JPS602728B2 - Method for manufacturing compound composite superconductor - Google Patents

Method for manufacturing compound composite superconductor

Info

Publication number
JPS602728B2
JPS602728B2 JP50135131A JP13513175A JPS602728B2 JP S602728 B2 JPS602728 B2 JP S602728B2 JP 50135131 A JP50135131 A JP 50135131A JP 13513175 A JP13513175 A JP 13513175A JP S602728 B2 JPS602728 B2 JP S602728B2
Authority
JP
Japan
Prior art keywords
compound
composite
superconductor
resistance
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50135131A
Other languages
Japanese (ja)
Other versions
JPS5260093A (en
Inventor
直文 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50135131A priority Critical patent/JPS602728B2/en
Publication of JPS5260093A publication Critical patent/JPS5260093A/en
Publication of JPS602728B2 publication Critical patent/JPS602728B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は化合物複合超電導体に係り、とくに低抵抗なマ
トリックスをもつ化合物複合超電導体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound composite superconductor, and more particularly to a method for producing a compound composite superconductor having a low resistance matrix.

Nb3Sn、V3Gaなど化合物超電導体を極細線化し
た心材の表面に形成させた化合物極細心超電導体は、臨
界電流の異方性もなく安定な超電導線材として知られて
いるが、製法が選択拡散法によるため化合物形成後のマ
トリックスが高抵抗になり、超電導コイルがクェンチし
た時の発熱垣宣が大きく、ときには焼損するという欠点
がある。
Ultra-fine compound superconductors, which are made by forming compound superconductors such as Nb3Sn and V3Ga on the surface of ultra-fine core materials, are known as stable superconducting wires with no critical current anisotropy, but they are manufactured using the selective diffusion method. As a result, the matrix after the compound is formed has a high resistance, and when the superconducting coil is quenched, it generates a large amount of heat and sometimes burns out.

この欠点を解消するため、最近までに種々の線材が提案
されている。例えば第1図に示すように、高純度な銅2
とN広Sn層を選択拡散法で形成されるに必要な銅一錫
合金1とをニオブ管3で分離して製造する方法、または
第2図に示すように銅−錫合金マトリックス1の外側に
タンタル等4の拡散障壁を設けて、NCSn層を形成し
た後も銅−錫合金中の錫は銅2中に拡散しないようにし
た構造をもつ製造法がある。
In order to overcome this drawback, various wire rods have been proposed until recently. For example, as shown in Figure 1, high purity copper 2
The copper-tin alloy 1 necessary for forming the N-rich Sn layer by selective diffusion method is separated by a niobium tube 3, or the outside of the copper-tin alloy matrix 1 as shown in FIG. There is a manufacturing method that has a structure in which a diffusion barrier of tantalum or the like 4 is provided to prevent tin in the copper-tin alloy from diffusing into the copper 2 even after the NCSn layer is formed.

しかし、これらの精造法は、いずれもニオブあるいはタ
ンタル管を用いて複合体を製造するために塑性加工性に
難点があり、かつ製造工程が複雑になる。また上記の如
き拡散障壁を設けず鋼−錫合金マトリックスの1部を銅
に置換して複合体を形成する方法や、選択拡散法で化合
物複合超電導体を製造した後、マトリックス中に固溶し
ている余分の錫を選択的に抽出除去する方法もある。し
かし、前者はN広Sn層形成過程で銅中に銅−錫合金の
錫が拡散し、銅−錫稀薄合金となるため十分でなく、後
者はマトリックスが機械的に脆くなり、コイル巻線等に
耐えられない欠点等を有する。本発明の目的は、上記の
如き従来の欠点をなくし、製造方法が簡単でかつ低抵抗
なマトリックスをもつ化合物複合超電導体の製造方法を
提供するにある。
However, all of these refining methods have problems with plastic workability because they manufacture composites using niobium or tantalum tubes, and the manufacturing process is complicated. There are also methods such as those described above in which a part of the steel-tin alloy matrix is replaced with copper without providing a diffusion barrier to form a composite, or after manufacturing a compound composite superconductor by selective diffusion method, solid solution in the matrix is used. There is also a method of selectively extracting and removing excess tin. However, the former method is not sufficient because the tin of the copper-tin alloy diffuses into the copper during the formation process of the N-wide Sn layer, resulting in a copper-tin diluted alloy. It has disadvantages that cannot be tolerated. An object of the present invention is to eliminate the above-mentioned conventional drawbacks, to provide a method for manufacturing a compound composite superconductor having a simple manufacturing method and a low-resistance matrix.

