a cross-sectional structure surrounded by 0.3 wt% Ni) 13.
【0052】本実施例5の線材は、緩衝金属マトリック
ス16を隔てて隣接する酸化物芯10同士の間隔をD、
酸化物芯10の断面直径をdとするとき、D/dは4.
0であった。In the wire of the fifth embodiment, the distance between the adjacent oxide cores 10 across the buffer metal matrix 16 is D,
When the sectional diameter of the oxide core 10 is d, D / d is 4.
It was 0.
【0053】次に実施例5の酸化物超電導線材の製造方
法について述べる。酸化物超電導材料としてBi2 Sr
2 CaCu2 Ox を用い、この酸化物超電導材料の仮焼
粉末をAgパイプ内に充填し、断面6角形となる様にし
つつ伸線加工した後、19本に切断した(単位芯線1
5)。緩衝金属マトリックス用のAg合金(Ag−0.
3wt%Ni)の筒の内部に、上記6角伸線材の19本
を束ねて挿入し、ビレットを作製した(19芯線材)。
該ビレットを静水圧押出しに付した後、7分割し、これ
を7穴を空けたAg合金(Ag−0.3wt%Mg−
0.3wt%Ni)内に夫々セットし、ビレットを組み
立てた。その後、更に静水圧押出しを行い、伸線加工を
行って外径1.3mmの19×7芯の丸線材を得た。Next, a method for manufacturing the oxide superconducting wire of Example 5 will be described. Bi 2 Sr as oxide superconducting material
Using 2 CaCu 2 O x , the calcined powder of this oxide superconducting material was filled in an Ag pipe, drawn into a hexagonal cross section, and cut into 19 pieces (unit core wire 1).
5). Ag alloy for buffer metal matrix (Ag-0.
Nineteen of the above hexagonally drawn wires were bundled and inserted into the inside of a 3 wt% Ni) tube to produce a billet (19 core wires).
After the billet was subjected to hydrostatic extrusion, it was divided into seven parts, which were then divided into seven holes by an Ag alloy (Ag-0.3 wt% Mg-
Each was set in 0.3 wt% Ni) to assemble a billet. Thereafter, further isostatic extrusion was performed and wire drawing was performed to obtain a 19 × 7 core round wire having an outer diameter of 1.3 mm.
【0054】<実施例6(第2の発明)>上記単位芯線
15の太さを細くしてD/d=5.1となる様にし、こ
れ以外は上記実施例5と同様にして酸化物超電導線材を
作製した。<Embodiment 6 (second invention)> The thickness of the unit core wire 15 is reduced so that D / d = 5.1. A superconducting wire was manufactured.
【0055】<実施例7>図4は本発明の実施例7に係
る酸化物超電導線材を示す模式断面図である。図4に示
す様に、本実施例7の線材は、酸化物芯10がAgシー
ス11と緩衝金属シース(Ag-0.1wt%Ni)12により2重
に被われ、更にこの2重単位芯線25の複数本と緩衝金
属線材(Ag-0.3wt%Ni)14の複数本が分散状態で束ねら
れ、更にAg合金シース(Ag-0.3wt%Mg-0.3wt%Ni)13で
包囲されたものである。本実施例7のD/dは上記実施
例3と同じ1.2であった。Embodiment 7 FIG. 4 is a schematic sectional view showing an oxide superconducting wire according to Embodiment 7 of the present invention. As shown in FIG. 4, in the wire rod of the seventh embodiment, the oxide core 10 is double-covered by the Ag sheath 11 and the buffer metal sheath (Ag-0.1 wt% Ni) 12, and the double unit core wire 25 is further provided. And a plurality of buffer metal wires (Ag-0.3wt% Ni) 14 are bundled in a dispersed state and further surrounded by an Ag alloy sheath (Ag-0.3wt% Mg-0.3wt% Ni) 13. is there. The D / d of the seventh embodiment was 1.2, which is the same as that of the third embodiment.
