JPS5933653B2 - Method for producing stabilized superconductor - Google Patents

Method for producing stabilized superconductor

Info

Publication number
JPS5933653B2
JPS5933653B2 JP51056370A JP5637076A JPS5933653B2 JP S5933653 B2 JPS5933653 B2 JP S5933653B2 JP 51056370 A JP51056370 A JP 51056370A JP 5637076 A JP5637076 A JP 5637076A JP S5933653 B2 JPS5933653 B2 JP S5933653B2
Authority
JP
Japan
Prior art keywords
superconductor
stabilizing
metal
diffusion
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51056370A
Other languages
Japanese (ja)
Other versions
JPS52138443A (en
Inventor
靖三 田中
義雄 古戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP51056370A priority Critical patent/JPS5933653B2/en
Priority to FR7636363A priority patent/FR2334182A1/en
Priority to CH1526576A priority patent/CH616775A5/de
Priority to GB50463/76A priority patent/GB1573506A/en
Priority to DE2654924A priority patent/DE2654924C2/en
Publication of JPS52138443A publication Critical patent/JPS52138443A/en
Priority to US06/008,263 priority patent/US4329539A/en
Priority to US06/308,558 priority patent/US4611390A/en
Publication of JPS5933653B2 publication Critical patent/JPS5933653B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明は拡散反応によつて超電導性化合物又は ・合金
を形成する安定化超電導体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a stabilized superconductor that forms a superconducting compound or alloy by a diffusion reaction.

従来拡散反応工程を経て安定化化合物超電導体を製造す
る方法では拡散熱処理工程の後に安定化金属を付与して
いたものである。
In the conventional method of producing a stabilized compound superconductor through a diffusion reaction process, a stabilizing metal was applied after the diffusion heat treatment process.

先ず目的とする超電導体の構成元素を含む2種類以上の
構成元素から相互拡散反応によつてその超電導性化合物
を上記構成元素間に形成する。例えばNbとSn、、A
l)Al−Ge、、Ga)又はこれらを含む合金とから
拡散反応により夫々Nb3Sn、、Nb3Al、、Nb
3(Al−Ge)、Nb3Gaの如き化合物超電導体、
又同様にVとGa)Si、、Al、、Hf、、Zr又は
これらを含む合金とから夫夫V3Ga、、V3Sl、、
V3Al、V2Hf、、VaZrの如き化合物超電導体
を形成する。次には、このようにして作られた超電導体
を含む複合体の表面に安定化金属をメ’ノキ法又は半田
付け法によつていたものである。この従来法について一
例を挙げて説明すると次のようである。
First, a superconducting compound is formed between two or more types of constituent elements including the constituent elements of the target superconductor by interdiffusion reaction. For example, Nb and Sn, ,A
l) Nb3Sn, , Nb3Al, , Nb by diffusion reaction from Al-Ge, , Ga) or alloys containing these, respectively.
3(Al-Ge), compound superconductors such as Nb3Ga,
Similarly, from V and Ga) Si, , Al, , Hf, , Zr or alloys containing these, V3Ga, , V3Sl, .
Compound superconductors such as V3Al, V2Hf, and VaZr are formed. Next, a stabilizing metal was attached to the surface of the composite containing the superconductor thus produced by the agate method or the soldering method. An example of this conventional method will be explained as follows.

VとCu−Ga合金とを圧延加工によつて圧着し、複合
条としたのち、加熱によつて拡散反応を起し圧着界面に
V3Ga層を形成し、この複合条の表面に安定化金属層
を半田付け又はメッキ等によつて設けていた。
After V and Cu-Ga alloy are crimped by rolling to form a composite strip, a diffusion reaction is caused by heating to form a V3Ga layer at the crimped interface, and a stabilizing metal layer is formed on the surface of this composite strip. It was provided by soldering or plating.

第1図こうして作られた安定化化合物超電導体テープの
断面図であり、1は拡散反応後の残存バナジウム、2は
圧着面に形成されたV3Ga化合物超電導体層、3は拡
散反応後の残存Cu−Ga合金、4は半導層、5は安定
化金属の銅層である。超電導体の安定化とはよく知られ
ているように超電導現象自体が不安定な現象であるため
に安定化金属を設けることによつて電気的なバイパス、
磁気的なダンピング、熱拡散などの効果を付与すること
により安定性を高めることである。実用的な超電導体に
はこの安定性は不可欠の要素である。このために、安定
化金属としては、電気的かつ熱的に良好な伝導体でなけ
ればならずしかも超電導体との密着性が電気的にも熱的
にも良好である必要がある。従つて超電導体の安定化と
いう点から見た場合上記従来の安定化化合物超電導体の
製造方法には種々の欠点がある。
Figure 1 is a cross-sectional view of the stabilized compound superconductor tape made in this way, where 1 is the residual vanadium after the diffusion reaction, 2 is the V3Ga compound superconductor layer formed on the crimping surface, and 3 is the residual Cu after the diffusion reaction. -Ga alloy, 4 is a semiconductor layer, and 5 is a stabilizing metal copper layer. Stabilization of superconductors is a well-known process in which superconductivity itself is an unstable phenomenon, so by providing a stabilizing metal, electrical bypass,
The goal is to improve stability by adding effects such as magnetic damping and thermal diffusion. This stability is an essential element for practical superconductors. For this reason, the stabilizing metal must be a good electrical and thermal conductor, and must have good adhesion to the superconductor both electrically and thermally. Therefore, from the viewpoint of stabilizing the superconductor, the above-mentioned conventional method for producing a stabilized compound superconductor has various drawbacks.