本発明は、化合物複合超電導体として撚線構造にし、撚
線の表面に酸化物層を設け、撚線を構成する複合体の1
部、あるし、は撚線間の空隙に低抵抗な常電導性金属を
配し、化合物層形成熱処理中に化合物形成元素の1部が
低抵抗な常電導性金属中に拡散しないようにした化合物
複合超電導体の製造方法に関する。
The present invention provides a compound composite superconductor with a twisted wire structure, an oxide layer provided on the surface of the twisted wire, and one of the composites constituting the twisted wire.
A low-resistance, normal-conducting metal is placed in the gap between the twisted wires to prevent a part of the compound-forming elements from diffusing into the low-resistance, normal-conducting metal during the compound layer forming heat treatment. The present invention relates to a method for manufacturing a compound composite superconductor.

更に詳細すると、化合物形成元素を含む複合体を燃線加
工した後、熱処理して化合物超電導層を形成する化合物
複合超電導体の製造方法において、撚線表面を酸化させ
、撚線相互の空隙に低抵抗な常電導性金属の融体を付着
させることを特徴とした化合物複合超電導体の製造方法
にある。
More specifically, in a method for manufacturing a compound composite superconductor in which a composite containing a compound-forming element is burnished and then heat treated to form a compound superconducting layer, the surface of the stranded wires is oxidized and the voids between the strands are filled with A method for manufacturing a compound composite superconductor characterized by depositing a molten metal of a resistive normal conductive metal.

また別な製造方法として、化合物形成元素を含む複合体
を撚線加工した後、熱処理して化合物超電導届を形成す
る化合物複合超電導体の製造方法において、化合物形成
元素を含む複数の複合体と表面に酸化物層を形成させた
少なくとも1本の低抵抗な常電導性金属とを撚線にし、
熱処理して化合物超電導層を形成することを特徴とした
化合物複合超電導体の製造方法にある。本発明の最も特
徴とするところは、撚線表面あるし、は撚線を構成する
複合体表面に酸化物層を設けることであって、その後の
常電導性金属の付着あるいは化合物形成時の熱処理で剥
離したり、分解したりする酸化物層であってはならない
In another manufacturing method, a compound composite superconductor is manufactured by stranding a composite containing a compound-forming element and then heat-treating it to form a compound superconductor. and at least one low-resistance normally conductive metal on which an oxide layer is formed, and
A method for manufacturing a compound composite superconductor, characterized by forming a compound superconductor layer through heat treatment. The most characteristic feature of the present invention is that an oxide layer is provided on the surface of the stranded wire or on the surface of the composite that constitutes the stranded wire, and then heat treatment is performed during the attachment of a normal conductive metal or the formation of a compound. It must not be an oxide layer that peels off or decomposes.

酸化物層形成に関して最も好ましい方法は、例えば水酸
化ナトリウム、水酸化カリウム等の酸化剤を含む溶液中
に浸濃した後、酸化性あるいは中性雰囲気中で加熱する
方法である。燃線空隙に付着させる低抵抗は常電導性金
属として、アルミニウムが最も好ましい。
The most preferred method for forming an oxide layer is to immerse the material in a solution containing an oxidizing agent, such as sodium hydroxide or potassium hydroxide, and then heat it in an oxidizing or neutral atmosphere. As the low-resistance normally conductive metal to be attached to the combustion line gap, aluminum is most preferable.

アルミニウムの融体を付着させるにはN公Sn、V30
aなどの化合物形成温度近辺かそれ以下で可能であり、
化合物層の電流特性に悪影響を及ぼさない。酸化物層が
なければアルミニウムは撚線マトリックスの銅−錫合金
と反応し境界に脆い化合物層を形成したり、錫と反応し
て高抵抗体になるので酸化物層の存在は極めて重要であ
る。撚線を構成する複合体の1部を低抵抗な常電導性金
属で置換する場合には、強度的には銅が最も好ましく、
また銀を用いても差支えない。
To attach molten aluminum, N public Sn, V30
It is possible near or below the formation temperature of compounds such as a,
Does not adversely affect the current characteristics of the compound layer. The presence of the oxide layer is extremely important because without the oxide layer, aluminum would react with the copper-tin alloy of the stranded wire matrix, forming a brittle compound layer at the interface, or react with tin, creating a high-resistance material. . When replacing a part of the composite material constituting the stranded wire with a low-resistance normally conductive metal, copper is most preferable in terms of strength;
Also, silver may be used.

この場合も酸化物層がなければ、鋼あるいは銀中に錫が
拡散して比較的高い抵抗をもつ合金になるので、酸化物
層の存在は重要になる。つぎに本発明の詳細につき具体
的に説明する。
Again, the presence of the oxide layer is important because without it, tin would diffuse into the steel or silver, resulting in an alloy with relatively high resistance. Next, details of the present invention will be specifically explained.

実施例 1第3図は、NCSn化合物形成元素を含む複
合体の撚線横断面概略図である。
Example 1 FIG. 3 is a schematic cross-sectional view of a twisted wire of a composite containing NCSn compound-forming elements.

複合体は、外径0.25ミリメートルで、ニオブ一1パ
ーセントジルコニウム合金6を心材とし、銅一10パー
セント錫合金1をマトリックスとした多心機造である。
この複合体を水酸化ナトリウムを含む水溶液中に浸潰し
た後「大気中500午0で加熱し、複合体外表面に数ミ
クロンメートル厚さの酸化物層7を形成させた。ついで
これら複合体を7本撚線加工した後、700qoで10
m時間熱処理して、ニオブ−1パーセントジルコニウム
心材6の表面に約1ミクロンメートル厚さのNb3Sn
化合物超電導層を生成させた。その後、溶融アルミニウ
ム浴に浸潰して、撚線の空隙にアルミニウム5を付着さ
せた。この複合体短尺線村の電気抵抗を4端子法で室温
から2びKまで温度を変えて測定した。
The composite has an outer diameter of 0.25 mm and is a multi-core structure having a core material of niobium-11% zirconium alloy 6 and a matrix of copper-10% tin alloy 1.
This composite was immersed in an aqueous solution containing sodium hydroxide and then heated in the atmosphere at 500 pm to form an oxide layer 7 several micrometers thick on the outer surface of the composite. After processing 7 strands, 10 at 700qo
After heat treatment for m hours, the surface of the niobium-1% zirconium core material 6 has a thickness of about 1 micrometer of Nb3Sn.
A compound superconducting layer was produced. Thereafter, it was immersed in a molten aluminum bath to adhere aluminum 5 to the voids of the stranded wires. The electrical resistance of this composite short wire was measured by the four-probe method at varying temperatures from room temperature to 2 K.

第5図にこの結果を従来の線材と比較して示す。抵抗は
、線材の単位長さ当りの値で整理した。銅−錫合金をマ
トリックスとし、酸化物層およびアルミニウムを付着し
ない従来の線材の抵抗値8に比べて、本発明の線材の抵
抗値10は、2びKで120ひげの1程度まで低下する
ことがわかった。実施例 2 第4図は、N広Sn化合物形成元素を含む複合体の撚線
横断面概略図である。
FIG. 5 shows the results in comparison with a conventional wire. Resistance was organized as a value per unit length of wire. Compared to the resistance value of 8 for a conventional wire material that uses a copper-tin alloy as a matrix and does not have an oxide layer or aluminum attached, the resistance value of the wire material of the present invention is 10, which is reduced to about 1 of 120 at 2K. I understand. Example 2 FIG. 4 is a schematic cross-sectional view of a stranded wire of a composite containing N-rich Sn compound-forming elements.

複合体は、外径0.25ミリメートルで、ニオブ−1パ
ーセントジルコニウム合金6を心材とし、銅−10パー
セント錫合金1をマトリックスとした多心構造である。
この複合体ならびに同寸法の銅線をそれぞれ水酸化ナト
リウムを含む水溶液中に浸潰した後、大気中500℃で
加熱し、複合体外表面および銅線外表面に数ミクロンメ
ートル厚さの酸化物層7を形成させた。ついでこれら複
合体を4本、表面に酸化物層を設けた銅線2を3本第4
図の如く撚線加工した後、700ooで10餌時間熱処
理して、ニオブ−1パーセントジルコニウム心材6の表
面に約1ミクロンメートル厚さのN広Sn化合物超電導
層を生成させた。この複合体短尺線材の電気抵抗の測定
法は、実施例1と同じで、測定結果を第5図に併せて示
す。
The composite has an outer diameter of 0.25 mm and has a multicore structure with a niobium-1% zirconium alloy 6 as a core material and a copper-10% tin alloy 1 as a matrix.
This composite and a copper wire of the same size are each immersed in an aqueous solution containing sodium hydroxide, and then heated in the atmosphere at 500°C to form an oxide layer several micrometers thick on the outer surface of the composite and the outer surface of the copper wire. 7 was formed. Next, four of these composites, three copper wires 2 with an oxide layer on the surface, and a fourth
After the wires were twisted as shown in the figure, they were heat-treated at 700 oo for 10 hours to form an N-rich Sn compound superconducting layer about 1 micrometer thick on the surface of the niobium-1% zirconium core material 6. The method for measuring the electrical resistance of this composite short wire was the same as in Example 1, and the measurement results are also shown in FIG.

