JPS6113508A - Method of producing low copper ratio nb3sn superconductive wire - Google Patents

Method of producing low copper ratio nb3sn superconductive wire

Info

Publication number
JPS6113508A
JPS6113508A JP59134636A JP13463684A JPS6113508A JP S6113508 A JPS6113508 A JP S6113508A JP 59134636 A JP59134636 A JP 59134636A JP 13463684 A JP13463684 A JP 13463684A JP S6113508 A JPS6113508 A JP S6113508A
Authority
JP
Japan
Prior art keywords
wire
layer
copper ratio
tube
low copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59134636A
Other languages
Japanese (ja)
Inventor
鈴木 英元
市原 政光
神定 良昌
伸夫 青木
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59134636A priority Critical patent/JPS6113508A/en
Publication of JPS6113508A publication Critical patent/JPS6113508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は低銅比のNb、Sn超電導線の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a Nb, Sn superconducting wire with a low copper ratio.

(発明の技術的背景とその問題点) 高磁場中で良好な超電導特性を示すNb、Sn超電導線
は、、一般にNb5SnおよびOuを含む三元系の複合
線材を熱処理することによって製造される。こ、れは1
000℃以上の高い温度を必要とするNbと8 nの直
接反応がOuを拡散経路とすることによって600℃程
度まで低下することによる。
(Technical background of the invention and its problems) Nb, Sn superconducting wires exhibiting good superconducting properties in high magnetic fields are generally manufactured by heat treating a ternary composite wire containing Nb5Sn and O. This is 1
This is because the direct reaction between Nb and 8N, which requires a high temperature of 000°C or higher, is reduced to about 600°C by using O as a diffusion path.

このようなNb5Sn超電導線の、製造方法として、内
部拡散法が知られている。
An internal diffusion method is known as a method for manufacturing such Nb5Sn superconducting wires.

内部拡散法にはOuとバリヤーを介して配置されたO 
u −8n合金マトリックス中、にNbを配置するブロ
ンズ法と、Cuマトリックス中に配置されたNbバイブ
中にOuを介して8nまたはSn系合金を配置するパイ
プ構造法(特開昭52−16997号公報)があるが、
前者はブロンズの加工硬化のため多くの中間焼鈍を必要
とし、工程が複雑となる欠点を有しており、後者は中間
焼鈍を必要とせずに加工することが可能で、かつ高濃度
の8nを使用し得るため弁銅部の臨界電流密度が大きい
等の利点を有する。
In the internal diffusion method, O and O placed through a barrier are used.
A bronze method in which Nb is placed in a u-8n alloy matrix, and a pipe structure method in which an 8n or Sn-based alloy is placed in a Nb vibe placed in a Cu matrix via O (Japanese Patent Laid-Open No. 52-16997) There is a public notice), but
The former method requires a lot of intermediate annealing to work harden the bronze and has the disadvantage of complicating the process. This has advantages such as a high critical current density in the copper part of the valve.

近年、超電導機器の小型化への要求が強くなり、これに
伴って高電流密度(over all  の臨界電流密
度)の即ち低銅比の線材の開発が急務となっている。
In recent years, there has been a strong demand for miniaturization of superconducting equipment, and with this, there has been an urgent need to develop wire rods with a high current density (over all critical current density), that is, a low copper ratio.

この場合、パイプ構造法は上記の利点を有するにも拘ら
ず、ブロンズ法に比較して多心線の加工に際して銅比(
安定化銅以外の部分に対する安定化鋼の部分の面積比)
を小さくすることが困難であるという難点を有する。
In this case, although the pipe construction method has the above-mentioned advantages, compared to the bronze method, the copper ratio (
area ratio of the stabilized steel part to the part other than the stabilized copper)
It has the disadvantage that it is difficult to make it small.

一般にこの銅比の最小値は線材の構造にもよるが、極細
多心線に対してパイプ構造法の場合約0.9〜1.0、
一方ブロンズ法の場合0.2〜0.3である。
In general, the minimum value of this copper ratio depends on the structure of the wire, but in the case of the pipe structure method for ultra-fine multi-core wires, the minimum value of the copper ratio is approximately 0.9 to 1.0.
On the other hand, in the case of bronze method, it is 0.2 to 0.3.

(発明の目的) 本発明は、以上の蛙点を解決するためになされたもので
、パイプ構造法を用いて低銅比の多心構造のNb38n
超電導線を容易に製造し得る方法を提供することをその
目的とする。
(Objective of the Invention) The present invention was made to solve the above-mentioned problems.
The object is to provide a method for easily manufacturing superconducting wires.

