JPH0676662A - Manufacture of nb3sn superconducting wire - Google Patents
Manufacture of nb3sn superconducting wireInfo
- Publication number
- JPH0676662A JPH0676662A JP4225651A JP22565192A JPH0676662A JP H0676662 A JPH0676662 A JP H0676662A JP 4225651 A JP4225651 A JP 4225651A JP 22565192 A JP22565192 A JP 22565192A JP H0676662 A JPH0676662 A JP H0676662A
- Authority
- JP
- Japan
- Prior art keywords
- based metal
- layer
- tube
- wire
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000010955 niobium Substances 0.000 abstract description 47
- 238000009792 diffusion process Methods 0.000 abstract description 9
- 229910052758 niobium Inorganic materials 0.000 abstract description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005482 strain hardening Methods 0.000 abstract description 7
- 229910000657 niobium-tin Inorganic materials 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 36
- 239000011159 matrix material Substances 0.000 description 5
- 239000010953 base metal Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超電導線の製造方法に係
り、特にニオブ・チューブ法による多芯構造のNb3 S
n超電導線の製造方法の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting wire, and more particularly to Nb 3 S having a multi-core structure by the niobium tube method.
The present invention relates to improvement of a method for manufacturing a superconducting wire.
【0002】[0002]
【従来の技術】多芯構造のNb3 Sn超電導線の製造方
法として、複合加工法の一種であるニオブ・チューブ法
によるものが知られている(特公昭55−16547号
公報)。 この方法は、Sn系金属を芯とし、Cu系金
属層およびNb系金属層を順次同心的に配置させ、かつ
この外周面にCuを接触させた複合体を断面減少加工
後、加熱処理を施すもので、この方法による超電導線は
高磁界中でのJc(臨界電流密度)が大きく、かつCu
−Sn合金を用いるいわゆるブロンズ法の欠点である多
数回の中間焼鈍を不要とする利点を有しており、非常に
優れた高磁界マグネット用の導体として知られている。2. Description of the Related Art As a method for producing a Nb 3 Sn superconducting wire having a multi-core structure, there is known a method using a niobium tube method which is a kind of composite working method (Japanese Patent Publication No. 55-16547). According to this method, a Sn-based metal is used as a core, a Cu-based metal layer and an Nb-based metal layer are sequentially and concentrically arranged, and a composite in which Cu is brought into contact with the outer peripheral surface is subjected to cross-section reduction processing, and then heat treatment is performed. The superconducting wire produced by this method has a large Jc (critical current density) in a high magnetic field and Cu
It has the advantage of not requiring a large number of intermediate annealings, which is a drawback of the so-called bronze method using -Sn alloy, and is known as an extremely excellent conductor for a high magnetic field magnet.
【0003】この方法においては、最終的にCuマトリ
ックス中に配置された多数の環状のNbフィラメントの
内側にNb3 Sn層が形成されるが、この生成量はNb
系金属の内側に配置されたSn系金属の量に依存する。In this method, an Nb 3 Sn layer is finally formed on the inside of a large number of annular Nb filaments arranged in the Cu matrix.
It depends on the amount of Sn-based metal disposed inside the base metal.
【0004】従って、高いJc値(非銅のJc。)の線
材を得るためには、拡散後のSn濃度、即ち、Nb系金
属の内側に配置されたSn系金属とCu系金属が完全に
拡散した場合のSn濃度を約50wt%程度迄高くするこ
とが行われている。Therefore, in order to obtain a wire having a high Jc value (non-copper Jc.), The Sn concentration after diffusion, that is, the Sn-based metal and the Cu-based metal arranged inside the Nb-based metal are completely removed. The Sn concentration when diffused is increased to about 50 wt%.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記のニ
オブ・チューブ法においては、加工度が104 を越える
ような高加工を施すとNbフィラメントの破断や断線を
生じ易く細線化が困難であるため、ヒシテリシスロスを
低減するためにフィラメント径を小さくする必要のある
交流用やパルス用の線材の製造に適さないという難点が
あった即ち,ニオブ・チューブ法においては、Nb系金
属管内部のSn濃度を高くすればJc値を向上させるこ
とができるが、フィラメントの細線化が困難となり、逆
にNb系金属管内部のSn濃度を低下させると、細線化
が容易になるものの、Jc値が低下するという問題を生
ずる。However, in the above-mentioned niobium tube method, if high working such that the working degree exceeds 10 4 , Nb filaments are easily broken or broken, and it is difficult to thin the wire. There was a problem that it was not suitable for the production of wire for AC or pulse that requires a smaller filament diameter to reduce the hysteresis loss. That is, in the niobium tube method, the Sn concentration inside the Nb-based metal tube is high. If it is done, the Jc value can be improved, but it becomes difficult to thin the filament, and conversely, if the Sn concentration inside the Nb-based metal tube is reduced, the thinning becomes easy, but the Jc value is lowered. Cause
【0006】フィラメント径を容易に小さくし得る加工
法として内部拡散法が知られているが、拡散源であるS
nから離れているNbに対してはSnの供給が不十分と
なるため、ニオブ・チューブ法に比較してJc値が低い
という問題がある。The internal diffusion method is known as a processing method capable of easily reducing the filament diameter.