【0056】次に実施例7の酸化物超電導線材の製造方
法について述べる。酸化物超電導材料としてBi2 Sr
2 CaCu2 Ox を用い、この酸化物超電導材料の仮焼
粉末をAgパイプ内に充填し、これを更に上記緩衝金属
シース用としてのAg合金(Ag−0.1wt%Ni)
のパイプで被い、この酸化物超電導粉末入りの2重パイ
プを断面6角形となる様にしつつ伸線加工した後、48
本に切断した(2重単位芯線25)。尚この際上記Ag
パイプとAg合金(Ag−0.1wt%Ni)パイプの
厚さの合計を、上記実施例4のAgパイプの厚さと等し
くした。Next, a method for manufacturing the oxide superconducting wire of Example 7 will be described. Bi 2 Sr as oxide superconducting material
Using 2 CaCu 2 O x , the calcined powder of this oxide superconducting material is filled into an Ag pipe, and this is further mixed with an Ag alloy (Ag-0.1 wt% Ni) for the buffer metal sheath
And then wire-drawing the double pipe containing the oxide superconducting powder so as to have a hexagonal cross section.
It was cut into books (double unit core wire 25). In this case, the Ag
The total thickness of the pipe and the Ag alloy (Ag-0.1 wt% Ni) pipe was made equal to the thickness of the Ag pipe of Example 4 above.
【0057】また緩衝金属線材用としてAg合金(Ag
−0.3wt%Ni)の棒を同じく断面6角形となる様
にしつつ伸線加工した後、7本に切断した(緩衝金属線
材14)。For a buffer metal wire rod, an Ag alloy (Ag alloy) is used.
A rod of (−0.3 wt% Ni) was drawn while similarly forming a hexagonal cross section, and then cut into seven pieces (buffer metal wire 14).
【0058】7本の上記緩衝金属線材14と48本の上
記2重単位芯線25を分散状態で束ね、これを筒状のA
g−0.3wt%Mg−0.3wt%Ni(Ag合金シ
ース用)内にセットし、ビレットを作製した。該ビレッ
トを静水圧押出しに付し、更に伸線加工を行って、外径
1.3mmの48芯の丸線材を得た。The seven buffer metal wires 14 and the 48 double unit core wires 25 are bundled in a dispersed state, and these are bundled into a cylindrical A.
It was set in g-0.3 wt% Mg-0.3 wt% Ni (for Ag alloy sheath) to produce a billet. The billet was subjected to hydrostatic extrusion and further subjected to wire drawing to obtain a 48-core round wire having an outer diameter of 1.3 mm.
【0059】<比較例(従来例に相当)>図5は比較
例の酸化物超電導線材を示す模式断面図であり、この比
較例の線材は、酸化物芯10をAgシース11で被い、
更にAg合金シース13で包んだダブルシース断面構造
を呈している。<Comparative Example (corresponding to Conventional Example)> FIG. 5 is a schematic sectional view showing an oxide superconducting wire of a comparative example. The wire of this comparative example has an oxide core 10 covered with an Ag sheath 11,
Further, it has a double sheath cross-sectional structure wrapped with an Ag alloy sheath 13.
【0060】次に比較例の酸化物超電導線材の製造方法
について述べる。上記実施例1〜7と同様に酸化物超電
導材料としてBi2 Sr2 CaCu2 O x を用い、この
仮焼粉末をAgパイプ内に充填し、断面6角形となる様
にしつつ伸線加工を施した。尚上記Agパイプの厚さ
を、前記実施例1におけるAgパイプとAg合金パイプ
の厚さの合計と等しくした。次に切断して19本束ね、
筒状のAg合金(Ag−0.3wt%Mg−0.3wt
%Ni)内にセットし、ビレットを組み立てた。その
後、静水圧押出しを行い、伸線加工を行って、外径1.
3mmの19芯丸線材を得た。Next, a method of manufacturing the oxide superconducting wire of the comparative example
Is described. Oxide supercharged in the same manner as in Examples 1 to 7 above.
Bi as conductive materialTwo SrTwo CaCuTwo O x Using this
Fill the calcined powder into an Ag pipe so that the cross section becomes hexagonal
And wire drawing was performed. The thickness of the above Ag pipe
And the Ag pipe and the Ag alloy pipe in the first embodiment.
Was equal to the total thickness. Then cut and bundle 19
Cylindrical Ag alloy (Ag-0.3wt% Mg-0.3wt
% Ni) to assemble a billet. That
Thereafter, an isostatic extrusion is performed, and a wire drawing process is performed.
A 3 mm 19-core round wire was obtained.
【0061】[試験]上記実施例1〜7及び比較例の酸
化物超電導線材から、夫々長さ1000mmの試料を2
本切り出し、1本を直径30mmのテストコイルに巻線
し、860℃〜910℃の温度で部分溶融を行った後、
1〜5℃/hの速度で冷却しながらBi−2212を結
晶化させた。[Test] From the oxide superconducting wires of Examples 1 to 7 and Comparative Example, two samples each having a length of 1000 mm were prepared.