すなわち、半田法による安定化金属の貼合せ方法では安
定化金属自体の性能は良好であつても、貼合せの際に脆
い化合物超電導体に損傷を与える危険性があり、その上
安定化金属と超電導体との貼合せ後は、その寸法を変え
ることが固難であり、その工程上から生産性が悪い。
In other words, in the method of bonding stabilizing metals using the soldering method, even if the performance of the stabilizing metal itself is good, there is a risk of damaging the brittle compound superconductor during bonding. After bonding with the superconductor, it is difficult to change its dimensions, and productivity is poor due to the process.

さらに超電導体との間に半田が介在しているので必然的
に電気的及び熱的抵抗が高い等の欠点がある。またメツ
キ法によつても、メツキで形成された安定化金属層はそ
れ自体電気抵抗が高くかつ密着性が悪いために性能が劣
り、このため焼鈍が必要であるが、この焼鈍時の加熱に
よつて超電導体等の構成元素と安定化金属とが拡散反応
を起し、安定化金属の鈍度が低下し電気的及び熱的特性
が悪いものしか得られないという欠点がある。この欠点
を改善するためにつぎの提案がなされている。
Furthermore, since solder is interposed between the superconductor and the superconductor, it inevitably has drawbacks such as high electrical and thermal resistance. Furthermore, even with the plating method, the stabilizing metal layer formed by plating has high electrical resistance and poor adhesion, resulting in poor performance, and therefore requires annealing. As a result, a diffusion reaction occurs between the constituent elements of the superconductor and the stabilizing metal, resulting in a decrease in the sluggishness of the stabilizing metal, resulting in a drawback that only poor electrical and thermal properties can be obtained. The following proposal has been made to improve this drawback.

その一つとして、第2図の如くニオブ又はバナジウムを
含む化合物又は合金の超電導体の場合にはニオブ、バナ
ジウム又はこれらを主体とする金属管6の内部に安定化
材7を配し、この外側にこれと拡散反応して目的とする
超電導性化合物又は合金を形成する構成成分元素の一方
又はこれを含む合金の芯8と構成成分元素の他方又はこ
れを含む合金のマトリツクス9の復合層を設けた構造の
複合体にすることによつて拡散熱処理前から安定化金属
の付与を可能にしたものである。
As one example, in the case of a superconductor made of a compound or alloy containing niobium or vanadium, as shown in FIG. A composite layer of a core 8 of one of the constituent elements or an alloy containing the same and a matrix 9 of the other constituent element or an alloy containing the constituent element which diffuses and reacts with the superconducting element to form the target superconducting compound or alloy is provided. By creating a composite with a similar structure, it is possible to add a stabilizing metal even before the diffusion heat treatment.

なお拡散熱処理によつて金属管6及び芯8がそれぞれマ
トリツクス9と接する界面に超電導性化合物又は合金が
形成する。また別のものとして、第3図の如くたとえば
Nb3Sn化合物超電導体の場合にはタンタル管10の
内部に安定化材7を配し、この外側にこれと拡散反応せ
ず目的とする超電導性化合物または合金を形成する構成
成分元素の一方またはこれを含む合金の芯8と構成成分
元素の他方又はこれを含む合金のマトリツクス9の複合
層を設けた構造の複合体にすることによつて拡散熱処理
前から安定化金属を付与するものである。
By the diffusion heat treatment, a superconducting compound or alloy is formed at the interfaces where the metal tube 6 and the core 8 are in contact with the matrix 9, respectively. In addition, as shown in FIG. 3, for example, in the case of a Nb3Sn compound superconductor, a stabilizing material 7 is arranged inside the tantalum tube 10, and the target superconducting compound or Before diffusion heat treatment, by forming a composite with a composite layer of a core 8 of one of the constituent elements forming the alloy or an alloy containing the same and a matrix 9 of the other constituent element or the alloy containing the same. It provides stabilizing metals from.

