JP3428771B2 - Nb3Sn compound superconducting wire - Google Patents

Nb3Sn compound superconducting wire

Info

Publication number
JP3428771B2
JP3428771B2 JP08568295A JP8568295A JP3428771B2 JP 3428771 B2 JP3428771 B2 JP 3428771B2 JP 08568295 A JP08568295 A JP 08568295A JP 8568295 A JP8568295 A JP 8568295A JP 3428771 B2 JP3428771 B2 JP 3428771B2
Authority
JP
Japan
Prior art keywords
based alloy
superconducting
layer
composite
diffusion barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08568295A
Other languages
Japanese (ja)
Other versions
JPH08287748A (en
Inventor
正孝 西
嘉彦 布谷
博史 辻
清 吉田
源三 岩城
修二 酒井
賢一 菊地
一隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP08568295A priority Critical patent/JP3428771B2/en
Publication of JPH08287748A publication Critical patent/JPH08287748A/en
Application granted granted Critical
Publication of JP3428771B2 publication Critical patent/JP3428771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導線材、特にNb3
Sn系超電導線材に関するものである。
The present invention relates to a superconducting wire, especially Nb 3
The present invention relates to a Sn-based superconducting wire.

【0002】[0002]

【従来の技術】核融合装置やエネルギー貯蔵装置、物性
研究用高磁界マグネット等の高磁界を必要とする装置に
おいては、高磁界における臨界電流密度の高いNb3
n系超電導線材が用いられる。
2. Description of the Related Art In a device requiring a high magnetic field such as a nuclear fusion device, an energy storage device, and a high magnetic field magnet for studying physical properties, Nb 3 S having a high critical current density in a high magnetic field is used.
An n-based superconducting wire is used.

【0003】Nb3 Sn系超電導線材の製造方法の一つ
であるブロンズ法では、Nb3 Sn系化合物超電導体の
成分であるSnを含んだCu−Sn系合金のマトリック
ス材とNb又はNbと他の添加元素を含んだNb基合金
のフィラメント材を、該フィラメント材が前記マトリッ
クス材中に分散・埋設された形に複合化して加工した
後、熱処理を施してCu−Sn系合金のマトリックスと
Nb又はNb基合金のフィラメントとの界面にNb3
n系超電導化合物を生成させる(以下、Cu−Sn系合
金のマトリックス中に少なくとも表面がNb3 Sn系超
電導化合物からなる多数のフィラメントが分散・埋設さ
れたものを超電導複合体という)。
In the bronze method, which is one of the methods for producing Nb 3 Sn based superconducting wire, a matrix material of Cu--Sn alloy containing Sn which is a component of Nb 3 Sn based compound superconductor, Nb or Nb and others. After the filament material of the Nb-based alloy containing the additive element is processed into a composite in which the filament material is dispersed and embedded in the matrix material, the composite material is heat-treated to form a matrix of Cu-Sn alloy and Nb. Or, Nb 3 S is added to the interface with the filament of Nb-based alloy.
An n-based superconducting compound is produced (hereinafter, a superconducting composite in which a large number of filaments, at least the surface of which are made of Nb 3 Sn-based superconducting compound, are dispersed and embedded in a matrix of Cu—Sn based alloy).

【0004】一方、超電導線材には、超電導状態が破れ
た際の安定性を考慮して高純度銅のような安定化金属が
複合されるが、ブロンズ法によるNb3 Sn系超電導線
材では、加工時のマトリックス材の加工硬化を緩和する
ための中間焼鈍熱処理及び化合物生成のための熱処理に
おいて、Cu−Sn系合金マトリックス中の合金元素が
安定化銅中に拡散し、安定化銅を汚染して安定性を劣化
させないように、超電導複合体となる複合体と安定化銅
の界面にCu、Sn等に不透過性の金属であるTaやN
bを拡散障壁として介在させることが行われる。
On the other hand, in the superconducting wire, a stabilizing metal such as high-purity copper is compounded in consideration of the stability when the superconducting state is broken. However, in the Nb 3 Sn based superconducting wire by the bronze method, In the intermediate annealing heat treatment for alleviating the work hardening of the matrix material and the heat treatment for forming the compound, the alloying elements in the Cu-Sn alloy matrix diffuse into the stabilized copper and contaminate the stabilized copper. In order not to deteriorate the stability, Ta or N, which is a metal impermeable to Cu, Sn, etc., at the interface between the composite which becomes the superconducting composite and the stabilized copper.
The interposition of b as a diffusion barrier is performed.