After cutting out one piece and winding it on a test coil having a diameter of 30 mm and performing partial melting at a temperature of 860 ° C. to 910 ° C.,
Bi-2212 was crystallized while cooling at a rate of 1-5 ° C / h.
【0062】この酸化物超電導線材について、4.2
K,0Tにおける臨界電流を線材断面積で除してJc ove
rallを求めた。また、0.1〜1μV/cmの電界基準
を用いた時のn値を求めた。With respect to this oxide superconducting wire, 4.2
The critical current at K, 0T is divided by the cross-sectional area of the wire, and J
asked for rall. Further, the n value when an electric field reference of 0.1 to 1 μV / cm was used was determined.
【0063】また上記切り出した他の1本を同一条件で
熱処理し、この線材を用いて室温で引張り試験を行っ
た。尚酸化物超電導体が耐えられる変形量は0.2%程
度であるから、この引張試験においては0.2%変形す
るまでの応力(0.2%耐力)を求めた。この結果を下
記表2に示す。The other one of the cut pieces was heat-treated under the same conditions, and a tensile test was performed at room temperature using this wire. Since the amount of deformation that the oxide superconductor can withstand is about 0.2%, in this tensile test, the stress (0.2% proof stress) until 0.2% deformation was obtained. The results are shown in Table 2 below.
【0064】[0064]
【表2】 [Table 2]
【0065】上記表2から分かる様に、実施例1,2は
比較例よりもn値が大きく向上し、0.2%耐力も向上
が見られた。As can be seen from Table 2 above, in Examples 1 and 2, the n value was greatly improved and the 0.2% proof stress was also improved as compared with the comparative example.
【0066】実施例3はn値と0.2%耐力については
比較例と等しいという結果であったが、Jc overallにつ
いては向上した。これに対し実施例4は比較例に対して
0.2%耐力については同じであるが、n値については
大きく改善され、Jc overallもやや改善された。この結
果から、D/dの値は低いとn値があまり向上しないが
Jc overallが高くなり、一方D/dの値が高いと、Jc o
verallの向上は少ないがn値が高くなる傾向にあること
が分かる。また実施例5は比較例に比べて全ての値が向
上した。実施例6は比較例に比べてJc overallについて
は低下したが、n値と0.2%耐力については向上し
た。これらの結果から、D/dの値が1.3〜5.0で
あるものがより好ましいことが分かる。In Example 3, the n value and the 0.2% proof stress were equal to those of the comparative example, but the Jc overall was improved. On the other hand, Example 4 was the same as Comparative Example in terms of 0.2% proof stress, but the n value was greatly improved, and Jc overall was also slightly improved. From this result, when the value of D / d is low, the n value does not improve much,
When Jc overall is high, while D / d is high, Jc o
It can be seen that the improvement in verall is small, but the n value tends to increase. In Example 5, all the values were improved as compared with the comparative example. In Example 6, Jc overall was lower than that of Comparative Example, but n value and 0.2% proof stress were improved. From these results, it is understood that those having a value of D / d of 1.3 to 5.0 are more preferable.
【0067】実施例7は比較例に比べて全ての値が大幅
に向上しており、緩衝金属シースと緩衝金属線材を併用
したものが、より一層好ましいことが分かる。In Example 7, all the values are greatly improved as compared with the comparative example, and it is understood that the combination of the buffer metal sheath and the buffer metal wire is more preferable.
【0068】この様に実施例1〜7はいずれも高n値、
高臨界電流密度、高機械的強度の各特性を示すものであ
った。As described above, Examples 1 to 7 all have a high n value,
It exhibited the properties of high critical current density and high mechanical strength.
【0069】尚上記実施例1〜7においては、Ag合金
シース13としてAg−0.3wt%Mg−0.3wt
%Niを用いたが、これに限るものではなく、Mg,N
i,Mn,Zr等を微量に添加したものであって、Ag
と金属間化合物を生成せず、固溶体を形成する合金であ
れば、どの様な合金であっても良い。In Examples 1 to 7, the Ag alloy sheath 13 was made of Ag-0.3 wt% Mg-0.3 wt
% Ni was used, but is not limited thereto.
i, Mn, Zr, etc. in a small amount,
Any alloy may be used as long as it does not generate an intermetallic compound and forms a solid solution.