銅と銅−錫合金の複合マトリックスとし、酸化物層を付
着しない従来の線材の抵抗値9に比べて、本発明の線村
の抵抗値11は、2ぴKで30分の1程度、銅−錫合金
をマトリックスとした従来の線村の抵抗値8に比べて5
00分の1程度まで低下することがわかつた。本発明に
よる実施例1、2の効果を比較してみると、線材の単位
長さ当りの抵抗値は、線材断面積、低抵抗な常電導怪物
質の種類、断面積比等によって異なるが、酸化物層によ
って常電導性金属中への拡散を防止した本発明の糠材は
著しく抵抗を小さくする。
Compared to the resistance value 9 of the conventional wire rod, which has a composite matrix of copper and copper-tin alloy and does not have an oxide layer attached, the resistance value 11 of the wire rod of the present invention is about 1/30th at 2 PK, -Resistance value of 5 compared to 8 of conventional wire village with tin alloy matrix
It was found that the value decreased to about 1/00. Comparing the effects of Examples 1 and 2 according to the present invention, it is found that the resistance value per unit length of the wire differs depending on the cross-sectional area of the wire, the type of low-resistance normal conductive material, the cross-sectional area ratio, etc. The bran material of the present invention, which prevents diffusion into the normally conductive metal by the oxide layer, has significantly reduced resistance.

線材全体の電流密度から云えば、実施例1の方が好まし
いが、撚線加工する複合体の本数が多くなれば、実施例
2も低抵抗なマトリックスとなる。以上の説明では、化
合物超電導体としてN広Snのみを用いたが、同じ様な
手法で製造できるV30aについても本発明の方法を適
用できることは明らかである。
In terms of the current density of the entire wire, Example 1 is preferable, but if the number of composite wires to be twisted increases, Example 2 also provides a matrix with low resistance. In the above description, only N-rich Sn was used as the compound superconductor, but it is clear that the method of the present invention can also be applied to V30a, which can be manufactured by a similar method.

また、実施例1と2の方法を粗合せることによって、実
施例2の緑材全体の電流密度を低下させることなく、更
に低抵抗なマトリックスをもつ化合物複合超電導体を製
造することができる。以上の説明で明らかな如く、本発
明の方法は、従来の製造方法に比べて簡単で、加工性を
害することはなく、低抵抗なマトリックスをもつ化合物
複合超電導体が得られる。
Further, by roughly combining the methods of Examples 1 and 2, a compound composite superconductor having a matrix with even lower resistance can be manufactured without reducing the current density of the entire green material of Example 2. As is clear from the above description, the method of the present invention is simpler than conventional manufacturing methods, does not impair processability, and yields a compound composite superconductor having a matrix with low resistance.

したがって、本発明の製造法により製造した化合物複合
超電導体を用いて大型の超電導コイルを製作しても、ク
ェンチ時にコイルや焼損することもなく、また液体ヘリ
ウムの蒸発量も少なく極めて経済的である。
Therefore, even if a large superconducting coil is manufactured using the compound composite superconductor manufactured by the manufacturing method of the present invention, the coil will not burn out during quenching, and the amount of evaporation of liquid helium will be small, making it extremely economical. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は化合物複合超電導体の従来例を説明す
るための横断面図、第3図、第4図は本発明の化合物複
合超電導体の実施例を説明するための横断面図、第5図
は本発明と従来例の製造法による線材の抵抗値を比較し
た特性図である。 符号の説明、1…・・・銅−錫合金、2・・・・・・鋼
、5……アルミニウム、6……ニオブ一1%ジルコニウ
ム合金、7・・・…酸化物層。髪ー図 髪Z図 第3図 第4図 髪S図
Figures 1 and 2 are cross-sectional views for explaining conventional examples of compound composite superconductors, and Figures 3 and 4 are cross-sectional views for explaining examples of compound composite superconductors of the present invention. , FIG. 5 is a characteristic diagram comparing the resistance values of wire rods manufactured by the present invention and the conventional manufacturing method. Explanation of the symbols: 1... Copper-tin alloy, 2... Steel, 5... Aluminum, 6... Niobium-1% zirconium alloy, 7... Oxide layer. Hair diagram Hair Z diagram Figure 3 Figure 4 Hair S diagram

Claims (1)

【特許請求の範囲】 1 化合物形成元素を含む複合体を撚線加工した後、熱
処理して化合物超電導層を形成する化合物複合超電導体
の製造方法において、撚線表面を酸化させ、撚線相互の
空隙に低抵抗な常電導性金属の融体を付着させることを
特徴とした化合物複合超電導体の製造方法。 2 化合物形成元素を含む複合体を撚線加工した後、熱
処理して化合物超電導層を形成する化合物複合超電導体
の製造方法において、化合物形成元素を含む複数の複合
体の表面に酸化物層を形成し、該複合体と表面に酸化物
層を形成させた少なくとも1本の低抵抗な常電導性金属
とを撚線にし、熱処理して化合物超電導層を形成するこ
とを特徴とした化合物複合超電導体の製造方法。
[Claims] 1. A method for producing a compound composite superconductor in which a composite containing a compound-forming element is stranded and then heat-treated to form a compound superconducting layer, in which the surface of the stranded wires is oxidized and the strands are bonded to each other. A method for producing a compound composite superconductor characterized by attaching a melt of a low-resistance normal-conducting metal to a void. 2. In a method for producing a compound composite superconductor in which a composite body containing a compound-forming element is twisted and then heat-treated to form a compound superconducting layer, an oxide layer is formed on the surface of a plurality of composite bodies containing a compound-forming element. A compound composite superconductor characterized in that the composite and at least one low-resistance normal conductive metal having an oxide layer formed on its surface are stranded and heat treated to form a compound superconducting layer. manufacturing method.
JP50135131A 1975-11-12 1975-11-12 Method for manufacturing compound composite superconductor Expired JPS602728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50135131A JPS602728B2 (en) 1975-11-12 1975-11-12 Method for manufacturing compound composite superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50135131A JPS602728B2 (en) 1975-11-12 1975-11-12 Method for manufacturing compound composite superconductor

Publications (2)

Publication Number Publication Date
JPS5260093A JPS5260093A (en) 1977-05-18
JPS602728B2 true JPS602728B2 (en) 1985-01-23

Family

ID=15144525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50135131A Expired JPS602728B2 (en) 1975-11-12 1975-11-12 Method for manufacturing compound composite superconductor

Country Status (1)

Country Link
JP (1) JPS602728B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115715A (en) * 1981-01-12 1982-07-19 Furukawa Electric Co Ltd Method of producing compound superconductor
JPS57196405A (en) * 1981-05-28 1982-12-02 Kogyo Gijutsuin Al stabilized superconductive wire
JP2001101929A (en) 1999-09-30 2001-04-13 Yazaki Corp Flexible high strength and light weight conductor
US20180122544A1 (en) * 2016-11-03 2018-05-03 Mevion Medical Systems, Inc. Superconducting coil configuration

Also Published As

Publication number Publication date
JPS5260093A (en) 1977-05-18

Similar Documents

Publication Publication Date Title
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPS5827602B2 (en) Seizouhouhou
US3509622A (en) Method of manufacturing composite superconductive conductor
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS602728B2 (en) Method for manufacturing compound composite superconductor
US4094059A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
WO1988008618A2 (en) Ceramic superconducting devices and fabrication methods
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP4001996B2 (en) Superconducting precursor composite wire and method for producing superconducting composite wire
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0612932A (en) Manufacture of a3 sn type superconductor
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
JPH0554741A (en) Manufacture of compound superconducting wire
JPS5933653B2 (en) Method for producing stabilized superconductor
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JPS60170113A (en) Method of producing nb3sn superconductive lead
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPS60235308A (en) Method of producing compound superconductive wire
JP2001176345A (en) COMPLEX AND Nb3Sn SUPERCONDUCTOR AND MANUFACTURING METHOD OF THEM