【0005】[0005]

【発明が解決しようとする課題】拡散障壁としてNbを
使用した場合、最終の化合物生成熱処理においてNb拡
散障壁とCu−Sn系合金マトリックス材との界面にも
Nb3 Sn系化合物超電導体が生成される。
[SUMMARY OF THE INVENTION When using Nb as a diffusion barrier, Nb 3 Sn compound superconductor is produced in the interface between the Nb diffusion barrier and Cu-Sn-based alloy matrix material in the final compound generated heat treatment It

【0006】Nb3 Sn系超電導線材は、従来、一定磁
界或いは交流モードの低い変動磁界中で使用されること
が多く、前記のNb拡散障壁のNb3 Sn系超電導化合
物は線材の電流容量を増大させる利点を有する。
Conventionally, Nb 3 Sn-based superconducting wire is often used in a constant magnetic field or a low fluctuating magnetic field in an AC mode, and the Nb 3 Sn-based superconducting compound of the Nb diffusion barrier increases the current capacity of the wire. Has the advantage of

【0007】近年、Nb3 Sn系超電導線材が変動磁界
中で使用される用途が広がっており、変動磁界中で使用
される線材には、電流容量特性と併せて低交流損失特性
が要求されるが、Nb拡散障壁が超電導複合体を囲むよ
うに配置されているような場合、拡散障壁に生成された
円筒状のNb3 Sn系化合物は、電磁気的に巨大フィラ
メントの挙動を示し、交流損失の主成分である履歴損失
を大幅に増大させることになる。この理由でNbを拡散
障壁としたNb3 Sn系超電導線材は、これを変動磁界
中で使用することができなかった。
In recent years, Nb 3 Sn-based superconducting wire has been widely used in a fluctuating magnetic field, and a wire used in a fluctuating magnetic field is required to have low AC loss characteristics in addition to current capacity characteristics. However, when the Nb diffusion barrier is arranged so as to surround the superconducting composite, the cylindrical Nb 3 Sn-based compound generated in the diffusion barrier electromagnetically behaves as a giant filament and causes AC loss. This will greatly increase the history loss, which is the main component. For this reason, the Nb 3 Sn-based superconducting wire using Nb as a diffusion barrier could not be used in a fluctuating magnetic field.

【0008】これに対し、拡散障壁でのNb3 Sn系化
合物の生成がなく、変動磁界中での使用を可能にさせた
のが、Taを拡散障壁としたNb3 Sn系超電導線材で
ある。しかしながら、この構成の線材ではTaの加工硬
化が激しく、従って、Ta拡散障壁を他の線材構成材と
組合せ、その複合材を非常に高い減面率で加工した場
合、Nbを拡散障壁とした線材では殆ど起こらない冷間
減面加工中の断線が発生しやすくなるという加工上の問
題点を有している。これは、TaとNbを併せて拡散障
壁とした場合も同様で、Taが加工により硬化し、それ
がNbであればある程度の回復が起こる中間焼鈍熱処理
によっても回復しないため、特に安定化銅との変形抵抗
差が拡大することによって発生するTa層の塑性不安定
現象に起因するものと考えられる。
On the other hand, it is the Nb 3 Sn based superconducting wire that uses Ta as a diffusion barrier that enables the use in a fluctuating magnetic field without the formation of Nb 3 Sn based compounds on the diffusion barrier. However, the work hardening of Ta is severe in the wire rod having this configuration, and therefore, when Ta diffusion barrier is combined with other wire rod constituent materials and the composite material is processed at an extremely high surface reduction rate, the wire rod having Nb as the diffusion barrier is formed. However, there is a problem in processing that breakage is likely to occur during cold surface reduction processing, which rarely occurs. This is also the case when Ta and Nb are used together as a diffusion barrier. If Ta is hardened by working and if it is Nb, it does not recover even by the intermediate annealing heat treatment in which some recovery occurs. It is considered that this is due to the plastic instability phenomenon of the Ta layer caused by the expansion of the difference in deformation resistance.

【0009】本発明の目的は、前記した従来技術の欠点
を解消し、低交流損失、高磁界電流特性を有し、かつ加
工性に優れた新規なNb3 Sn系超電導線材を提供する
ことにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a novel Nb 3 Sn-based superconducting wire having low AC loss, high magnetic field current characteristics and excellent workability. is there.