【0070】また酸化物超電導体としてBi2 Sr2 C
aCu2 Ox (Bi−2212)を用いたが、これに限
らず、例えば(Bi,Pb)2 Sr2 Ca2 Cu3 Oy
(Bi−2223)等の様な他の酸化物超電導体を用い
ても勿論良い。As an oxide superconductor, Bi 2 Sr 2 C
Although aCu 2 O x (Bi-2212) was used, the invention is not limited to this. For example, (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y
Of course, other oxide superconductors such as (Bi-2223) may be used.
【0071】更に図1〜4に示した断面構造に限るもの
ではなく、例えば図6の模式断面図に示す様に、酸化物
芯10の回りにAgシース11が配された単位芯線15
を複数本束ね、これを緩衝金属マトリックス16で被
い、更にAg合金シース13で包囲した断面構造を有す
るもの(第2の発明)であっても良い。Further, the present invention is not limited to the cross-sectional structure shown in FIGS. 1 to 4. For example, as shown in a schematic cross-sectional view of FIG. 6, a unit core wire 15 in which an Ag sheath 11 is arranged around an oxide core 10 is used.
May be bundled, covered with a buffer metal matrix 16, and further surrounded by an Ag alloy sheath 13 (second invention).
【0072】また例えば図1に示す酸化物超電導線材が
複数本束ねられて、更にこれをAg合金シースで被った
ものであっても良い。Further, for example, a plurality of the oxide superconducting wires shown in FIG. 1 may be bundled and further covered with an Ag alloy sheath.
【0073】[0073]
【発明の効果】本発明に係る酸化物超電導線材は、酸化
物芯が均一に加工され得るから、酸化物芯間の分流を抑
制することができ、高いn値が実現される。加えて、
0.2%耐力で代表される機械的強度やJc overallに関
しても、従来品以上に保つことができる。よって、本発
明に係る酸化物超電導線材を用いれば、従来の金属系超
電導マグネットよりもさらに高性能な酸化物超電導マグ
ネットの製作が期待でき、従って高性能のNMR分析装
置を製造することができる。またその他超電導応用に極
めて有利である。According to the oxide superconducting wire of the present invention, since the oxide core can be processed uniformly, the shunt between the oxide cores can be suppressed, and a high n value can be realized. in addition,
The mechanical strength represented by 0.2% proof stress and Jc overall can also be kept higher than conventional products. Therefore, if the oxide superconducting wire according to the present invention is used, the production of an oxide superconducting magnet having higher performance than that of a conventional metal-based superconducting magnet can be expected, and a high-performance NMR analyzer can be manufactured. It is extremely advantageous for other superconducting applications.
【図1】本発明の実施例1,2に係る酸化物超電導線材
を示す模式断面図。FIG. 1 is a schematic sectional view showing an oxide superconducting wire according to Examples 1 and 2 of the present invention.
【図2】本発明の実施例3,4に係る酸化物超電導線材
を示す模式断面図。FIG. 2 is a schematic sectional view showing an oxide superconducting wire according to Examples 3 and 4 of the present invention.
【図3】本発明の実施例5,6に係る酸化物超電導線材
を示す模式断面図。FIG. 3 is a schematic sectional view showing an oxide superconducting wire according to Examples 5 and 6 of the present invention.
【図4】本発明の実施例7に係る酸化物超電導線材を示
す模式断面図。FIG. 4 is a schematic sectional view showing an oxide superconducting wire according to a seventh embodiment of the present invention.
【図5】比較例(従来例)の酸化物超電導線材を示す
模式断面図。FIG. 5 is a schematic sectional view showing an oxide superconducting wire of a comparative example (conventional example).
【図6】本発明に係る酸化物超電導線材の他の実施例を
示す模式断面図。FIG. 6 is a schematic sectional view showing another embodiment of the oxide superconducting wire according to the present invention.