(発明の概要) 本発明の低銅比Nhl Sn超電導線の製造方法は、 (イ)Sn系金属の外周に、Cu系金属層、Nb系金属
層およびOu層を順次配置し、これに断面減少加工を施
して断面六角形の線材を製造する工程と、(ロ)前記線
材の最外層の(l u層を化学的に除去する工程と、 (ハ)Cu層の除去された線材の複数本をCu管中に充
填し、次いで冷間加工および熱処理を施す工程と、から
成ることを特徴としている。
(Summary of the Invention) The method for manufacturing a low copper ratio Nhl Sn superconducting wire of the present invention includes (a) sequentially disposing a Cu-based metal layer, a Nb-based metal layer, and an O layer on the outer periphery of an Sn-based metal; (b) chemically removing the outermost layer of the wire; (c) a plurality of wire rods from which the Cu layer has been removed; It is characterized by the steps of filling books into a Cu tube, and then subjecting them to cold working and heat treatment.

本発明において多心線製造の冷間加工は静水圧押出加工
によることが望ましく、この場合Cu管中に組込まれた
線材最外層のNb相互を空全に接合させるために押出比
を4以上とする必要がある。
In the present invention, it is preferable that the cold working for manufacturing the multi-filament wire is performed by hydrostatic extrusion, and in this case, the extrusion ratio is set to 4 or more in order to thoroughly bond the Nb in the outermost layer of the wire incorporated in the Cu tube. There is a need to.

尚シンダル線製造時の最外層のOu層は化学的に除去さ
れるため、できるだけ薄い肉厚で配置することによって
、工程が簡略化されるとともに、最外層をNbとした場
合の潤滑等の問題を回避し得る。
Furthermore, since the outermost O layer is chemically removed during the manufacturing of the sindal wire, by arranging it as thin as possible, the process is simplified, and problems such as lubrication when the outermost layer is made of Nb can be avoided. can be avoided.

(発明の実施例) 第1図は本発明によって製造されたNb、Sn超電導線
の一実施例を示す断面拡大図であり、Nb3Sn層1は
Nbマトリックス2中に管状に配置され、このNb、S
nu層内にOu −S n合金3が配置された構造を有
する。
(Embodiment of the Invention) FIG. 1 is an enlarged cross-sectional view showing an embodiment of the Nb, Sn superconducting wire manufactured according to the present invention. S
It has a structure in which an Ou-Sn alloy 3 is arranged within the nu layer.

このような構造の多心線は以下の工程に従って製造され
る。
A multifilamentary wire having such a structure is manufactured according to the following steps.

第2図はシングル線の製造工程を示したもので、同図(
a)に示すようにSnロッド4の外周に、Cu管5、N
b管6およびCu管7を順次被覆した後、これにスウエ
ージング加工、伸線加工を施して、同図伽)に示す断面
六角形の線材8を製造する。この線材の最外層のCu管
7を酸により溶解除去して、同図(C)に示すシングル
線9を得る。
Figure 2 shows the manufacturing process of single wire.
As shown in a), a Cu tube 5, an N
After the b-tube 6 and the Cu-tube 7 are coated in sequence, they are subjected to swaging and wire drawing to produce a wire rod 8 having a hexagonal cross section as shown in the same figure. The outermost layer of the Cu tube 7 of this wire is dissolved and removed with acid to obtain a single wire 9 shown in FIG. 3(C).

このようにして得られたシングル線9の多数本を、第3
図に示すように安定化鋼となるO u ’110中に充
填し、Cu管10とシングル線9との間隙に無醗素銅よ
りなる充填材11を充填した後、Cu管10の両端をエ
レクトロンビームにより密封し、次いでこれに静水圧押
出加工を施す。さらに押出後の線材に必要に応じて伸線
加工を施した後600〜800℃の温度で熱処理を施し
て超電導線を得る◎尚第3図の1部の熱処理後の断面を
拡大して示したのが第1図である。
A large number of single wires 9 obtained in this way are
As shown in the figure, after filling Ou' 110, which becomes a stabilizing steel, and filling the gap between the Cu tube 10 and the single wire 9 with a filler 11 made of carbon-free copper, both ends of the Cu tube 10 are It is sealed using an electron beam and then subjected to isostatic extrusion. Furthermore, the extruded wire is subjected to wire drawing processing as required, and then heat treated at a temperature of 600 to 800°C to obtain a superconducting wire. ◎The cross section of part 1 of Figure 3 after heat treatment is shown in an enlarged view. Figure 1 shows this.

具体例 外径9.1闘φ、内径8. I MφのCu管中にNb
管、Cu管および8nロツドを順に挿入し、これに冷間
加工を施して平行面間距離2.26111111の断面
六角形の線材を製造した。
Specific exception diameter: 9.1 mm, inner diameter: 8. Nb in Cu tube of I Mφ
A tube, a Cu tube, and an 8n rod were sequentially inserted and cold worked to produce a wire rod having a hexagonal cross section with a distance between parallel surfaces of 2.26111111.