【0010】[0010]

【課題を解決するための手段】本発明の要点は、拡散障
壁層を、安定化銅側に配置されるNb基合金の層と超電
導複合体側に配置されるTa又はTa基合金の層とから
なる複合層としたことにある。
The essential point of the present invention is that the diffusion barrier layer is composed of a layer of Nb-based alloy disposed on the stabilized copper side and a layer of Ta or Ta-based alloy disposed on the superconducting composite side. It is a composite layer.

【0011】[0011]

【作用】本発明では、拡散障壁層の一方にNb基合金材
を配しているため、これが安定化銅とTaの間の変形抵
抗差を緩衝させる層として作用し、Taの加工硬化によ
る安定化銅との変形抵抗差の拡大による塑性不安定現象
を軽減し、加工中に断線が発生するのを防止することが
できる。
In the present invention, since the Nb-based alloy material is provided on one of the diffusion barrier layers, this acts as a layer for buffering the deformation resistance difference between the stabilized copper and Ta, and stabilizes due to work hardening of Ta. It is possible to reduce the plastic instability phenomenon due to the expansion of the difference in deformation resistance with copper and prevent the occurrence of disconnection during processing.

【0012】本発明では、拡散障壁層の一方にNb基合
金が使用されるが、そのようなNb基合金としては、T
a、Hf、Ti、Zr、Vの中の少なくとも1種が総量
で10at%以下添加されたものが使用される。このよう
なNb基合金は、安定化銅を汚染する心配がなく、冷間
加工の途中にいれる中間焼鈍熱処理により隣接するTa
又はTa基合金との界面に容易に固溶体を形成して強固
な界面接合度が得られ、Taの塑性不安定現象発生を防
止できる。また、Nb基合金に含まれる前記した合金元
素は、安定化銅とNb基合金の界面及びNb基合金とT
aの界面に存在する、複合母材組立の時点において既に
各部材表面に生成されていた酸化膜層を中間焼鈍熱処理
において還元する作用を有し、更に強固な接合界面を形
成することが可能となる。
In the present invention, an Nb-based alloy is used for one of the diffusion barrier layers. As such an Nb-based alloy, Tb is used.
At least one of a, Hf, Ti, Zr and V is added in a total amount of 10 at% or less. Such an Nb-based alloy does not have a risk of contaminating the stabilized copper, and is formed by adjoining Ta by an intermediate annealing heat treatment that is performed during cold working.
Alternatively, it is possible to easily form a solid solution at the interface with the Ta-based alloy to obtain a strong degree of interfacial bonding and prevent the occurrence of the plastic instability phenomenon of Ta. Further, the above-mentioned alloy elements contained in the Nb-based alloy are the interface between the stabilized copper and the Nb-based alloy and the Nb-based alloy and the Tb.
It has an action of reducing the oxide film layer existing on the interface of a, which has already been formed on the surface of each member at the time of assembling the composite base material, in the intermediate annealing heat treatment, and can form a stronger joint interface. Become.

【0013】このようなNb基合金と併せて用いられる
Ta拡散障壁についても、合金元素として還元作用のあ
るNb、Hf、Ti、Zr、Vの中の少なくとも1種を
少量添加したTa基合金を適用することで、界面の接合
強度をより強固にできる。
As for the Ta diffusion barrier used together with such an Nb-based alloy, a Ta-based alloy containing a small amount of at least one of Nb, Hf, Ti, Zr, and V having a reducing action as an alloying element is used. By applying it, the bonding strength at the interface can be made stronger.

【0014】前記した合金元素が添加されたTa基合金
は、Nb基合金の場合と同様にTaと固溶体を形成し、
かつ延性を有するものであるが、その添加量はCu−S
n系合金マトリックスとの変形抵抗差が拡大しTa基合
金の塑性不安定現象を発生させないためには5at%以下
に限定される。
The Ta-based alloy to which the above-mentioned alloying elements are added forms a solid solution with Ta as in the case of the Nb-based alloy,
And it has ductility, but its addition amount is Cu-S
The content is limited to 5 at% or less in order to prevent the plastic instability phenomenon of the Ta-based alloy from being caused by the difference in deformation resistance with the n-based alloy matrix.