なお拡散熱処理によつて芯8とマトリツクス9とが接す
る界面すなわち芯8の周囲に超電導性化合物又は合金が
形成される。これらの構造は原理的に拡散熱処理前の機
械加工などで安定化金属とニオブ、バナジウムやタンタ
ル等の金属との密着性がよく、しかも拡散熱処理時に安
定化金属の純度低下を防止するものである。
By the diffusion heat treatment, a superconducting compound or alloy is formed at the interface where the core 8 and the matrix 9 are in contact, that is, around the core 8. In principle, these structures have good adhesion between the stabilizing metal and metals such as niobium, vanadium, and tantalum through mechanical processing before diffusion heat treatment, and also prevent a decrease in the purity of the stabilizing metal during diffusion heat treatment. .

しかし、実際これらの複合体を製造する場合つぎのよう
な問題点がある。すなわち、1ニオブ、バナジウムやタ
ンタル等の隔壁となる金属管が薄肉の場合機械加工によ
つて破れ拡散処理時に安定化金属の純度低下が起る。2
導体構成における超電導体の占積率を向上するためには
隔壁管を出来るだけ薄肉にする必要があるが、このよう
な場合隔壁材と他の元素との相互拡散が無視できなくな
り、結果的には安定化金属の純度を低下させる。
However, when these composites are actually produced, there are the following problems. That is, if the metal tube used as the partition wall of niobium, vanadium, tantalum, etc. is thin, it will break during machining and the purity of the stabilizing metal will decrease during the diffusion process. 2
In order to improve the space factor of the superconductor in the conductor configuration, it is necessary to make the partition tube as thin as possible, but in such a case, the interdiffusion between the partition material and other elements cannot be ignored, and as a result, reduces the purity of the stabilizing metal.

5拡散熱処理時の安定化金属の純度低下は、目的とする
超電導性物質の生成反応系において原系溶質元素濃度を
低下することになり、所望量の超電導体を得るに長時間
要したり、場合によつては不可能にさえする。
5. A decrease in the purity of the stabilized metal during diffusion heat treatment will result in a decrease in the concentration of the original solute elements in the reaction system for producing the desired superconducting material, and it may take a long time to obtain the desired amount of superconductor. In some cases, it may even be impossible.

本発明は、かかる問題点を解決すべく種々研究を行なつ
た結果得られたもので、隔壁材が薄く、加工性を改善し
、安定化金属との相互反応を防止し、目的の超電導体生
成反応を助ける安定化超電導体の製造方法である。
The present invention was obtained as a result of various studies to solve these problems, and it has a thin partition wall material, improved workability, prevents interaction with stabilizing metal, and achieves the desired superconducting material. This is a method for producing a stabilized superconductor that aids production reactions.

すなわち、第4図aに示す如く、安定化材7をニオブ、
バナジウム、タンタルまたはこれらを主体とする金属(
隔壁材)10て包囲し、かつその外側に拡散反応制御材
11で包囲し、さらにその外側に目的とする超電導体を
構成する成分元素の一方またはその合金からなる芯8と
成分元素の他方またはその合金からなるマトリツクス9
とを配置し、かくして得られた複合体を拡散熱処理する
ことにより芯8の周囲に超電導体を形成又は芯8全体を
超電導体にする。
That is, as shown in FIG. 4a, the stabilizing material 7 is made of niobium,
Vanadium, tantalum, or metals based on these (
A core 8 made of one of the component elements or an alloy thereof constituting the target superconductor and a core 8 made of one of the component elements or an alloy thereof constituting the target superconductor are further surrounded by the diffusion reaction control material 11 on the outside thereof. Matrix 9 made of the alloy
and the composite thus obtained is subjected to diffusion heat treatment to form a superconductor around the core 8 or to make the entire core 8 a superconductor.

ここで、ニオブ・バナジウム、タンタルまたはその合金
からなる隔壁材10の働きは、安定化金属7と目的とす
る超電導体を構成する少なくとも二種類の成分元素また
は合金成分との相互拡散を防止するものであつて、隔壁
材自身はこれらのいずれとも拡散反応を起さないか、極
めてわずかしか反応しないものでなければならない。ま
た、隔壁材の形態は第4図aに示す如く安定化材7を単
純に包囲したものの他、第4図bに示す如く拡散反応制
御材11内部にニオブ、バナジウム、タンタルまたはこ
れらを主体とする金属(隔壁材)10を設けて安定化材
7を分割した構造でもよいし、また、これらの隔壁材で
包囲された安定化材を導体内に数箇所に分散させた構造
でもよい。
Here, the function of the partition material 10 made of niobium vanadium, tantalum, or an alloy thereof is to prevent mutual diffusion between the stabilizing metal 7 and at least two types of component elements or alloy components constituting the target superconductor. The partition material itself must not cause a diffusion reaction with any of these, or must react only to a very small extent. In addition, the form of the partition material may be one in which the stabilizing material 7 is simply surrounded as shown in FIG. A structure may be adopted in which the stabilizing material 7 is divided by providing a metal (partitioning material) 10, or a structure in which the stabilizing material surrounded by these partitioning materials is dispersed at several locations within the conductor may be used.

上述の安定化材を分割する理由は、導体の常電導部に係
わる交流損失を小さくするためである。また、安定化材
を導体内に分散させる理由は、導体内に発生する熱伝達
をよくするためである。一方、銅、銀、アルミニウム、
金、マグネシウム、鉛などからなる拡散反応制御材11
はつぎの働きをする。すなわち、1安定化金属を包囲す
るニオブ、バナジウム、タンタルなどの金属の製造工程
における酸化防止 2隔壁材の外部に溶質元素の濃度溝
(ギヤツプ)を作り相互拡散を制御する。3隔壁外部で
起る目的とする超電導体の生成反応を促進し、反応時間
を短縮する。
The reason for dividing the above-mentioned stabilizing material is to reduce AC loss related to the normal conducting portion of the conductor. Further, the reason why the stabilizing material is dispersed within the conductor is to improve heat transfer generated within the conductor. On the other hand, copper, silver, aluminum,
Diffusion reaction control material 11 made of gold, magnesium, lead, etc.
It has the following function. That is, 1. It prevents oxidation in the manufacturing process of metals such as niobium, vanadium, and tantalum surrounding the stabilizing metal. 2. It controls mutual diffusion by creating a solute element concentration gap outside the partition material. 3. Promote the desired superconductor production reaction occurring outside the partition walls and shorten the reaction time.

これによつて隔壁を通しての外部の溶質元素の安定化金
属への拡散はもちろんのこと隔壁材と安定化金属との相
互拡散を実質的になくさせる。4力学的な観点から、安
定化材は一般に純金属で極めて軟かく、隔壁材およびそ
の外部の金属層と安定化材との硬さおよび加工硬化率の
差が大きいために加工中に隔壁材の座屈や管破れが発生
する場合拡散反応制御材はこうした事故を防止するため
の力学的緩和材としても働く。
This substantially eliminates not only the diffusion of external solute elements into the stabilizing metal through the partition wall, but also the interdiffusion between the partition wall material and the stabilizing metal. 4 From a mechanical point of view, the stabilizing material is generally a pure metal and is extremely soft, and because there is a large difference in hardness and work hardening rate between the partition wall material and its outer metal layer and the stabilizing material, the partition wall material is hardened during processing. When buckling or pipe rupture occurs, the diffusion reaction control material also acts as a mechanical mitigation material to prevent such accidents.

したがつて、本発明はつぎのような効果がある。Therefore, the present invention has the following effects.

まず、安定化金属の純度の低下がなく、安定化金属自体
の電気的かつ熱的に良好な伝導性を保証し、しかも上記
の如く機械的加工による完全な密着性のため安定化金属
と超電導体との電気的及び熱的抵抗が著しく低い安定化
超電導体を容易に製造できるものである。さらに本発明
では安定化金属を超電導体の内側に設けてあるので次の
ような利点がある。
Firstly, there is no decrease in the purity of the stabilizing metal, ensuring good electrical and thermal conductivity of the stabilizing metal itself, and, as mentioned above, perfect adhesion through mechanical processing makes the stabilizing metal and superconductor conductive. This makes it possible to easily produce a stabilized superconductor that has extremely low electrical and thermal resistance with the body. Furthermore, in the present invention, since the stabilizing metal is provided inside the superconductor, there are the following advantages.

すなわち1安定化金属層の実用的な厚さが、安定化金属
を外側に設けた場合に比べて大きいために電気抵抗にお
けるサイズ効果、磁気抵抗効果の点から有利である。
That is, the practical thickness of one stabilizing metal layer is larger than that in the case where the stabilizing metal is provided on the outside, which is advantageous in terms of the size effect on electrical resistance and the magnetoresistance effect.

2安定化金属層をニオブ、バナジウム、タンタル又はこ
れらを主体とする金属の内側に設け、この外側に拡散反
応制御材を配しているため、目的とする超電導性化合物
又は合金を生成するに必要な拡散反応のみとなる。
A two-stabilizing metal layer is provided on the inside of niobium, vanadium, tantalum, or a metal mainly composed of these, and a diffusion reaction control material is placed on the outside, which is necessary for producing the target superconducting compound or alloy. Only a diffusion reaction occurs.