10 酸化物芯 11 Agシース 12 緩衝金属シース 13 Ag合金シース 14 緩衝金属線材 15 単位芯線 16 緩衝金属マトリックス 25 2重単位芯線 DESCRIPTION OF SYMBOLS 10 Oxide core 11 Ag sheath 12 Buffer metal sheath 13 Ag alloy sheath 14 Buffer metal wire 15 Unit core wire 16 Buffer metal matrix 25 Double unit core wire
Claims (9)
スを配した単位芯線を、更にAg合金シースで包囲した
断面構造を有する酸化物超電導線材において、 前記単位芯線が緩衝金属シースで包囲され、 該緩衝金属シースが高比抵抗であり、且つ前記Agシー
スより硬く前記Ag合金シースより軟らかいものである
ことを特徴とする酸化物超電導線材。1. An oxide superconducting wire having a cross-sectional structure in which a unit core in which an Ag sheath is disposed around a core of an oxide superconductor and further surrounded by an Ag alloy sheath, wherein the unit core is surrounded by a buffer metal sheath. An oxide superconducting wire, wherein the buffer metal sheath has a high specific resistance and is harder than the Ag sheath and softer than the Ag alloy sheath.
属シースで包囲したものが束ねられ、前記Ag合金シー
ス中に配設されたものである請求項1に記載の酸化物超
電導線材。2. The oxide superconducting wire according to claim 1, wherein each of the plurality of unit core wires surrounded by the buffer metal sheath is bundled and disposed in the Ag alloy sheath.
スを配した単位芯線を、更にAg合金シースで包囲した
断面構造を有する酸化物超電導線材において、 前記単位芯線が複数本束ねられた周囲に、緩衝金属マト
リックスが配された断面構造を有し、 該緩衝金属マトリックスが高比抵抗であり、且つ前記A
gシースより硬く前記Ag合金シースより軟らかいもの
であることを特徴とする酸化物超電導線材。3. An oxide superconducting wire having a cross-sectional structure in which a unit core in which an Ag sheath is disposed around a core of an oxide superconductor and further surrounded by an Ag alloy sheath, wherein a plurality of unit cores are bundled. A buffer metal matrix, the buffer metal matrix has a high specific resistance, and the A
An oxide superconducting wire, characterized in that it is harder than g sheath and softer than the Ag alloy sheath.
マトリックスが配されたものが複数本束ねられ、これを
前記Ag合金シースで包囲した断面構造を有する請求項
3に記載の酸化物超電導線材。4. The oxide superconducting material according to claim 3, wherein a plurality of unit core wires each having a buffer metal matrix arranged around them are bundled and have a cross-sectional structure surrounded by the Ag alloy sheath. wire.
スを配した単位芯線の複数本と、 高比抵抗で、且つ前記Agシースより硬く前記Ag合金
シースより軟らかいものである緩衝金属線材の複数本を
有し、 前記複数本の単位芯線と前記複数本の緩衝金属線材が、
分散状態で束ねられてAg合金シースで包囲された断面
構造を有することを特徴とする酸化物超電導線材。5. A plurality of unit core wires each having an Ag sheath arranged around a core wire of an oxide superconductor, and a buffer metal wire having a high specific resistance and being harder than the Ag sheath and softer than the Ag alloy sheath. Having a plurality, the plurality of unit core wires and the plurality of buffer metal wires,
An oxide superconducting wire having a cross-sectional structure which is bundled in a dispersed state and surrounded by an Ag alloy sheath.
ースで包囲され、 該緩衝金属シースが高比抵抗で、且つ前記Agシースよ
り硬く前記Ag合金シースより軟らかいものである請求
項5に記載の酸化物超電導線材。6. The buffer metal sheath according to claim 5, wherein each of the unit core wires is surrounded by a buffer metal sheath, and the buffer metal sheath has a high specific resistance and is harder than the Ag sheath and softer than the Ag alloy sheath. Oxide superconducting wire.
衝金属線材を隔てて最も隣接する前記酸化物超電導体芯
線同士の間隔をD、該酸化物超電導体芯線の断面最大径
をdとするとき、1.3<D/d≦5.0である請求項
4〜6のいずれかに記載の酸化物超電導線材。7. When the distance between the oxide superconductor core wires that are closest to each other across the buffer metal matrix or the buffer metal wire is D, and the maximum cross-sectional diameter of the oxide superconductor core wire is d, The oxide superconducting wire according to any one of claims 4 to 6, wherein 3 <D / d ≤ 5.0.
の酸化物超電導線材が複数本束ねられ、更にAg合金シ
ースで包囲されている酸化物超電導線材。8. An oxide superconducting wire in which a plurality of the oxide superconducting wires according to claim 1, 2, 5 to 7 are bundled and further surrounded by an Ag alloy sheath.