【0015】本発明における拡散障壁を構成するNb基
合金とTa又はTa基合金の体積比率は、Nb基合金が
Nbと同様な磁化特性を有するため、Nb基合金の体積
比率が小さいほど履歴損失は低下する。しかしながら、
Nb基合金とTa又はTa基合金の体積比率が0.1:
1以下ではNb基合金の変形抵抗緩衝材としての機能が
失われ、TaまたはTa基合金に塑性不安定現象が生じ
やすくなる。
The volume ratio of the Nb-based alloy and Ta or Ta-based alloy constituting the diffusion barrier in the present invention is the same as that of Nb because the Nb-based alloy has the same magnetization characteristics. Will fall. However,
The volume ratio of Nb-based alloy to Ta or Ta-based alloy is 0.1:
When it is 1 or less, the function of the Nb-based alloy as a buffer material for deformation resistance is lost, and the plastic instability phenomenon easily occurs in Ta or Ta-based alloy.

【0016】交流磁界したで使用されない場合は、Nb
基合金の体積比率を小さくする必要はないが、Nb基合
金とTaまたはTa基合金の体積比率が5:1以上にな
ると、TaまたはTa基合金が冷間加工中に線材軸方向
と直角に破断し、Ta又はTa基合金の破断部を起点と
した断線が発生する。従って、Nb基合金とTa又はT
a基合金の体積比率は0.1:1〜5:1の範囲内に限
定される。
Nb when not used due to alternating magnetic field
It is not necessary to reduce the volume ratio of the base alloy, but if the volume ratio of the Nb base alloy and Ta or Ta base alloy is 5: 1 or more, the Ta or Ta base alloy will become perpendicular to the axial direction of the wire rod during cold working. It ruptures, and a wire break occurs from the ruptured portion of Ta or a Ta-based alloy as a starting point. Therefore, Nb-based alloy and Ta or T
The volume ratio of the a-based alloy is limited within the range of 0.1: 1 to 5: 1.

【0017】なお、Cu−Sn系合金としては、Snの
添加量が5〜10at%以下で、この外にTi、Ni、G
e、Ga、Si、Al、Mn、Znの中の少なくとも1
種を総量で5at%以下添加した合金が適用可能である。
As for the Cu-Sn alloy, the addition amount of Sn is 5 to 10 at% or less, and in addition to this, Ti, Ni, and G are added.
at least one of e, Ga, Si, Al, Mn, and Zn
An alloy in which the total amount of seeds is 5 at% or less is applicable.

【0018】[0018]

【実施例】以下に、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0019】実施例で製作した線材は、図1に示すよう
に、中心に超電導複合体3を配置し、これと最外周に円
筒状に被覆された無酸素銅からなる安定化銅6との間
に、超電導複合体3側をTa又はTa基合金の層4と
し、安定化銅6側をNb基合金の層5とした複合拡散障
壁が配置された構成とした。この場合、超電導複合体3
は、Cu−Sn系合金のマトリックス1の中に、少なく
とも表面にNb3 Sn系超電導化合物の層が形成された
Nb基合金のフィラメント2が分散埋設されたものから
構成されている。具体的な線材の諸元を表1に示す。
As shown in FIG. 1, the wire rod manufactured in the embodiment has a superconducting composite body 3 arranged at the center thereof and a stabilized copper 6 made of oxygen-free copper coated cylindrically on the outermost periphery. A composite diffusion barrier having a layer 4 of Ta or a Ta-based alloy on the side of the superconducting composite 3 and a layer 5 of a Nb-based alloy on the side of the stabilized copper 6 was arranged between them. In this case, the superconducting composite 3
Is composed of a matrix 1 of a Cu—Sn alloy in which a filament 2 of an Nb-based alloy having a layer of an Nb 3 Sn-based superconducting compound formed on at least the surface thereof is dispersed and embedded. Table 1 shows specific specifications of the wire rod.

【0020】[0020]

【表1】 [Table 1]

【0021】本実施例では、Nb基合金とTa又はTa
基合金の体積比率を1:1に固定し、材質を変えてその
効果を比較した。
In this embodiment, Nb-based alloy and Ta or Ta are used.
The effect was compared by fixing the volume ratio of the base alloy to 1: 1 and changing the material.

【0022】線材は、図1に示すような断面構成の直径
約70mmの複合母材(押出ビレット)を組み立て、これ
を400℃で直径25mmに静水圧押出し、その後、減面
加工率約35%毎に約600℃の中間焼鈍熱処理を行い
ながら、最終径0.9mmまで冷間引抜加工して製作し
た。線材のツイストピッチは20mmとした。製作量は、
各実施例、比較例とも最終径で約1500mである。
As the wire rod, a composite base material (extrusion billet) having a cross-sectional structure as shown in FIG. 1 and a diameter of about 70 mm was assembled, and this was hydrostatically extruded to a diameter of 25 mm at 400 ° C., and then a surface reduction rate of about 35%. Each was subjected to an intermediate annealing heat treatment at about 600 ° C., and cold drawn to a final diameter of 0.9 mm. The twist pitch of the wire rod was 20 mm. The production amount is
The final diameter of each of the examples and comparative examples is about 1500 m.

【0023】得られた各線材に超電導性を付与するた
め、650℃で200時間の熱処理を加えると、Nb基
合金のフィラメント2の外周に、マトリックス1中のS
nとフィラメント2のNbの反応生成物である超電導性
のNb3 Sn系化合物の層が形成された。
In order to impart superconductivity to each of the obtained wires, a heat treatment was performed at 650 ° C. for 200 hours, and the S in the matrix 1 was formed on the outer periphery of the filament 2 of the Nb-based alloy.
A layer of a superconducting Nb 3 Sn-based compound, which is a reaction product of n and Nb of filament 2, was formed.

【0024】かくして得られた各超電導線材について、
4.2Kにおける±3テスラで磁界を振幅させた場合の
非銅部体積基準の履歴損失と、最終径までの冷間加工中
に発生した断線回数を表2に示した。
For each of the superconducting wires thus obtained,
Table 2 shows the history loss based on the volume of the non-copper part when the magnetic field was oscillated at ± 3 Tesla at 4.2 K, and the number of wire breaks that occurred during cold working to the final diameter.

【0025】[0025]

【表2】 [Table 2]

【0026】これらの実施例及び比較例に用いたNb、
Nb基合金、Ta及びTa基合金の各材料は、いずれも
電子ビーム溶解によりインゴットを製作し、それらを冷
間圧延加工して得られた板材を複合母材組立における拡
散障壁部材として用いた。
Nb used in these examples and comparative examples,
For each of the Nb-based alloy, Ta and Ta-based alloy, an ingot was produced by electron beam melting, and a plate obtained by cold rolling the ingot was used as a diffusion barrier member in the assembly of the composite base material.

【0027】実施例1〜9は、超電導複合体側にTaを
用い、安定化銅側のNb基合金を変化させた場合の結果
である。この結果から判るように、安定化銅側の拡散障
壁にTa、Hf、Ti、Zr、Vの少なくとも1種が総
量で10at%以下添加されたNb基合金を用いること
で、比較例1のNb単一拡散障壁の場合と同様に良好な
冷間加工性を得ることができた。履歴損失は、Nb−5
at%Ti合金が臨界磁界が高くなるために実施例6にお
いて若干増大しているが、残りのものは比較例2よりは
Nb基合金の磁化分高い値を示しているものの、比較例
3の複合拡散障壁と同程度の値(各測定値の差は、測定
誤差によるものと考えられる)を示した。比較例1で
は、前記したように、Nb拡散障壁とCu−Sn系合金
マトリックスとの界面にNb3 Sn系化合物が形成さ
れ、非常に大きな履歴損失となった。一方、実施例10
〜12は、安定化銅側のNb基合金をNb−5at%Ta
とし、超電導複合体側にTa基合金を適用した場合であ
る。この結果、本発明の範囲内の添加元素及び添加量の
Ta基合金を超電導複合体側の拡散障壁としても良好な
履歴損失特性及び冷間加工性が得られることが判った。
Examples 1 to 9 are the results when Ta is used on the superconducting composite side and the Nb-based alloy on the stabilizing copper side is changed. As can be seen from these results, by using the Nb-based alloy in which at least one kind of Ta, Hf, Ti, Zr, and V is added in a total amount of 10 at% or less for the diffusion barrier on the stabilized copper side, the Nb of Comparative Example 1 is Good cold workability could be obtained as with the single diffusion barrier. History loss is Nb-5
Although the at% Ti alloy slightly increased in Example 6 due to the higher critical magnetic field, the rest of the alloys showed a higher value of the magnetization of the Nb-based alloy than that of Comparative Example 2, but that of Comparative Example 3 The value is similar to that of the composite diffusion barrier (the difference between the measured values is considered to be due to the measurement error). In Comparative Example 1, as described above, Nb 3 Sn compound is formed at the interface between the Nb diffusion barrier and Cu-Sn-based alloy matrix, it was a very large history loss. On the other hand, Example 10
No. 12 to Nb-5at% Ta is the Nb-based alloy on the stabilized copper side.
And the case where a Ta-based alloy is applied to the superconducting composite side. As a result, it was found that good hysteresis loss characteristics and cold workability can be obtained even when the Ta-based alloy with the addition element and the addition amount within the range of the present invention is used as the diffusion barrier on the superconducting composite side.

【0028】このように本発明によれば、冷間加工性に
優れ、かつ低交流損失のNb3 Sn系化合物超電導線材
を得られることが判る。
As described above, according to the present invention, it can be seen that an Nb 3 Sn compound superconducting wire having excellent cold workability and low AC loss can be obtained.

【0029】図2は、線材の中心部及び最外周部に安定
化材6を配し、円筒状の超電導複合体3と安定化材6と
の間に、安定化材6側にNb基合金の層4を、超電導複
合体1側にTa又はTa基合金の層3を配した構成のブ
ロンズ法によるNb3 Sn系化合物超電導線材を示す。
In FIG. 2, the stabilizing material 6 is arranged at the central portion and the outermost peripheral portion of the wire, and between the cylindrical superconducting composite body 3 and the stabilizing material 6, the stabilizing material 6 is provided with an Nb-based alloy. 2 is a Nb 3 Sn-based compound superconducting wire by the bronze method in which the layer 4 of 1 is provided with the layer 3 of Ta or Ta-based alloy on the superconducting composite 1 side.

【0030】また、図3は、線材中心部にのみ安定化材
6を配し、その安定化材6と円筒状の超電導複合体3の
間に、安定化材6側にNb基合金の層5を、超電導複合
体3側にTa又はTa基合金の層4を配した構成のブロ
ンズ法によるNb3 Sn系化合物超電導線材である。
Further, in FIG. 3, the stabilizing material 6 is arranged only in the central portion of the wire, and between the stabilizing material 6 and the cylindrical superconducting composite body 3, a layer of Nb-based alloy is provided on the stabilizing material 6 side. 5 is an Nb 3 Sn-based compound superconducting wire by the bronze method in which the layer 4 of Ta or Ta-based alloy is arranged on the superconducting composite 3 side.

【0031】いずれの構成の線材も、前記した本発明の
作用により、低交流損失かつ良好な加工性を付与するこ
とができる。
Due to the above-described action of the present invention, a wire rod having any structure can be provided with low AC loss and good workability.

【0032】なお、図示例ではいすれも断面形状が円形
になっているが、これらの円形断面線材を圧延等の加工
により矩形断面線材とすることで密巻の超電導マクネッ
トに適用することができる。
In the illustrated example, all of them have a circular cross-sectional shape, but by applying a process such as rolling to form a rectangular cross-section wire rod, it is possible to apply it to a tightly wound superconducting macnet. it can.

【0033】また、本発明は、ブロンズ法だけでなく、
内部拡散法、外部拡散法、Nbチューブ法、ジェリーロ
ール法、インサイチュ法及び粉末法等によって製作され
る銅を安定化材としたNb3 Sn系化合物超電導線材に
も適用可能である。
The present invention is not limited to the bronze method,
It can also be applied to Nb 3 Sn-based compound superconducting wire made of copper as a stabilizing material, which is produced by an internal diffusion method, an external diffusion method, an Nb tube method, a jelly roll method, an in situ method, a powder method and the like.

【0034】[0034]

【発明の効果】本発明の超電導線材は、超電導複合体と
安定化銅との間に、安定化銅側にNb基合金の層を、超
電導複合体側にTa又はTa基合金の層を配した複合拡
散障壁を用いたので、交流損失が小さく、かつ加工性に
優れたNb3 Sn系化合物超電導線材を工業的に大量に
供給することが可能になり、その経済的効果は非常に大
きい。
The superconducting wire of the present invention has a layer of Nb-based alloy on the side of stabilized copper and a layer of Ta or Ta-based alloy on the side of superconducting composite between the superconducting composite and the stabilized copper. since using the composite diffusion barrier, AC loss is small and the workability excellent Nb 3 Sn compound superconducting wire makes it possible to industrially mass-feed, its economic effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導線材の一実施例の断面略
図。
FIG. 1 is a schematic sectional view of an embodiment of a superconducting wire according to the present invention.