また拡散反応系の選択によつては超電導体の生成反応を
促進するため、それだけ短時間で多量の拡散反応層を形
成することができる。3同一断面積の超電導体層を形成
する場合、上記2と同様の理由によつて実効的な厚さを
小さくさせることができる。
Further, depending on the selection of the diffusion reaction system, the superconductor production reaction is promoted, so that a large amount of diffusion reaction layer can be formed in a correspondingly short time. 3. When forming superconductor layers having the same cross-sectional area, the effective thickness can be reduced for the same reason as 2 above.

従つて断熱的安定性(Adiabaticstabil
ity;フラックスジャンプが起つたときの断熱状態で
の発熱によつて超電導体が温度上昇し磁束はさらに侵入
し発熱を繰返すような不安定性を抑える性質)及び動的
安定性(Dynamicstability;超電導体
の発熱が常伝導体を通して熱逃散する場合、上記断熱的
安定性と同様の不安定性を抑える性質)の両方の点から
優れているものである。4安定化材が外気にさらされる
ことがなく、拡散熱処理等における雰囲気による汚染を
防ぐことができる。
Therefore, adiabatic stability
ity: The property of suppressing instability such as when the temperature of the superconductor rises due to heat generation in an adiabatic state when a flux jump occurs, and the magnetic flux penetrates further and repeats heat generation) and Dynamic stability: When heat is dissipated through a normal conductor, it is excellent in terms of both the above-mentioned adiabatic stability and the ability to suppress instability. 4. The stabilizing material is not exposed to the outside air, and contamination due to the atmosphere during diffusion heat treatment and the like can be prevented.

5安定化材は純金属でありニオブやバナジウム又は残り
の構成金属に比べて軟かいために起る機械加工によるシ
ース割れや鞘状切れを防止することができる。
5. The stabilizing material is a pure metal and is softer than niobium, vanadium, or other constituent metals, so it can prevent sheath cracking or sheath breakage caused by machining.

本発明における、ニオブ又はバナジウムを含む化合物又
は合金には、例えばNb3SnlNb3AllNb3(
M』e)、Nb3(ト)、V3Galv3si、V3A
llV2HfSV2Zl・、の如き化合物、N卜Til
Nb−Zrの如き合金があるがこれらに限定されない。
In the present invention, compounds or alloys containing niobium or vanadium include, for example, Nb3SnlNb3AllNb3 (
M'e), Nb3 (g), V3Galv3si, V3A
Compounds such as llV2HfSV2Zl・, Ntil
These include, but are not limited to, alloys such as Nb-Zr.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 1 第4図aに示す如き複合体を得るために先ずアルミニウ
ム11で外装されたバナジウム(以下Vと記す)のパイ
プ10中に銀捧7を挿入し、ドローベンチ加工によりパ
イプの外径21m翫銀の外径17mmの複合棒を作り、
この複合棒を中心にしその廻りに3mmφのニオブ棒8
30本を適当な間隔で林立させて、これらの間にCu−
14重量%Sn合金9の溶湯を鋳込み全体を45mmφ
の外径とした。
Example 1 In order to obtain a composite as shown in FIG. 4a, first, a silver plate 7 was inserted into a vanadium (hereinafter referred to as V) pipe 10 covered with aluminum 11, and the outer diameter of the pipe was adjusted by draw bench processing. I made a 21m long silver composite rod with an outer diameter of 17mm.
Around this composite rod, 3mmφ niobium rods 8
30 trees are arranged in a forest at appropriate intervals, and Cu-
Cast a molten metal of 14 wt% Sn alloy 9 to a total diameter of 45 mm.
The outer diameter of

次にこの複合体を押出し、伸線等の加工により0.12
m71Lφとして、これを7本撚線したのち650rC
で100時間加熱し拡散反応によつてNb3Sn化合物
超電導層を形成せしめた。
Next, this composite was extruded and processed by wire drawing to obtain a 0.12
After twisting 7 wires as m71Lφ, 650rC
The mixture was heated for 100 hours to form a Nb3Sn compound superconducting layer through a diffusion reaction.

アルミニウム層11は本発明の意図した通り殆んど全て
がCu−Sn合金マトリツクス中に拡散していた。
Aluminum layer 11 was almost entirely diffused into the Cu-Sn alloy matrix as intended by the present invention.

一方、V管10はAg7の汚染を防止した。次に、この
撚線をインジウム溶湯中に通して一体化したのちワニス
で絶縁処理した。この撚線の臨界電流値を測定したとこ
ろ、この値は4.2のKにおいて、70キロガウスの磁
界下で70Aであつた。この撚線を用いて内径30關、
外径61mu1長さ72mmのコイルを持つマグネツト
を作つた。これは4.2のKにおいて68Aの電流を通
電したところ72キロガウスの磁界を発生した。この結
果十分実用に耐えることが確認された。尚、この撚線の
素線の銀芯7と同じ形状の銀だけからなる線を650℃
で100時間の熱処理した後、4.2をKでその電気抵
抗を測定して、この値と上記実施例の超電導素線の銀芯
7の比抵抗との間には実質的に差異は認められなかつた
On the other hand, the V tube 10 prevented contamination of Ag7. Next, the stranded wires were passed through molten indium to integrate them and then insulated with varnish. The critical current value of this stranded wire was measured and was found to be 70 A at 4.2 K and under a 70 kilogauss magnetic field. Using this twisted wire, the inner diameter is 30 mm,
A magnet with a coil having an outer diameter of 61 mu and a length of 72 mm was made. When a current of 68 A was applied at 4.2 K, a magnetic field of 72 kilogauss was generated. As a result, it was confirmed that the product was sufficiently durable for practical use. In addition, a wire made only of silver having the same shape as the silver core 7 of the stranded wire is heated at 650°C.
After heat treatment for 100 hours, the electrical resistance of 4.2 was measured at K, and there was no substantial difference between this value and the specific resistance of the silver core 7 of the superconducting wire of the above example. I couldn't help it.

したがつて銀芯7中にはCu,.Sn.VおよびMが拡
散していないことが確認できた。実施例 2 第4図bに示す如く、7本の銅棒7をタンタル管10の
蓮根状の孔内に挿入し、その外側に銀管11を被覆し、
外径21mmの複合棒を作り、この複合棒を中心にしそ
の廻りに3m77!φのバナジウム(以下Vと記す)棒
830本を適当な間隔で林立させて、これらの間にCu
−18wt%Ga合金9の溶湯を鋳込み全体を457!
17!Lφの外径とした。
Therefore, the silver core 7 contains Cu, . Sn. It was confirmed that V and M were not diffused. Example 2 As shown in FIG. 4b, seven copper rods 7 were inserted into the lotus root-shaped hole of a tantalum tube 10, and a silver tube 11 was coated on the outside.
Make a composite rod with an outer diameter of 21mm, and use this composite rod as the center and the area around it to be 3m77! 830 φ vanadium (hereinafter referred to as V) rods are arranged at appropriate intervals, and Cu is placed between them.
-18wt% Ga alloy 9 molten metal is cast and the whole is 457!
17! The outer diameter is Lφ.

次にこの複合体を押出し、伸線等の加工により1辺が6
m7!Lの六角棒とし、外径45mmφ、内径39mm
φのC『10wt%Ga合金管の中に61本複合し、伸
線加工等により外径0.3mmφとし、ついで10mm
のピツチに捩り加工を行なつて素線12を得た。この素
線1215本をピツチ20m1Lで空芯同心撚線を作製
し、タークスヘツド(2方向ロール)により圧潰し断面
寸法0.25m7n×4.1mmの第5図(簡単のため
素線7本の場合を示す)の如き成形撚線型複合ケーブル
を得た。この時の素線充填率は95%であつた。このケ
ーブルを1×10−JモV!Hgの真空炉において625
℃の温度で50時間加熱し、バナジウム棒と銅−ガリウ
ム合金との界面にV3Ga化合物超電導体を形成させた
。ケーブル断面を検鏡したところ素線内部のタンタル隔
壁の厚さは実施例1の場合より一様なものでシース割れ
は全く観察されなかつた。このことは軟質の安定化材の
補強による効果と、タンタル管外に被覆された銀層の応
力緩和による効果のためと考えられる。また、従来V3
Ga化合物超電導体を形成させる反応系に銀を関与させ
ないものでは反応時間が75時間要したものが、本発明
の銀を関与させた反応系では50時間で反応が完了した
。これは、反応系へ銀の働きにより拡散反応が促進され
たと考えられる。さらに、安定化金属の抵抗測定による
と、複合前の銅の比抵抗と実質的差異は認められなかつ
た。したがつて、タンタル壁は約1μの厚さであるにも
拘らず安定化材を汚染する程の相互拡散を起さなかつた
ことが確実となつた。以上の如く本発明は実施例からも
明らかなように拡散熱処理前の機械加工などによつて安
定化金属とニオブ、バナジウム又はタンタル等の金属と
の密着性が完全に達成され、しかも拡散熱処理時に安定
化金属の純度低下を防止するものである。
Next, this composite is extruded and processed by wire drawing etc. so that each side has 6
m7! L hexagonal bar, outer diameter 45mmφ, inner diameter 39mm
C of φ: 61 pieces were combined into a 10wt% Ga alloy tube, the outer diameter was made to be 0.3mmφ by wire drawing, etc., and then 10mm.
A strand 12 was obtained by twisting the wire at the pitch. An air-core concentric stranded wire was made from 1215 of these strands with a pitch of 20m1L, and crushed with a Turk's head (two-way roll) to have a cross-sectional size of 0.25m7n x 4.1mm (see Figure 5 for simplicity). A molded stranded composite cable was obtained. The wire filling rate at this time was 95%. This cable is 1x10-JMoV! 625 in Hg vacuum furnace
C. for 50 hours to form a V3Ga compound superconductor at the interface between the vanadium rod and the copper-gallium alloy. When the cross section of the cable was examined with a microscope, the thickness of the tantalum partition inside the wire was more uniform than in Example 1, and no sheath cracks were observed. This is thought to be due to the reinforcement effect of the soft stabilizing material and the stress relaxation effect of the silver layer coated on the outside of the tantalum tube. Also, conventional V3
In the reaction system for forming a Ga compound superconductor in which silver was not involved, the reaction time was 75 hours, but in the reaction system in which silver was involved according to the present invention, the reaction was completed in 50 hours. This is considered to be because the diffusion reaction was promoted by the action of silver in the reaction system. Further, resistance measurements of the stabilized metal showed no substantial difference from the resistivity of copper before composite. Therefore, it was ensured that the tantalum walls, despite being approximately 1 micron thick, did not undergo interdiffusion to the extent that they contaminated the stabilizing material. As described above, as is clear from the examples, the present invention achieves complete adhesion between the stabilizing metal and the metal such as niobium, vanadium, or tantalum by machining or the like before diffusion heat treatment, and furthermore, during diffusion heat treatment, This prevents a decrease in the purity of the stabilizing metal.

したがつて拡散熱処理工程後に安定化金属の純度低下の
危険性が大きかつた従来法に比べて本発明は、安定化金
属自体の電気的かつ熱的に良好な伝導性を保証し、しか
も機械的加工などによる完全な密着性のため安定化金属
と超電導体との電気的及び熱的抵抗が著しく低い安定化
超電導体を容易に製造できるものである。さらに隔壁材
の外周部に拡散反応制御材を配置しているため均一な超
電導体を有効に形成することが可能であり、線の全体的
な電流密度を高くすることができる。本発明は化合物超
電導体の場合のみならず、拡散熱処理によつて合金系の
超電導体を得る場合にも適用できる。
Therefore, compared to the conventional method in which there was a great risk of deterioration of the purity of the stabilizing metal after the diffusion heat treatment step, the present invention guarantees good electrical and thermal conductivity of the stabilizing metal itself, and also has a mechanical property. Because of perfect adhesion through mechanical processing, it is possible to easily produce a stabilized superconductor in which the electrical and thermal resistance between the stabilized metal and the superconductor is extremely low. Furthermore, since the diffusion reaction control material is disposed around the outer periphery of the partition material, it is possible to effectively form a uniform superconductor, and the overall current density of the wire can be increased. The present invention is applicable not only to compound superconductors but also to obtaining alloy superconductors by diffusion heat treatment.

特に中空超電導体線や複雑な形状の超電導線には加工性
の良い複合体の状態で加工を行つて後拡散熱処理して目
的の超電導体に変えることにより容易に製造できるもの
である。また複合体の加工から作る場合だけに限らず安
定化金属の表面に二以上の構成金属元素をメツキ蒸着等
により被覆し拡散熱処理して超電導体を造る方法も本発
明に含まれる。さらに安定化材やニオブ、バナジウム又
はタンタルや外部の複合層の形状はいかなるものでも、
本発明に含まれる。図面の簡単な?明 第1図、第2図及び第3図は従来法における拡散反応前
の安定化超電導体製造用複合体の断面図であり、第4図
は本発明における拡散反応前の安定化超電導?製造用複
合体の断面図であり、第5図は本発明1方法によつて得
られる成形撚線型化合物超電導線の断面図である。
In particular, hollow superconducting wires and superconducting wires with complex shapes can be easily manufactured by processing the wire in the form of a composite with good workability and then performing post-diffusion heat treatment to transform it into the desired superconductor. Furthermore, the present invention is not limited to the method of producing a superconductor by processing a composite, but also includes a method of producing a superconductor by coating the surface of a stabilized metal with two or more constituent metal elements by plating vapor deposition or the like and performing diffusion heat treatment. Furthermore, whatever the shape of the stabilizer, niobium, vanadium or tantalum, or the external composite layer,
Included in the present invention. Easy drawing? Figures 1, 2, and 3 are cross-sectional views of a composite for producing a stabilized superconductor before a diffusion reaction according to the conventional method, and Figure 4 is a cross-sectional view of a composite for producing a stabilized superconductor before a diffusion reaction according to the present invention. FIG. 5 is a cross-sectional view of a manufacturing composite, and FIG. 5 is a cross-sectional view of a molded stranded compound superconducting wire obtained by the first method of the present invention.

7・・・・・・安定化材、8・・・・・・超電導性化合
物又は合金を構成する成分元素の一方又はその合金、9
・・・・・・超電導性化合物又は合金を構成する成分元
素の他方又はその合金、10・・・・・・隔壁材、11
・・・・・・拡散反応制御材、12・・・・・・素線。
7... Stabilizing material, 8... One of the component elements constituting the superconducting compound or alloy, or its alloy, 9
. . . The other component element constituting the superconducting compound or alloy or its alloy, 10 . . . Partition material, 11
... Diffusion reaction control material, 12 ... Element wire.

Claims (1)

【特許請求の範囲】 1 ニオブまたはバナジウムを含む化合物または合金の
超電導体の製造において、安定化材としての銅、銀、ア
ルミニウムおよび金の1種または2種以上をニオブ、バ
ナジウム、タンタルまたはこれを主体とする金属からな
る隔壁材で包囲し、かつその外側に拡散反応制御材とし
ての銅、銀、アルミニウム、金、マグネシウム、及び鉛
の1種または2種以上の金属で包囲し、さらにその外側
に目的とする超電導体を構成する少なくとも二種類の元
素または合金を接触させて配置し、かくして得られた複
合体を拡散熱処理することを特徴とする安定化超電導体
の製造方法。 2 上記安定化材の複数本を隔壁材金属マトリツクス中
に埋め込んだ構造としたことを特徴とする特許請求の範
囲第1項記載の安定化超電導体の製造方法。
[Claims] 1. In the production of a superconductor made of a compound or alloy containing niobium or vanadium, one or more of copper, silver, aluminum, and gold are substituted with niobium, vanadium, tantalum, or any of these as a stabilizing material. Surrounded by a partition material made of a main metal, and surrounded by one or more metals of copper, silver, aluminum, gold, magnesium, and lead as a diffusion reaction control material, and further outside. A method for producing a stabilized superconductor, which comprises placing at least two types of elements or alloys constituting the desired superconductor in contact with each other, and subjecting the thus obtained composite to a diffusion heat treatment. 2. The method for producing a stabilized superconductor according to claim 1, wherein a plurality of the stabilizing materials are embedded in a metal matrix of the partition wall material.
JP51056370A 1975-12-03 1976-05-17 Method for producing stabilized superconductor Expired JPS5933653B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP51056370A JPS5933653B2 (en) 1976-05-17 1976-05-17 Method for producing stabilized superconductor
FR7636363A FR2334182A1 (en) 1975-12-03 1976-12-02 CABLE CONTAINING A SUPPRACONDUCTOR COMPOUND AND METHOD FOR MANUFACTURING SUCH A CABLE
CH1526576A CH616775A5 (en) 1975-12-03 1976-12-03
GB50463/76A GB1573506A (en) 1975-12-03 1976-12-03 Superconducting compound stranded cable and method of manufacturing the same
DE2654924A DE2654924C2 (en) 1975-12-03 1976-12-03 Superconducting composite cable and process for its manufacture
US06/008,263 US4329539A (en) 1975-12-03 1979-02-01 Superconducting compound stranded cable
US06/308,558 US4611390A (en) 1975-12-03 1981-10-05 Method of manufacturing superconducting compound stranded cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51056370A JPS5933653B2 (en) 1976-05-17 1976-05-17 Method for producing stabilized superconductor

Publications (2)

Publication Number Publication Date
JPS52138443A JPS52138443A (en) 1977-11-18
JPS5933653B2 true JPS5933653B2 (en) 1984-08-17

Family

ID=13025361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51056370A Expired JPS5933653B2 (en) 1975-12-03 1976-05-17 Method for producing stabilized superconductor

Country Status (1)

Country Link
JP (1) JPS5933653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798626A1 (en) 2019-09-25 2021-03-31 Netzsch-Gerätebau GmbH Thermal analysis device, sample holder assembly and thermal analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798626A1 (en) 2019-09-25 2021-03-31 Netzsch-Gerätebau GmbH Thermal analysis device, sample holder assembly and thermal analysis method

Also Published As

Publication number Publication date
JPS52138443A (en) 1977-11-18

Similar Documents

Publication Publication Date Title
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH02276111A (en) Compound superconductor and its manufacture
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US4646428A (en) Method of fabricating multifilament intermetallic superconductor
EP0045584B1 (en) Methods of making multifilament superconductors
JPS6215967B2 (en)
JPS62113306A (en) Complex superconductor and manufacture of the same
US4084989A (en) Method for producing a stabilized electrical superconductor
US4153986A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US3676577A (en) Superconductors containing flux traps
EP1577903B1 (en) Method for producing nb3al superconductive wire and nb3al superconductive wire obtained by said method
JPS5933653B2 (en) Method for producing stabilized superconductor
EP3961658A1 (en) Blank for producing a long nb3 sn-based superconducting wire
US4215465A (en) Method of making V3 Ga superconductors
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0492316A (en) Manufacture of compound linear material
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead