JPS60170113A - Method of producing nb3sn superconductive lead - Google Patents

Method of producing nb3sn superconductive lead

Info

Publication number
JPS60170113A
JPS60170113A JP59024703A JP2470384A JPS60170113A JP S60170113 A JPS60170113 A JP S60170113A JP 59024703 A JP59024703 A JP 59024703A JP 2470384 A JP2470384 A JP 2470384A JP S60170113 A JPS60170113 A JP S60170113A
Authority
JP
Japan
Prior art keywords
metal layer
nb3sn
wire
based metal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024703A
Other languages
Japanese (ja)
Other versions
JPH0350368B2 (en
Inventor
今泉 三之
修 田口
吉崎 浄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59024703A priority Critical patent/JPS60170113A/en
Publication of JPS60170113A publication Critical patent/JPS60170113A/en
Publication of JPH0350368B2 publication Critical patent/JPH0350368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高磁界で使用するNb3Sn系超電導線の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a Nb3Sn-based superconducting wire for use in high magnetic fields.

〔従来技術〕[Prior art]

核融合装置、加速器、高エネルギー物理実験装置などの
高磁界が要求される各種機器に対して超電導材料が不可
欠な材料として使用されているが、核融合などの高性能
化が進められている分野では、10T (テスラ)以上
の高磁界において臨界電流特性に優れかつ信頼性が高い
線材が要求されている。
Superconducting materials are used as essential materials in various devices that require high magnetic fields, such as nuclear fusion devices, accelerators, and high-energy physics experiment equipment, but they are also used in fields such as nuclear fusion where performance is being improved. Therefore, there is a need for a wire that has excellent critical current characteristics and high reliability in a high magnetic field of 10 T (Tesla) or higher.

従来高磁界で使用される代表的なNb3Sn化合物超電
導線としては、第1図に示すNb基金属層(1)とCu
 −Sn合金層(2)からなる構成体を断面縮小加工し
、最終工程でNb表面にNb3Snを形成する方法があ
るが、これに対して、第三元素を添加しNb3Sn生成
に関与させてNb3Sn層の上部臨界磁界を向上させた
り、あるいは液体ヘリウム温度におけるNb3Snのマ
ルテンサイト変態を抑制して高磁界における臨界電流密
度を改善する試みがなされている。即ち、Nb3Snに
添加する第三元素としてTiを例にとれば、NbとTi
の二元合金をアーク溶解等により溶製し、このNb −
Ti合金棒とCu −Sn合金を一体として断面縮小加
工を施し、最終形状で化合物生成熱処理を行ういわゆる
ブロンズ法によって第三元素を含むNb3Snb化合物
超蜜導線の製造方法が知られている。
A typical Nb3Sn compound superconducting wire conventionally used in high magnetic fields consists of a Nb-based metal layer (1) and a Cu layer as shown in Figure 1.
-There is a method of reducing the cross section of the structure consisting of the Sn alloy layer (2) and forming Nb3Sn on the Nb surface in the final step. Attempts have been made to improve the critical current density at high magnetic fields by increasing the upper critical magnetic field of the layer or by suppressing the martensitic transformation of Nb3Sn at liquid helium temperatures. That is, if we take Ti as an example as the third element added to Nb3Sn, Nb and Ti
A binary alloy of Nb −
There is a known method for manufacturing an Nb3Snb compound superconducting wire containing a third element by a so-called bronze method in which a Ti alloy rod and a Cu--Sn alloy are integrally processed to reduce their cross section, and the final shape is heat-treated to form a compound.

しかしながら、この方法では重量比で10〜14%Sn
を含むCu −Sn合金を必要とするが、この合金は加
工性に優れた均質な鋳塊に溶製することが非常に難しく
、かつ製造コストが高くなり、また、線材の断面縮小工
程における加工硬化が顕著であるため、工程中の中間焼
鈍を数十回以上も必要とすること、およびこの中間焼鈍
時にもその処理毎にNbフィラメント表面にNb3Sn
を形成するため+ Nbフィラメントが細径化するに伴
って局部変形を生じ易くなり、最終線径におけるNb3
Snフィラメントの断線の発生率が高くなるなどの欠点
がある。
However, this method has a weight ratio of 10 to 14% Sn.
However, this alloy is very difficult to melt into a homogeneous ingot with excellent workability, and the manufacturing cost is high. Because the hardening is remarkable, intermediate annealing during the process is required several dozen times or more, and during each intermediate annealing, Nb3Sn is added to the surface of the Nb filament.
+ As the Nb filament becomes thinner, local deformation tends to occur, and the
There are disadvantages such as a high incidence of disconnection of the Sn filament.

このようなブロンズ法に第三元素を添加する方法の欠点
を改善するためにCu管材中にNb棒を配置し断面縮小
加工を行って細線化し、これを再び集束してCu容器内
に封入し、中空押出しまたは押出し後穿孔によって中空
部を有するCu −Nb複合金管材製作し、しかる後に
中空部にSnを充填し、この集合体を一体化して断面縮
小加工を行い、最終形状で熱処理を施し、Nbの表面に
Nb3Snを形成する内部拡散法が提案され、またこの
方法に対して、CuにかえてCu −Ti合金を使用す
る方法も行われている。
In order to improve the drawbacks of the method of adding a third element to the bronze method, Nb rods are placed in a Cu tube, the cross section is reduced to make them thinner, the wires are refocused and sealed in a Cu container. , a Cu-Nb composite brass pipe material having a hollow part is manufactured by hollow extrusion or perforation after extrusion, and then the hollow part is filled with Sn, the aggregate is integrated, the cross section is reduced, and the final shape is heat treated. , an internal diffusion method for forming Nb3Sn on the surface of Nb has been proposed, and a method using a Cu--Ti alloy instead of Cu has also been proposed.

この内部拡散法では、集合体が加工性に優れた金属で構
成されるため、ブロンズ法と異なり中間焼鈍を必要とし
ないために、後の冷間加工性を害する中間焼鈍工程にお
けるNbフィラメント表面のNb3Snの生成を生ずる
ことなく、第三元素としてのTi添加の効果を発生させ
ることができる。しかし、この方法においても、上記の
種々の用途に使用する極細多心線の製作に対しては、C
u基材としてCu−Ti合金を使用するため、Nbに被
覆するCu −Ti管材の製作が必要となり、工業的に
入手し易い無酸素鋼管材に対して工業的な製造コストが
増加することや、Cu−Ti合金のTi含有量が重量比
で4%近くなると加工硬化が著しく、強度の成形加工を
行う際に支障となる場合があるなどの不都合な点があっ
た。
In this internal diffusion method, the aggregate is made of a metal with excellent workability, so unlike the bronze method, intermediate annealing is not required. The effect of adding Ti as a third element can be produced without producing Nb3Sn. However, even with this method, C
Since a Cu-Ti alloy is used as the base material, it is necessary to manufacture a Cu-Ti pipe material coated with Nb, which increases industrial manufacturing costs compared to oxygen-free steel pipe material, which is industrially easily available. However, when the Ti content of the Cu-Ti alloy approaches 4% by weight, work hardening becomes significant, which is disadvantageous in that it may become a hindrance when performing high-strength forming processing.

〔発明の概要〕[Summary of the invention]

この発明は上記の従来法の欠点を改良する目的でなされ
たもので、Nb基金属層とSn基金属層の周辺にCu基
金属層を配置した構成体を一体として断面縮小加工を施
し、最終断面形状で熱処理を行うことによってNb3S
n系超電導線を製造する内部拡散法において、Nb基金
属層としてHf、 Ta、 Ti、 Zrのうちいずれ
か1種以上の元素を0.1から20重量パーセント含有
するNb合金を使用することにより、高磁界特性に優れ
、しかも工業的な信頼性に優れた超電導線を製造できる
Nb3Sn系超電導線の製造方法を提案するものである
This invention was made for the purpose of improving the drawbacks of the above-mentioned conventional method, and the structure in which the Cu-based metal layer is arranged around the Nb-based metal layer and the Sn-based metal layer is integrally subjected to cross-sectional reduction processing, and the final By performing heat treatment on the cross-sectional shape, Nb3S
In the internal diffusion method for manufacturing n-based superconducting wire, by using an Nb alloy containing 0.1 to 20 weight percent of any one or more elements among Hf, Ta, Ti, and Zr as the Nb-based metal layer. This paper proposes a method for manufacturing a Nb3Sn-based superconducting wire that can produce a superconducting wire that has excellent high magnetic field characteristics and excellent industrial reliability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例、を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

・ 第2図はこの発明の一実施例における複合棒の断面
図、第3図は構成体の断面図である。まず、第2図に示
すように、直径0.4n+mの・Nb−3重量パーセン
トTi合金心線1200本からなるNb基金属層(1)
を、母相であるCu基金属層(3)に埋設した外径25
mm、内径9m+iの複合多心チューブの中央の中空部
に直径8.8mmのSn棒からなるSn基金属層(4)
を挿入配置し、この複合棒の外周にTaチューブからな
る拡散障壁(5)を介してCuチューブからなる安定化
金属層(6)を被せて、第3図に示すような構成体とす
る。この複合した構成体を一体として冷間の引抜加工を
行い、直径0.5mmに伸線した。この引抜加工工程に
おいては、とくに中間焼鈍を施さなくても伸線は容易で
あり、全工程にわたって全く断線することなく良好な加
工性が確認された。次にこの線材を750℃で50時間
熱処理することによってNb3Sn化合物を生成させた
- Fig. 2 is a sectional view of a composite rod in an embodiment of the present invention, and Fig. 3 is a sectional view of a constituent body. First, as shown in Fig. 2, a Nb-based metal layer (1) consisting of 1200 Nb-3 weight percent Ti alloy core wires with a diameter of 0.4n+m is formed.
is embedded in the Cu-based metal layer (3), which is the parent phase, with an outer diameter of 25
Sn-based metal layer (4) consisting of Sn rods with a diameter of 8.8 mm in the central hollow part of a composite multi-core tube with an inner diameter of 9 m + i
A stabilizing metal layer (6) made of a Cu tube is placed over the outer periphery of the composite rod via a diffusion barrier (5) made of a Ta tube to form a structure as shown in FIG. This composite structure was subjected to cold drawing as one body, and wire was drawn to a diameter of 0.5 mm. In this drawing process, wire drawing was easy even without intermediate annealing, and good workability was confirmed without any wire breakage throughout the entire process. Next, this wire was heat treated at 750° C. for 50 hours to generate a Nb3Sn compound.

上記の方法によって作成した線材の液体ヘリウム温度(
4,2K )における臨界電流密度(Jc)を測定し、
印加磁界の関数として第4図の曲線Aに示し □た。ま
た比較のために、Nb基金属層(1)としてNb−Ti
合金にかえてNb心線を使用し、Nb基金属層(1)の
周辺に配置するCu基金属層(3)として無酸素銅(O
FG)を使用した同一断面構成の従来の方法による線材
を作成し、同一熱処理条件で熱処理した線材の特性につ
いても臨界電流密度(Jc)の測定を行って第4図の曲
線Bに示した。この結果によれば、本発明の方法により
Nb−Ti合合金粉用いて作成したNb3Sn化合物超
電導線は従来のNb心線を用いたNb3Sn化合物線材
と比較してIOT以上の高磁界において高い臨界電流密
度を示し、12Tにおける安定化銅を除く部分の臨界電
流密度(Jc)を比較すると、従来方法によるNb3S
n線材が495A/mm2であるのに対し、本発明の方
法による線材では592A/mm”を示し、優れた高磁
界における特性が確認された。
The liquid helium temperature of the wire made by the above method (
Measure the critical current density (Jc) at 4,2K),
It is shown in curve A in Figure 4 as a function of the applied magnetic field. For comparison, Nb-Ti was used as the Nb-based metal layer (1).
Nb core wire is used instead of the alloy, and oxygen-free copper (O
A wire rod with the same cross-sectional configuration using FG) was prepared using the conventional method, and the characteristics of the wire rod heat-treated under the same heat treatment conditions were measured for critical current density (Jc), and the results are shown in curve B in Figure 4. According to this result, the Nb3Sn compound superconducting wire made using the Nb-Ti alloy powder by the method of the present invention has a higher critical current in a high magnetic field of IOT or higher than the Nb3Sn compound wire using the conventional Nb core wire. Comparing the critical current density (Jc) of the part excluding the stabilized copper at 12T, it is found that Nb3S by the conventional method
While the n-wire rod had a magnetic field strength of 495 A/mm2, the wire rod produced by the method of the present invention showed a magnetic field strength of 592 A/mm'', confirming its excellent characteristics in high magnetic fields.

本発明のNb基金属層(1)に添加して高磁界における
臨界電流密度(Jc)を向上させうる元素としては、上
記実施例におけるTiに限るものではなく、Hf、 T
a、 Zrなどの元素もTi添加と同様の効果が得られ
る。さらにNb基金属層(1)に添加するHf、 Ta
、Ti、 Zrなどの元素の添加量に関しては、重量比
において0.1パ一セント未満では高磁界における臨界
電流密度の改善効果が認められず、また1重量比が20
パーセントを越えた場合には、添加量を増加してもさら
に電流特性が向上することはなく、かえって伸線時の加
工硬化が著しくなり、線材の製造時の不都合を生じ易い
6 上記実施例においては安定化金属層(6)へのSnなど
の金属元素の拡散障壁(5)としてTaを使用したが、
この他にもNbを使用しても同様の効果が得られ、また
上記実施例では安定化金属としてCuを使用しているが
、この他に高い純度のAgやAlが使用できる。
Elements that can be added to the Nb-based metal layer (1) of the present invention to improve the critical current density (Jc) in a high magnetic field are not limited to Ti in the above embodiments, but include Hf, T
Elements such as a and Zr can also produce the same effect as the addition of Ti. Furthermore, Hf, Ta added to the Nb-based metal layer (1)
Regarding the amount of addition of elements such as , Ti, and Zr, if the weight ratio is less than 0.1%, no improvement effect on the critical current density in high magnetic fields is observed, and if the weight ratio is less than 20%.
If the amount exceeds 5%, the current characteristics will not be further improved even if the amount added is increased, and work hardening during wire drawing will become significant, which tends to cause problems during wire manufacturing.6 In the above example used Ta as a diffusion barrier (5) for metal elements such as Sn into the stabilizing metal layer (6);
Similar effects can be obtained by using Nb in addition to the above, and although Cu is used as the stabilizing metal in the above embodiments, highly pure Ag or Al can also be used.

なお、Nb基金属層として伸線加工の制限を受けない範
囲でHf、 Ta、 Ti、 Zrなどのうち少なくと
も1種以上の元素を添加した合金を使用する本発明の製
造方法は、他の第三元素をSn基金属層に同時に添加し
高磁界の電流特性をより向上させる特願昭58−206
933号発明に比べて、従来の内部拡散法におけるNb
基金属層を単にIf、 Ta、 Ti、 Zrなどの1
種以上の元素を添加したNb基合金層を使用するだけで
、工業的により簡単な手段により高磁界における優れた
特性が得られる。
Note that the manufacturing method of the present invention, which uses an alloy to which at least one element among Hf, Ta, Ti, Zr, etc. is added as the Nb-based metal layer within a range that is not subject to restrictions on wire drawing, can be used in accordance with other methods. Patent application No. 58-206 to further improve current characteristics in high magnetic fields by adding three elements to a Sn-based metal layer at the same time
Compared to the No. 933 invention, Nb in the conventional internal diffusion method
If the base metal layer is simply If, Ta, Ti, Zr, etc.
Excellent properties in high magnetic fields can be obtained by industrially simpler means simply by using a Nb-based alloy layer to which more than one element is added.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明によれば、Nb基金属
層にHf、 Ta、 TiおよびZrの1種以上を含有
するNb合金を使用するという簡単な構成により、10
T以上の高磁界における臨界電流特性と信頼性に優れた
超電導線材を工業的に安定に製造することが可能となり
、核融合装置や高エネルギー物理関連装置の高磁界マグ
ネットなどに床机に利用することができる。
As explained above, according to the present invention, by using a simple structure in which an Nb alloy containing one or more of Hf, Ta, Ti, and Zr is used in the Nb-based metal layer, 10
It has become possible to industrially and stably manufacture superconducting wires with excellent critical current characteristics and reliability in high magnetic fields of T or higher, and they can be used in floor desks for high magnetic field magnets in nuclear fusion devices and high-energy physics-related devices. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のブロンズ法による線材の断面図、第2図
は本発明の一実施例における複合棒の断面図、第3図は
構成体の断面図、第4図は4.2Kにおける印加磁界と
臨界電流密度の関係を示す特性図で、曲線Aは本発明に
よる線材の特性、曲線Bは従来の内部拡散法による線材
の特性を示す。 図において、(1)はNb基金属層、(2)はCu−S
n合金層、(3)はCu基金属層、(4)はSn基金属
層、(5)は拡散障壁、(6)は安定化金属層をそれぞ
れ示す。 代理人大岩増雄 第1図 第3図 第2図 第4図 石弘 界(T)
Fig. 1 is a cross-sectional view of a wire made by the conventional bronze method, Fig. 2 is a cross-sectional view of a composite bar according to an embodiment of the present invention, Fig. 3 is a cross-sectional view of the structure, and Fig. 4 is a cross-sectional view of a wire rod applied at 4.2K. 1 is a characteristic diagram showing the relationship between magnetic field and critical current density, where curve A shows the characteristics of the wire according to the present invention, and curve B shows the characteristics of the wire according to the conventional internal diffusion method. In the figure, (1) is an Nb-based metal layer, (2) is a Cu-S
(3) is a Cu-based metal layer, (4) is a Sn-based metal layer, (5) is a diffusion barrier, and (6) is a stabilizing metal layer. Agent Masuo Oiwa Figure 1 Figure 3 Figure 2 Figure 4 Ishihiro Kai (T)

Claims (4)

【特許請求の範囲】[Claims] (1) Nb基金属層とSn基金属層の周辺にCu基金
属層を配置した構成体を一体として断面縮小加工を施し
、最終断面形状で熱処理することによって’Nb3Sn
系超電導線を製造する方法において、Nb基金属層にH
f、 Ta、 Ti、およびZrから選ばれる1種以上
の元素を0.1から20重量パーセント含有するNb合
金を使用することを特徴とするNb3Sn系超電導線の
製造方法。
(1) 'Nb3Sn
In the method for manufacturing superconducting wire, H is added to the Nb-based metal layer.
A method for producing a Nb3Sn-based superconducting wire, the method comprising using an Nb alloy containing 0.1 to 20 weight percent of one or more elements selected from f, Ta, Ti, and Zr.
(2)構成体がその周辺に拡散障壁を介して安定化金属
層を有することを特徴とする特許請求の範囲第1項記載
のNb3Sn系超電導線の製造方法。
(2) The method for manufacturing a Nb3Sn-based superconducting wire according to claim 1, wherein the structure has a stabilizing metal layer around the structure via a diffusion barrier.
(3)拡散障壁がNb系金属またはTa系金属であるこ
とを特徴とする特許請求の範囲第2項記載のNb3Sn
系超電導線の製造方法。
(3) Nb3Sn according to claim 2, wherein the diffusion barrier is an Nb-based metal or a Ta-based metal.
Method for manufacturing superconducting wire.
(4)安定化金属層がCu、 AIまたはAgであるこ
とを特徴とする特許請求の範囲第2項または第3項記載
のNb5S、n系超電導線の製造方法。
(4) A method for manufacturing an Nb5S, n-based superconducting wire according to claim 2 or 3, wherein the stabilizing metal layer is Cu, AI or Ag.
JP59024703A 1984-02-13 1984-02-13 Method of producing nb3sn superconductive lead Granted JPS60170113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024703A JPS60170113A (en) 1984-02-13 1984-02-13 Method of producing nb3sn superconductive lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024703A JPS60170113A (en) 1984-02-13 1984-02-13 Method of producing nb3sn superconductive lead

Publications (2)

Publication Number Publication Date
JPS60170113A true JPS60170113A (en) 1985-09-03
JPH0350368B2 JPH0350368B2 (en) 1991-08-01

Family

ID=12145536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024703A Granted JPS60170113A (en) 1984-02-13 1984-02-13 Method of producing nb3sn superconductive lead

Country Status (1)

Country Link
JP (1) JPS60170113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509466A (en) * 2003-10-17 2007-04-12 オックスフォード スーパーコンダクティング テクノロジー Method for manufacturing (Nb, Ti) 3Sn wire using Ti source rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785944A (en) * 1980-09-18 1982-05-28 Kernforschungsz Karlsruhe Ultra-conductive wire based on bronze- nb3sn and production thereof
JPS6097514A (en) * 1983-10-31 1985-05-31 株式会社東芝 Method of producing composite superconductive conductor
JPS60100307A (en) * 1983-11-04 1985-06-04 三菱電機株式会社 Method of producing nb3sn superconductive wire material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785944A (en) * 1980-09-18 1982-05-28 Kernforschungsz Karlsruhe Ultra-conductive wire based on bronze- nb3sn and production thereof
JPS6097514A (en) * 1983-10-31 1985-05-31 株式会社東芝 Method of producing composite superconductive conductor
JPS60100307A (en) * 1983-11-04 1985-06-04 三菱電機株式会社 Method of producing nb3sn superconductive wire material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509466A (en) * 2003-10-17 2007-04-12 オックスフォード スーパーコンダクティング テクノロジー Method for manufacturing (Nb, Ti) 3Sn wire using Ti source rod
JP4728245B2 (en) * 2003-10-17 2011-07-20 オックスフォード スーパーコンダクティング テクノロジー Method for manufacturing (Nb, Ti) 3Sn wire using Ti source rod

Also Published As

Publication number Publication date
JPH0350368B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
WO2018198515A1 (en) Production method for nb3sn superconducting wire rod, precursor for nb3sn superconducting wire rod, and nb3sn superconducting wire rod using same
JPS6150136B2 (en)
JPS6215967B2 (en)
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS5823110A (en) Method of producing nb3sn superconductive wire material
EP0613192A1 (en) Wire for NB3X superconducting wire
US4153986A (en) Method for producing composite superconductors
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH0440806B2 (en)
JP3428771B2 (en) Nb3Sn compound superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS6212607B2 (en)
JP3031477B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JP2003115226A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTIVE WIRE
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPH0492316A (en) Manufacture of compound linear material
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS59191209A (en) Method of producing nb3sn superconductive conductor
JPS6313286B2 (en)
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH0349163B2 (en)
JPS625990B2 (en)
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term