リックスまたは前記緩衝金属線材は、4.2Kにおける
比抵抗が5.0×10-10 Ωm以上である請求項1〜8
のいずれかに記載の酸化物超電導線材。9. The buffer metal sheath, the buffer metal matrix, or the buffer metal wire has a specific resistance of 5.0 × 10 −10 Ωm or more at 4.2K.
The oxide superconducting wire according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9266698A JPH11111081A (en) | 1997-09-30 | 1997-09-30 | Oxide superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9266698A JPH11111081A (en) | 1997-09-30 | 1997-09-30 | Oxide superconducting wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11111081A true JPH11111081A (en) | 1999-04-23 |
Family
ID=17434451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9266698A Pending JPH11111081A (en) | 1997-09-30 | 1997-09-30 | Oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11111081A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203703A (en) * | 2002-12-26 | 2004-07-22 | Chubu Electric Power Co Inc | Bi BASED OXIDE SUPERCONDUCTOR |
WO2005050674A1 (en) * | 2003-11-21 | 2005-06-02 | Sumitomo Electric Industries, Ltd. | Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same |
WO2006098269A1 (en) * | 2005-03-15 | 2006-09-21 | Sumitomo Electric Industries, Ltd. | Process for producing superconducting wire rod |
WO2016130956A1 (en) * | 2015-02-13 | 2016-08-18 | Alexander Otto | Multifilament superconducting wire with high resistance sleeves |
-
1997
- 1997-09-30 JP JP9266698A patent/JPH11111081A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203703A (en) * | 2002-12-26 | 2004-07-22 | Chubu Electric Power Co Inc | Bi BASED OXIDE SUPERCONDUCTOR |
WO2005050674A1 (en) * | 2003-11-21 | 2005-06-02 | Sumitomo Electric Industries, Ltd. | Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same |
WO2006098269A1 (en) * | 2005-03-15 | 2006-09-21 | Sumitomo Electric Industries, Ltd. | Process for producing superconducting wire rod |
JP2006260854A (en) * | 2005-03-15 | 2006-09-28 | Sumitomo Electric Ind Ltd | Manufacturing method of superconductive wire rod |
WO2016130956A1 (en) * | 2015-02-13 | 2016-08-18 | Alexander Otto | Multifilament superconducting wire with high resistance sleeves |
US20160260526A1 (en) * | 2015-02-13 | 2016-09-08 | Alexander Otto | Multifilament superconducting wire with high resistance sleeves |
US9859039B2 (en) | 2015-02-13 | 2018-01-02 | Alexander Otto | Multifilament superconducting wire with high resistance sleeves |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4363675A (en) | Process for producing compound based superconductor wire | |
JPH0768605B2 (en) | Nb (bottom 3) Method for manufacturing Sn-based superconducting wire | |
US6583362B2 (en) | Zirconia-stabilized multi-filamentary niobium-tin superconducting wire | |
JPH11111081A (en) | Oxide superconducting wire | |
US4094059A (en) | Method for producing composite superconductors | |
JP2006107841A (en) | Magnesium diboride compound sheath superconducting wire and manufacturing method of the same | |
US7325293B2 (en) | Zirconia-stabilized multi-filamentary niobium-tin superconducting wire | |
US3996662A (en) | Method for the manufacture of a superconductor having an intermetallic two element compound | |
JP3778971B2 (en) | Oxide superconducting wire and method for producing the same | |
JPH08180752A (en) | Nb3sn superconductive wire and manufacture thereof | |
JP3754522B2 (en) | Nb (3) Sn superconducting wire | |
JP3520699B2 (en) | Oxide superconducting wire and manufacturing method thereof | |
JP2002033025A (en) | Nb3Al SUPERCONDUCTING MULTI-CORE WIRE AND ITS MANUFACTURING METHOD | |
JP3757141B2 (en) | Manufacturing method of Nb (3) Sn superconducting wire | |
JP3866969B2 (en) | Manufacturing method of Nb (3) Sn superconducting wire | |
US6810276B1 (en) | Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors | |
JPH0570888B2 (en) | ||
WO2023089919A1 (en) | Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire | |
JP2003045247A (en) | Superconductive cable | |
JP3757617B2 (en) | Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof | |
JP3692657B2 (en) | Oxide superconducting wire | |
Pyon et al. | Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors | |
JPH09147635A (en) | Type a15 superconducting wire and its manufacture | |
JP3428771B2 (en) | Nb3Sn compound superconducting wire | |
JPH0636331B2 (en) | Nb (bottom 3) A1 compound superconducting wire manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050830 |