【図2】本発明に係る超電導線材の別の例を示す断面略
図。
FIG. 2 is a schematic cross-sectional view showing another example of the superconducting wire according to the present invention.

【図3】本発明に係る超電導線材の別の例を示す断面略
図。
FIG. 3 is a schematic sectional view showing another example of the superconducting wire according to the present invention.

【符号の説明】[Explanation of symbols]

1 Cu−Sn系合金のマトリックス 2 Nb基合金のフィラメント 3 超電導複合体 4 Ta又はTa基合金の層 5 Nb基合金の層 6 無酸素銅からなる安定化材 1 Cu-Sn alloy matrix 2 Nb-based alloy filament 3 Superconducting complex 4 Ta or Ta-based alloy layer 5 Nb-based alloy layer 6 Stabilizer made of oxygen-free copper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 博史 茨城県那珂郡那珂町大字向山801番地の 1 日本原子力研究所 那珂研究所内 (72)発明者 吉田 清 茨城県那珂郡那珂町大字向山801番地の 1 日本原子力研究所 那珂研究所内 (72)発明者 岩城 源三 茨城県土浦市木田余町3550番地 日立電 線株式会社システムマテリアル研究所内 (72)発明者 酒井 修二 茨城県土浦市木田余町3550番地 日立電 線株式会社システムマテリアル研究所内 (72)発明者 菊地 賢一 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (72)発明者 佐々木 一隆 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (56)参考文献 特開 昭56−52807(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Tsuji, 801 No. 1 Mukaiyama, Naka-machi, Naka-gun, Naka-gun, Ibaraki Prefecture 1 In the Naka Research Institute, Japan Atomic Energy Research Institute (72) Kiyoshi Yoshida, 801 Mukaiyama, Naka-machi, Naka-gun, Ibaraki Prefecture No. 1 Japan Atomic Energy Research Institute Naka Research Institute (72) Inventor Genzo Iwaki 3550 Kidayo-cho, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Electric Systems Co., Ltd. System Materials Research Laboratory (72) Inventor Shuji Sakai 3550 Kidayo-cho, Tsuchiura City, Ibaraki Prefecture Address: Hitachi Cable, Ltd., System Materials Laboratory (72) Inventor, Kenichi Kikuchi, 3550, Kidayomachi, Tsuchiura, Ibaraki Prefecture, Hitachi Cable, Ltd., Tsuchiura Plant, (72) Inventor, Kazutaka Sasaki 3550, Kidayomachi, Tsuchiura, Ibaraki Prefecture Address Hitachi Cable Ltd. Tsuchiura factory (56) Reference JP-A-56-52807 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01B 12/00-13/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cu−Sn系合金をマトリックスとし、そ
のマトリックス中に少なくとも表面にNb3 Sn系超電
導化合物の層を有するNb又はNb基合金のフィラメン
トが多数埋設された超電導複合体と、該超電導複合体の
周囲に配置された安定化材と、該安定化材と前記超電導
複合体との間に配置された拡散障壁層を備えた超電導線
材において、前記拡散障壁層が安定化材側に配置された
Nb基合金の層と超電導複合体側に配置されたTa又は
Ta基合金の層とからなり、前記安定化材側のNb基合
金層はTa、Hf、Ti、Zr、Vの中の少なくとも1
種が総量で10at%以下添加された合金層であることを
特徴とするNb3 Sn系化合物超電導線材。
1. A superconducting composite in which a Cu—Sn based alloy is used as a matrix, and a large number of Nb or Nb based alloy filaments having a layer of Nb 3 Sn based superconducting compound on at least the surface thereof are embedded in the matrix, and the superconducting composite. In a superconducting wire comprising a stabilizing material arranged around a composite and a diffusion barrier layer arranged between the stabilizing material and the superconducting composite, the diffusion barrier layer is arranged on the stabilizing material side. been Ri Do from a layer of Nb-based alloy layer and the superconducting composite side in placed Ta or Ta-based alloy, of the stabilizing member side Nb-based alloy
The gold layer is at least one of Ta, Hf, Ti, Zr, and V.
A Nb 3 Sn-based compound superconducting wire, characterized in that the seed is an alloy layer added in a total amount of 10 at% or less .
【請求項2】Cu−Sn系合金をマトリックスとし、そ
のマトリックス中に少なくとも表面にNb 3 Sn系超電
導化合物の層を有するNb又はNb基合金のフィラメン
トが多数埋設された超電導複合体と、該超電導複合体の
周囲に配置された安定化材と、該安定化材と前記超電導
複合体との間に配置された拡散障壁層を備えた超電導線
材において、前記拡散障壁層が安定化材側に配置された
Nb基合金の層と超電導複合体側に配置されたTa又は
Ta基合金の層とからなり、前記安定化材側のNb基合
金層はTa、Hf、Ti、Zr、Vの中の少なくとも1
種が総量で10at%以下添加された合金層であり、前記
超電導複合体側のTa基合金層はNb、Hf、Ti、Z
r、Vの中の少なくとも1種が総量で5at%以下添加さ
れたTa基合金層であることを特徴とするNb3 Sn系
化合物超電導線材。
2. A Cu—Sn based alloy as a matrix,
Nb 3 Sn-based superconductivity in at least the surface of the matrix
Filamen of Nb or Nb-based alloy with a layer of conducting compound
And a superconducting composite in which a large number of
A stabilizing material arranged around the stabilizing material and the superconducting material.
Superconducting wire with diffusion barrier layer located between the composite
Material, the diffusion barrier layer was placed on the stabilizing material side.
Ta arranged on the Nb-based alloy layer and the superconducting composite side or
And a Nb-based alloy on the stabilizing material side.
The gold layer is at least one of Ta, Hf, Ti, Zr, and V.
The seed is an alloy layer added in a total amount of 10 at% or less,
The Ta-based alloy layer on the superconducting composite side is Nb, Hf, Ti, Z
At least one of r and V is added in a total amount of 5 at% or less.
Nb 3 Sn compound superconducting wire, characterized in that the a Ta-based alloy layer.
【請求項3】超電導複合体側のTa又はTa基合金と安
定化側のNb基合金の体積比率を1:0.1〜1:5
としたことを特徴とする請求項1又は請求項2に記載の
Nb3 Sn系化合物超電導線材。
The 3. A volume ratio of Ta or Ta-based alloy and the stabilizing material side Nb-based alloy of the superconducting composite body side 1: 0.1 to 1: 5
The Nb 3 Sn based compound superconducting wire according to claim 1 or 2, characterized in that
JP08568295A 1995-04-11 1995-04-11 Nb3Sn compound superconducting wire Expired - Fee Related JP3428771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08568295A JP3428771B2 (en) 1995-04-11 1995-04-11 Nb3Sn compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08568295A JP3428771B2 (en) 1995-04-11 1995-04-11 Nb3Sn compound superconducting wire