Since Sn is insufficiently supplied to Nb far from n, there is a problem that the Jc value is low as compared with the niobium tube method.
【0007】本発明は以上の問題を解決するためになさ
れたもので、ニオブ・チューブ法により細線化が容易
で、かつJc値を向上させることができる製造方法を提
供することをその目的とする。The present invention has been made to solve the above problems, and an object of the present invention is to provide a manufacturing method capable of easily thinning and improving the Jc value by the niobium tube method. .
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、(イ)Nb系金属管の内部にCu系金属
層で被覆したSn系金属を収容するとともに、Nb系金
属管の外側にCu系金属層、Sn系金属層、Cu系金属
層および拡散遮蔽層を順次配置し、さらにこれらをCu
管中に収容した後、冷間加工を施して断面六角形の複合
線Aを製造する工程と、(ロ)この複合線Aの多数本を
Cu管中に収容した後、冷間加工を施して所定の断面形
状を有する複合線Bを製造する工程と、(ハ)この複合
線Bに熱処理を施す工程とにより多芯構造のNb3 Sn
超電導線を製造するものである。上記発明におけるNb
系金属、Cu系金属およびSn系金属とは、Nb,Cu
およびSnの他、加工性等を改善するためにこれ等の金
属に微量の元素を添加したものも含まれる。また拡散遮
蔽層は、CuマトリックスをSnで汚染させないために
配置されるもので、例えばTaやTa合金等が用いられ
る。In order to achieve the above object, the present invention provides: (a) an Nb-based metal pipe containing an Sn-based metal coated with a Cu-based metal layer inside the Nb-based metal pipe. A Cu-based metal layer, a Sn-based metal layer, a Cu-based metal layer, and a diffusion shielding layer are sequentially arranged outside the
A step of manufacturing the composite wire A having a hexagonal cross-section by accommodating it in a pipe and then cold working, and (b) accommodating a large number of this composite wire A in a Cu pipe, then performing a cold working. To produce a composite wire B having a predetermined cross-sectional shape, and (c) a step of subjecting the composite wire B to a heat treatment, Nb 3 Sn having a multi-core structure is formed.
A superconducting wire is manufactured. Nb in the above invention
The metal series, Cu system metal and Sn system metal are Nb and Cu.
In addition to Sn and Sn, those containing a trace amount of element added to these metals in order to improve workability and the like are also included. The diffusion shield layer is arranged to prevent the Cu matrix from being contaminated with Sn, and is made of, for example, Ta or Ta alloy.
【0009】さらに、Nb系金属管内部のSn系金属
は、加工性を向上させるために、Nb系金属管内部のC
u系金属とSn系金属が完全に拡散した時に30wt%
以下となるような断面積比で配置することが好ましい。Further, the Sn-based metal inside the Nb-based metal pipe is C inside the Nb-based metal pipe in order to improve workability.
30 wt% when u-based metal and Sn-based metal are completely diffused
It is preferable to arrange them in a cross-sectional area ratio as follows.
【0010】尚、上記(ロ)の複合線Bを製造する工程
を繰り返すことにより、容易にフィラメント数を増加さ
せることができる。The number of filaments can be easily increased by repeating the step (b) of manufacturing the composite wire B.
【0011】[0011]
【作用】上記構成により、本発明のNb3 Sn超電導線
の製造方法によれば、Nb系金属管内部のSn濃度を低
減して加工性を向上させ、またこのSn濃度の低減によ
り不足するSnをNb系金属管の外側に配置したSn系
金属層により補うことができるため、Nbフィラメント
の細線化と高いJc値を得ることの両方の目的を同時に
達成することが可能になる。この場合、熱処理によりN
b系金属管はその内側および外側よりSnと反応して環
状のNb3 Sn層を生成する。With the above structure, according to the method of manufacturing an Nb 3 Sn superconducting wire of the present invention, the Sn concentration inside the Nb-based metal tube is reduced to improve the workability, and the Sn concentration deficient due to the reduction of the Sn concentration is insufficient. Can be supplemented by the Sn-based metal layer arranged outside the Nb-based metal tube, so that it is possible to achieve both the purposes of thinning the Nb filament and obtaining a high Jc value at the same time. In this case, N by heat treatment
The b-type metal tube reacts with Sn from the inside and the outside to form an annular Nb 3 Sn layer.
【0012】尚、本発明においては、Sn系金属、Nb
系金属および拡散遮蔽層が、いずれもCu系金属を介し
て配置されているため、線材自体の加工性が著しく向上
する。In the present invention, Sn-based metal, Nb
Since the base metal and the diffusion barrier layer are both arranged via the Cu base metal, the workability of the wire itself is significantly improved.
【0013】[0013]
【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0014】図2は複合線Bの断面図を示したもので、
所定の断面形状を有するCuマトリックス1の内部に複
合フィラメント2の多数本が配置された構造を有してお
り、この複合フィラメント2の最外層はTa管で被覆さ
れている。FIG. 2 is a sectional view of the composite line B,
It has a structure in which a large number of composite filaments 2 are arranged inside a Cu matrix 1 having a predetermined cross-sectional shape, and the outermost layer of this composite filament 2 is covered with a Ta tube.
【0015】上記の複合線Bは以下のようにして製造さ
れる。The above-mentioned composite wire B is manufactured as follows.
【0016】図1に示すように、Nb管3の内部にCu
4で被覆したSn線5を収容するとともに、Nb管3の
外側にCu層6、Sn層7、Cu層8および拡散遮蔽層
9を順次配置し、さらにこれらをCu管10内に収容し
て複合ロッドA´を製造する。 この場合、Nb管3の
外側に配置されるCu層6、Sn層7、Cu層8および
拡散遮蔽層9は、テープ状の材料を重ね巻きすることに
より、任意の厚さに形成することができる。As shown in FIG. 1, Cu is placed inside the Nb tube 3.
While accommodating the Sn wire 5 covered with 4, the Cu layer 6, the Sn layer 7, the Cu layer 8 and the diffusion shielding layer 9 are sequentially arranged on the outside of the Nb tube 3, and further accommodated in the Cu tube 10. The composite rod A'is manufactured. In this case, the Cu layer 6, the Sn layer 7, the Cu layer 8 and the diffusion shielding layer 9 arranged on the outside of the Nb tube 3 can be formed to have an arbitrary thickness by wrapping a tape-shaped material in a layered manner. it can.
【0017】次いで、複合ロッドA´を冷間加工により
断面六角形の複合線Aに成形し、この複合線Aの多数本
をCu管中に収容した後、冷間加工を施して複合線Bを
製造する。Next, the composite rod A'is formed into a composite wire A having a hexagonal cross section by cold working, and a large number of the composite wires A are accommodated in a Cu pipe, and then cold working is performed to form the composite wire B. To manufacture.
【0018】この複合線Bのマトリックス1は、複合線
Aの多数本を収容したCu管と複合線Aの最外層のCu
管10とにより形成される。The matrix 1 of the composite wire B includes a Cu tube accommodating a large number of the composite wires A and Cu of the outermost layer of the composite wire A.
And the tube 10.
【0019】上記の複合線Bに熱処理を施すことによ
り、Nb管3内部のCu4とSn線5およびNb管3の
外側のCu層6、8とSn層7とが反応してCu−Sn
合金を生成した後、このCu−Sn合金とNb管3との
反応により環状のNb3 Sn層が形成される。When the composite wire B is heat-treated, the Cu 4 inside the Nb tube 3 and the Sn wire 5 and the Cu layers 6 and 8 outside the Nb tube 3 react with the Sn layer 7 to react Cu—Sn.
After the alloy is formed, the Cu—Sn alloy and the Nb tube 3 react with each other to form an annular Nb 3 Sn layer.
【0020】具体例 外径φ8mm、内径φ5mmのNb管内に外径φ4.9mmの
Cu被覆Snロッドを収容し、Nb管の外側に厚さ0.
3mmのCuシート、厚さ0.2mmのSnシート、厚さ
0.3mmのCuシートおよび厚さ0.3mmのTaシート
を順次重ね巻きした後、外径φ13mm、内径φ11.5
mmのCu管内に収容した。上記のCu被覆Snロッド
は、Nb管内部のCuとSnとが完全に拡散した時に2
2wt%のSn濃度となるような面積比とした。Concrete Example A Cu-coated Sn rod having an outer diameter of 4.9 mm is housed in an Nb tube having an outer diameter of 8 mm and an inner diameter of 5 mm, and a thickness of 0.
3mm Cu sheet, 0.2mm thickness Sn sheet, 0.3mm thickness Cu sheet and 0.3mm thickness Ta sheet are successively wound, then outer diameter φ13mm, inner diameter φ11.5
It was housed in a Cu tube of mm. The above-mentioned Cu-coated Sn rod is 2 when Cu and Sn inside the Nb tube are completely diffused.
The area ratio was set so that the Sn concentration was 2 wt%.
【0021】次いで、これに冷間加工を施し、対辺間距
離2.27mmの断面六角形のシングル線を製造した後、
このシングル線の264本をその側面を当接して集合
し、これらを外径φ49mm、内径φ43.5mmのCu管
内に収容した後、伸線加工を施した複合線の伸線加工限
界は外径φ0.103mm以下であり、この時のフィラメ
ント径は約3μmで、またフィラメントの破断も認めら
れず、加工性も良好であった。Next, this is subjected to cold working to manufacture a single wire having a hexagonal cross section with a distance between opposite sides of 2.27 mm, and
After gathering 264 single wires with their side surfaces abutting and accommodating them in a Cu pipe with an outer diameter of φ49 mm and an inner diameter of 43.5 mm, the wire drawing limit of the composite wire subjected to wire drawing is the outer diameter. The diameter was φ0.103 mm or less, the filament diameter was about 3 μm at this time, the filament was not broken, and the workability was good.
【0022】また、外径φ1.0mm、フィラメント径約
30μmの複合線に、650℃×48時間の熱処理を施
して多芯構造のNb3 Sn超電導線を製造し、その特性
を測定した結果、Jc値は15Tで850A/mm2 の比
較的高い値を示した。Further, a composite wire having an outer diameter of φ1.0 mm and a filament diameter of about 30 μm was subjected to heat treatment at 650 ° C. for 48 hours to produce a Nb 3 Sn superconducting wire having a multi-core structure, and its characteristics were measured. The Jc value at 15T was a relatively high value of 850 A / mm 2 .
【0023】[0023]
【発明の効果】以上述べたように本発明のNb3 Sn超
電導線の製造方法によれば、加工性が良好である上、N
b系金属管の内外からSnが拡散してNb3 Sn層が生
成されるため、臨界電流密度の高い超電導線を製造する
ことができる。As described above, according to the method for producing a Nb 3 Sn superconducting wire of the present invention, the workability is good and the Nb 3 Sn superconducting wire has a good workability.
Since Sn diffuses from the inside and outside of the b-type metal tube to form the Nb 3 Sn layer, a superconducting wire having a high critical current density can be manufactured.
【図1】本発明におけるシングル線の加工前の状態を示
す断面図。FIG. 1 is a cross-sectional view showing a state before processing a single wire according to the present invention.
【図2】本発明ににおける複合線Bの断面図。FIG. 2 is a sectional view of a composite wire B according to the present invention.
1………Cuマトリックス 2………複合フィラメント 3………Nb管 4………Cu 5………Sn線 6、8、…Cu層 7………Sn層 9………拡散遮蔽層 1 ... Cu matrix 2 ... Composite filament 3 ... Nb tube 4 ... Cu 5 ... Sn wire 6, 8, Cu layer 7 ... Sn layer 9 ... Diffusion shield layer
フロントページの続き (72)発明者 熊野 智幸 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 野呂 治人 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内Front page continuation (72) Inventor Tomoyuki Kumano 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Showa Electric Wire & Cable Co., Ltd. No. 1 Showa Electric Cable Co., Ltd.
Claims (2)
で被覆したSn系金属を収容するとともに、前記Nb系
金属管の外側にCu系金属層、Sn系金属層、Cu系金
属層および拡散遮蔽層を順次配置し、さらにこれらをC
u管中に収容した後、冷間加工を施して断面六角形の複
合線Aを製造する工程と、(ロ)前記複合線Aの多数本
をCu管中に収容した後、冷間加工を施して所定の断面
形状を有する複合線Bを製造する工程と、(ハ)前記複
合線BにNb3 Sn生成の熱処理を施す工程とからなる
ことを特徴とするNb3 Sn超電導線の製造方法。(A) An Sn-based metal coated with a Cu-based metal layer is housed inside a Nb-based metal tube, and a Cu-based metal layer, a Sn-based metal layer, and a Cu-based metal are provided outside the Nb-based metal tube. A metal layer and a diffusion-shielding layer are sequentially arranged, and these are C
a step of producing a composite wire A having a hexagonal cross-section after being housed in a u pipe, and (b) storing a large number of the composite wires A in a Cu pipe, and then performing a cold work. process and, (iii) the manufacturing method of the composite wire Nb 3 Sn superconducting wire, characterized by comprising a step of performing heat treatment of the Nb 3 Sn generated B to produce a composite wire B having a predetermined sectional shape by applying .
系金属管内部のCu系金属とSn系金属が完全に拡散し
た時に30wt%以下であることを特徴とする請求項1記
載のNb3 Sn超電導線の製造方法。2. The Sn concentration inside the Nb-based metal tube is the Nb-based
The method for producing an Nb 3 Sn superconducting wire according to claim 1, wherein the content of Cu-based metal and Sn-based metal inside the system-based metal tube is 30 wt% or less when completely diffused.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4225651A JPH0676662A (en) | 1992-08-25 | 1992-08-25 | Manufacture of nb3sn superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4225651A JPH0676662A (en) | 1992-08-25 | 1992-08-25 | Manufacture of nb3sn superconducting wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0676662A true JPH0676662A (en) | 1994-03-18 |
Family
ID=16832640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4225651A Withdrawn JPH0676662A (en) | 1992-08-25 | 1992-08-25 | Manufacture of nb3sn superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676662A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6120266A (en) * | 1995-06-20 | 2000-09-19 | Atlas Copco Airpower, Naamloze Vennootschap | Piston mechanism with a flow passage through the piston |
-
1992
- 1992-08-25 JP JP4225651A patent/JPH0676662A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6120266A (en) * | 1995-06-20 | 2000-09-19 | Atlas Copco Airpower, Naamloze Vennootschap | Piston mechanism with a flow passage through the piston |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0768605B2 (en) | Nb (bottom 3) Method for manufacturing Sn-based superconducting wire | |
US4094059A (en) | Method for producing composite superconductors | |
JPH0676662A (en) | Manufacture of nb3sn superconducting wire | |
JPH11312420A (en) | High-temperature oxide superconducting wire and its manufacture | |
GB1444503A (en) | Manufacture of a composite electrical conductor including a superconductive conductor consisting of anintermetallic superconductor compound | |
JPS58189909A (en) | Method of producing nb3sn superconductor | |
JPS602728B2 (en) | Method for manufacturing compound composite superconductor | |
JPH04277409A (en) | Compound superconducting wire and manufacture thereof | |
JP3059570B2 (en) | Superconducting wire and its manufacturing method | |
JP3058904B2 (en) | Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire | |
JPH05334929A (en) | Manufacture of nb3sn superconductor | |
JPS62240751A (en) | Manufacture of nb3sn super conducting wire by internal diffusion method | |
JPS60253114A (en) | Method of producing nb3al superconductive wire | |
JP2700249B2 (en) | Method of manufacturing Nb (3) Sn multi-core superconducting wire having high residual resistance ratio | |
JPS6113508A (en) | Method of producing low copper ratio nb3sn superconductive wire | |
JP2599138B2 (en) | Method for producing oxide-based superconducting wire | |
JPS6267156A (en) | Production of multicore superconductor for alternating current | |
JPS61115613A (en) | Production of nb-ti multicore superconductive wire | |
JPH0554741A (en) | Manufacture of compound superconducting wire | |
JPH11149833A (en) | Oxide superconducting wire and its manufacture | |
JPS60250512A (en) | Method of producing nb3sn composite superconductive wire | |
JPH0266814A (en) | Manufacture of nb3sn superconducting wire | |
JPH0660748A (en) | Manufacture of nb3al-based multicore superconductive wire | |
JPH08287752A (en) | Manufacture of superconducting wire material | |
JPS6358715A (en) | Manufacture of nb3sn multi-core superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991102 |