この線材を硝酸中に浸漬して最外層のCu部を除去して
得たシングル線の931本を、外径80闘φ、内径71
mφのCu管中に充填した後、その両端を密封したビレ
ットに静水圧押出加工を施して外径38鴎φに押出した
。次いで伸線加工により外径1. OMφの線材を製造
した後725℃×96時間の熱処理を施した。得られた
超電導線の銅比は0.3(フィラメント径は28μ!!
1)で臨界電流密度(over all)は12〒で3
85 A/−であった。
This wire was immersed in nitric acid to remove the outermost Cu portion, and 931 single wires were obtained, with an outer diameter of 80 mm and an inner diameter of 71 mm.
After filling into a Cu tube of mφ, the billet with both ends sealed was subjected to hydrostatic extrusion processing and extruded to an outer diameter of 38 mm. Next, wire drawing is performed to reduce the outer diameter to 1. After manufacturing the OMφ wire rod, it was heat-treated at 725° C. for 96 hours. The copper ratio of the obtained superconducting wire is 0.3 (filament diameter is 28 μ!!
1), the critical current density (over all) is 12〒 and 3
It was 85 A/-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって製造されたNb38n超電導線
の一実施例を示す断面拡大図、第2図(a)〜(C)は
本発明に使用されるシングル線の製造工程の一実施例を
示す断面図、第3図はシングル線のCu管中の充填状態
を示す断面図である。 1−−−−m−−−−−−−Nb3Sn層2 −−−−
−−−−−−−−− Nbマトリックス3 −−−−−
−一−−−−−−−Q u −8n合金4 −−−−−
−−−−−−−− S nロッド5 、7.10−Ot
+管 6−−−−−−−−−−−−− N b管9 −−−−
−一−−−−−−−シングル線第1図 第3図 第 2 r( コト S ゝ6 り
FIG. 1 is an enlarged cross-sectional view showing one embodiment of the Nb38n superconducting wire manufactured according to the present invention, and FIGS. 2(a) to (C) show an example of the manufacturing process of the single wire used in the present invention. FIG. 3 is a cross-sectional view showing the filling state of a single wire in a Cu tube. 1-----m-----Nb3Sn layer 2----
−−−−−−−−− Nb matrix 3 −−−−−
-1--------Q u -8n alloy 4 ---
---------- Sn rod 5, 7.10-Ot
+ tube 6----------- N b tube 9 ---
-1-------- Single line Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】 (イ)Sn系金属の外周に、Cu系金属層、Nb系金属
層およびCu層を順次配置し、これに断面減少加工を施
した断面六角形の線材を製造する工程と、 (ロ)前記線材の最外層のCu層を化学的に除去する工
程と、 (ハ)Cu層の除去された線材の複数本をCu管中に充
填し、次いで冷間加工および熱処理を施す工程と、から
成ることを特徴とする低銅比Nb_3Sn超電導線の製
造方法。
[Claims] (a) A process of sequentially arranging a Cu-based metal layer, a Nb-based metal layer, and a Cu layer on the outer periphery of a Sn-based metal, and manufacturing a wire rod having a hexagonal cross section by subjecting the layer to cross-section reduction processing. (b) chemically removing the outermost Cu layer of the wire; (c) filling a plurality of wires from which the Cu layer has been removed into a Cu tube, and then subjecting them to cold working and heat treatment. A method for producing a low copper ratio Nb_3Sn superconducting wire, comprising the steps of:
JP59134636A 1984-06-29 1984-06-29 Method of producing low copper ratio nb3sn superconductive wire Pending JPS6113508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134636A JPS6113508A (en) 1984-06-29 1984-06-29 Method of producing low copper ratio nb3sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134636A JPS6113508A (en) 1984-06-29 1984-06-29 Method of producing low copper ratio nb3sn superconductive wire

Publications (1)

Publication Number Publication Date
JPS6113508A true JPS6113508A (en) 1986-01-21

Family

ID=15132998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134636A Pending JPS6113508A (en) 1984-06-29 1984-06-29 Method of producing low copper ratio nb3sn superconductive wire

Country Status (1)

Country Link
JP (1) JPS6113508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358716A (en) * 1986-08-29 1988-03-14 昭和電線電纜株式会社 Manufacture of nb3sn multi-core superconductor
JPH06102764B2 (en) * 1989-03-13 1994-12-14 ビーエーエスエフ ラッケ ウント ファルベン アクチェンゲゼルシャフト Coating composition, its manufacturing method, and coating method of packaging material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358716A (en) * 1986-08-29 1988-03-14 昭和電線電纜株式会社 Manufacture of nb3sn multi-core superconductor
JPH06102764B2 (en) * 1989-03-13 1994-12-14 ビーエーエスエフ ラッケ ウント ファルベン アクチェンゲゼルシャフト Coating composition, its manufacturing method, and coating method of packaging material

Similar Documents

Publication Publication Date Title
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JPS6097514A (en) Method of producing composite superconductive conductor
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPS58189909A (en) Method of producing nb3sn superconductor
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS60101815A (en) Method of producing nb3sn superconductive wire material
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
DE19719722C2 (en) Process for producing an elongated high-Tc superconductor
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire
JPS6139415A (en) Method of producing nb3sn superconductive wire
JPS60250509A (en) Method of producing nb3sn composite superconductive wire
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPS5832308A (en) Method of producing compound series composite superconductive wire
JPS6358716A (en) Manufacture of nb3sn multi-core superconductor
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPH05334929A (en) Manufacture of nb3sn superconductor
JPS60101816A (en) Method of producing nb3sn superconductive wire material