Publications (2)

Publication Number Publication Date
JPH08287748A JPH08287748A (en) 1996-11-01
JP3428771B2 true JP3428771B2 (en) 2003-07-22

Family

ID=13865625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08568295A Expired - Fee Related JP3428771B2 (en) 1995-04-11 1995-04-11 Nb3Sn compound superconducting wire

Country Status (1)

Country Link
JP (1) JP3428771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035852B4 (en) * 2004-07-23 2007-05-03 European Advanced Superconductors Gmbh & Co. Kg Superconductive conductor element with reinforcement

Also Published As

Publication number Publication date
JPH08287748A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
US4575927A (en) Submicron-particle ductile superconductor
EP0234071B1 (en) Method of fabricating superconductive electrical conductor
US4363675A (en) Process for producing compound based superconductor wire
US5174831A (en) Superconductor and process of manufacture
EP0613192A1 (en) Wire for NB3X superconducting wire
JP3428771B2 (en) Nb3Sn compound superconducting wire
JP3754522B2 (en) Nb (3) Sn superconducting wire
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JP3753346B2 (en) Aluminum stabilized superconducting wire
JPH08287749A (en) Nb3sn compound superconducting wire material
WO2022259803A1 (en) Superconducting connection structure of nb3sn superconducting wire rod and nbti wire rod, method for producing same, and nuclear magnetic resonance apparatus using same
JPH11111081A (en) Oxide superconducting wire
US6810276B1 (en) Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
EP0774789A1 (en) Nb3Al Multi-filamentary superconducting wire
JP2001057118A (en) SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF
JPH10321060A (en) Alminum-stabilized superconducting wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JPH0492316A (en) Manufacture of compound linear material
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS60170110A (en) Copper coated nbti superconductive lead
JPH04298917A (en) Manufacture of compound superconductor
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH06101001A (en) Compound superconductor
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees