JPH06223653A - Manufacture of nb 3 sn compound superconducting wire - Google Patents

Manufacture of nb 3 sn compound superconducting wire

Info

Publication number
JPH06223653A
JPH06223653A JP5012893A JP1289393A JPH06223653A JP H06223653 A JPH06223653 A JP H06223653A JP 5012893 A JP5012893 A JP 5012893A JP 1289393 A JP1289393 A JP 1289393A JP H06223653 A JPH06223653 A JP H06223653A
Authority
JP
Japan
Prior art keywords
wire
based alloy
rods
superconducting wire
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5012893A
Other languages
Japanese (ja)
Other versions
JP3602151B2 (en
Inventor
Osamu Taguchi
修 田口
Kiyoshi Hiramoto
清 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01289393A priority Critical patent/JP3602151B2/en
Priority to CA002114333A priority patent/CA2114333A1/en
Publication of JPH06223653A publication Critical patent/JPH06223653A/en
Application granted granted Critical
Publication of JP3602151B2 publication Critical patent/JP3602151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make it easy to manufacture a superconducting wire and to reduce the manufacturing cost thereof by improving the hysteresis loss of the wire to a lower value while keeping critical current density high, and reducing the heating value of the superconducting wire when used in a pulse coil, for example, and forming the superconducting wire from a soft, pure metal without use of any hard bronze matrix in manpufacturing the same. CONSTITUTION:A plurality of composite wires, each comprising one or plural Nb, or Nb-group, alloy rods 1 arranged in close contact with one another, Sn, or Sn-group, alloy rods 2 disposed around the Nb, or Nbgroup, alloy rods 1, and when necessary a Cu, or Cu-group, alloy disposed around the rods 1, 2, are bound together and inserted into a sheath 3. Thereafter, cross section reduction machining is carried out to obtain an element wire which is then heat treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Nb3Sn化合物超電
導線の製造方法に関するものであり、さらに詳しくは本
発明は、Nb3Sn化合物超電導線の非常に高い臨界電
流密度を維持しながら、極小ヒステリシスロスの超電導
線が得られる、Nb3Sn化合物超電導線の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Nb 3 Sn compound superconducting wire. More specifically, the present invention relates to a method for producing a Nb 3 Sn compound superconducting wire while maintaining a very high critical current density. superconducting wire minimum hysteresis loss can be obtained, a method of manufacturing a Nb 3 Sn compound superconducting wire.

【0002】[0002]

【従来の技術】Nb3Sn化合物超電導線は、臨界温
度、臨界磁場、臨界電流などの超電導特性が優れている
ため、例えば高磁界発生用電磁石の巻線材料として使わ
れている。
2. Description of the Related Art Nb 3 Sn compound superconducting wires have excellent superconducting characteristics such as critical temperature, critical magnetic field and critical current, and are therefore used as winding materials for electromagnets for generating high magnetic fields.

【0003】一般にNb3Sn化合物超電導線は、多数
のNb3Snフィラメントとその周囲に存在するブロン
ズマトリックスの複合体が、TaまたはTa基合金、あ
るいはNbまたはNb基合金を介して、安定化銅に接触
する横断面を有している。従来の熱処理および断面縮少
加工後のNb3Sn化合物超電導線の横断面の一例を図
11に示す。図11において、3は安定化銅、4はTa
またはTa基合金、あるいはNbまたはNb基合金から
なる拡散バリヤ、5はNb3Snフィラメント、6はブ
ロンズマトリックスである。外形は円形の場合もあれば
矩形で使用される場合もある。無論Nb3Snフィラメ
ント5が超電導相である。
Generally, in Nb 3 Sn compound superconducting wire, a complex of a large number of Nb 3 Sn filaments and a bronze matrix existing around the filaments is stabilized with copper or Ta-based alloy or Nb or Nb-based alloy. Has a cross-section that contacts. FIG. 11 shows an example of a cross section of a conventional Nb 3 Sn compound superconducting wire after heat treatment and cross-section reduction processing. In FIG. 11, 3 is stabilized copper, 4 is Ta
Alternatively, a diffusion barrier made of Ta-based alloy, Nb or Nb-based alloy, 5 is an Nb 3 Sn filament, and 6 is a bronze matrix. The outer shape may be circular or rectangular. Of course, the Nb 3 Sn filament 5 is a superconducting phase.

【0004】しかしNb3Sn化合物超電導体は、金属
間化合物であるため機械的に脆弱であるから、合金系超
電導体のように塑性加工の方法によって複合線とするこ
とは困難である。そのためNb3Sn化合物超電導線の
製造には、その1つとして図12に断面縮少加工後で熱
処理前の線材横断面を示すように、多数のNbフィラメ
ント1とCu−Sn合金、いわゆるブロンズマトリック
ス6からなる複合体と、さらにSnの拡散を防止するた
めの前記拡散バリヤ4、安定化銅3を組み合わせ、これ
らを複合加工して所望の断面形状に仕上げた後に熱処理
し、Nb3Sn化合物を生成させる方法(ブロンズ法)
が採られていた。しかし、この方法によると冷間の減面
加工において、ブロンズマトリックス中のSn濃度が約
13%までと高いので、Cu−Snブロンズマトリック
スの加工硬化がはなはだ大きく、加工途中で多数の軟化
熱処理を必要とし、その軟化熱処理のために、多くの費
用、時間を必要とし、またブロンズ中Sn濃度が約13
%と上限があるため、多くのSn量を得ることが困難
で、そのため生成されるNb3Sn化合物量が少なく、
例えば臨界電流は12Tで650A/mm2と低い値にと
どまっていた。なおSn濃度を13%以上とすると、ブ
ロンズマトリックス中に化合物が発生し、ブロンズマト
リックスの加工ははなはだ困難なものとなってしまう。
However, since the Nb 3 Sn compound superconductor is an intermetallic compound and mechanically fragile, it is difficult to form a composite wire by a plastic working method like an alloy superconductor. Therefore, as one of the manufacturing methods of the Nb 3 Sn compound superconducting wire, as shown in FIG. The composite of 6 and the diffusion barrier 4 and the stabilized copper 3 for preventing the diffusion of Sn are further combined, and these are composite-processed into a desired cross-sectional shape and then heat-treated to obtain a Nb 3 Sn compound. Method to generate (Bronze method)
Was taken. However, according to this method, since the Sn concentration in the bronze matrix is as high as about 13% in cold surface reduction processing, the work hardening of the Cu-Sn bronze matrix is extremely large, and a large number of softening heat treatments are required during processing. However, the softening heat treatment requires much cost and time, and the Sn concentration in the bronze is about 13
%, There is an upper limit, so it is difficult to obtain a large amount of Sn, and therefore the amount of Nb 3 Sn compound produced is small,
For example, the critical current was as low as 650 A / mm 2 at 12T. If the Sn concentration is 13% or more, a compound is generated in the bronze matrix, which makes it extremely difficult to process the bronze matrix.

【0005】このような欠点を解決するために、その一
例として、図13に示すように次の方法がとられてい
た。CuとNbからなる押出複合ビレットからCu/N
b複合パイプを作成する。中央部の縦穴にSnを挿入
し、スェージング、圧延、引抜加工、その他の方法で断
面縮少加工して、細径の線材を得る。これを複数本束ね
て、別のCuパイプに入れ、これに引抜加工等を施し
て、超電導素線を得る。これにNb3Sn生成熱処理を
施すと、Snが拡散しNb3Snマトリックスが生成し
Nb3Sn化合物超電導線として使用できるものにな
る。この方法は、ブロンズ法のようにSn量が13%以
下という限度がないために、Sn量を多くとることがで
き、従って、生成されるNb3Sn化合物量を多くする
ことができるので、ブロンズ法に比べて臨界電流密度は
非常に高いものが得られる。
In order to solve such a drawback, as an example thereof, the following method has been adopted as shown in FIG. Cu / N from extruded composite billet consisting of Cu and Nb
b Create a composite pipe. Sn is inserted into the vertical hole in the central portion, and cross-sectional reduction processing is performed by swaging, rolling, drawing, or another method to obtain a wire having a small diameter. A plurality of these are bundled, put in another Cu pipe, and this is subjected to a drawing process or the like to obtain a superconducting element wire. When this is subjected to Nb 3 Sn formation heat treatment, Sn diffuses to form an Nb 3 Sn matrix, which can be used as an Nb 3 Sn compound superconducting wire. Unlike the bronze method, this method does not have a Sn content limit of 13% or less, so that the Sn content can be increased, and thus the amount of Nb 3 Sn compound produced can be increased. A very high critical current density can be obtained as compared with the method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ように高い臨界電流密度(Jc)のものが得られたとし
ても、中央部のSn中にはNbが配置できないことがあ
いまって、Nbフィラメント間隔が小さくなるため、隣
接するNb3Sn化合物のフィラメント同士の連接が生
じ易くなり、ヒステリシスロスの増大が見られていた。
例えば、12TでJcが950A/mm2の線材では、ヒ
ステリシスロスに関して、有効フィラメント径は15〜
20μmであった。このような超電導線を使用した超電
導パルスコイルでは発熱量が大きく、強大な冷凍機を必
要としていた。さらに、前記中央部のSn中には、Nb
3Sn化合物が生成されないため、いわゆるデッドゾー
ンが生じる。
However, even if a high critical current density (Jc) is obtained as described above, the fact that Nb cannot be arranged in the Sn in the central portion is accompanied by the Nb filament spacing. Is smaller, the adjacent filaments of the Nb 3 Sn compound are likely to be connected to each other, and an increase in hysteresis loss has been observed.
For example, with a wire rod having a Jc of 950 A / mm 2 at 12T, the effective filament diameter is 15 to 15 in terms of hysteresis loss.
It was 20 μm. A superconducting pulse coil using such a superconducting wire generates a large amount of heat and requires a powerful refrigerator. Furthermore, Nb is contained in Sn in the central portion.
A so-called dead zone occurs because no Sn compound is produced.

【0007】本発明は上記のような問題点を解消するた
めになされたもので、Nb3Sn化合物超電導線の非常
に高い臨界電流密度を維持しながら、隣接するNb3
n化合物のフィラメント同士の連接がない極小ヒステリ
シスロスの超電導線が得られる、Nb3Sn化合物超電
導線の製造方法を提供することを目的とするものであ
る。
The present invention has been made in order to solve the above-mentioned problems, and the Nb 3 Sn compound superconducting wire which is adjacent to Nb 3 S is maintained while maintaining a very high critical current density.
It is an object of the present invention to provide a method for producing a Nb 3 Sn compound superconducting wire, which can obtain a superconducting wire with minimal hysteresis loss in which filaments of an n compound are not connected to each other.

【0008】[0008]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記のような従来の課題を解決することができ
た。
As a result of earnest studies, the present inventors were able to solve the above-mentioned conventional problems.

【0009】すなわち本発明は、1本のNbまたはNb
基合金棒または密接して配置した複数のNbまたはNb
基合金棒、前記NbまたはNb基合金棒の周囲に配置し
たSnまたはSn基合金棒および必要によりこれらの周
囲に配置したCuまたはCu基合金からなる複合線材
を、複数本束ねてシース材に挿入した後、断面縮小加工
して素線を得、該素線を熱処理することを特徴とする、
Nb3Sn化合物超電導線の製造方法を提供するもので
ある。
That is, according to the present invention, one Nb or Nb is used.
Base alloy rod or closely arranged Nb or Nb
A plurality of composite wire rods consisting of a base alloy rod, Sn or Sn base alloy rods arranged around the Nb or Nb base alloy rod and, if necessary, Cu or Cu base alloy arranged around these are bundled and inserted into a sheath material. After that, a cross-section reduction process is performed to obtain a wire, and the wire is heat-treated.
The present invention provides a method for producing an Nb 3 Sn compound superconducting wire.

【0010】また、本発明は、1本のNbまたはNb基
合金棒または密接して配置した複数のNbまたはNb基
合金棒および必要によりこれらの周囲に配置したCuま
たはCu基合金からなる第1の複合線材と、1本のSn
またはSn基合金棒または密接して配置した複数のSn
またはSn基合金棒および必要によりこれらの周囲に配
置したCuまたはCu基合金からなる第2の複合線材
と、を分散するように配置してシース材に挿入した後、
断面縮小加工して素線を得、該素線を熱処理することを
特徴とする、Nb3Sn化合物超電導線の製造方法を提
供するものである。
The present invention also includes a first Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods and, if necessary, Cu or a Cu-based alloy disposed around them. Composite wire and 1 Sn
Or Sn-based alloy rods or closely arranged Sn
Alternatively, a Sn-based alloy rod and, if necessary, a second composite wire made of Cu or a Cu-based alloy that is placed around these rods are placed so as to be dispersed and inserted into a sheath material,
The present invention provides a method for producing an Nb 3 Sn compound superconducting wire, which comprises subjecting an element wire to a cross-section reduction process and heat-treating the element wire.

【0011】さらに本発明は、銅または銅基合金棒材に
設けた複数の縦穴に、1本のNbまたはNb基合金棒ま
たは密接して配置した複数のNbまたはNb基合金棒
と、1本のSnまたはSn基合金棒または密接して配置
した複数のSnまたはSn基合金棒と、を別々または一
体に挿入し、断面縮小加工して素線を得、該素線を熱処
理することを特徴とする、Nb3Sn化合物超電導線の
製造方法を提供するものである。
Further, according to the present invention, one Nb or Nb-based alloy rod or a plurality of Nb or Nb-based alloy rods closely arranged in a plurality of vertical holes provided in a copper or copper-based alloy rod material and one Of Sn or Sn-based alloy rods or a plurality of Sn or Sn-based alloy rods closely arranged are separately or integrally inserted, a cross-section is reduced to obtain a wire, and the wire is heat-treated. And a method for producing a Nb 3 Sn compound superconducting wire.

【0012】[0012]

【作用】本発明において、Snの配置は集中的なもので
はなく、各々のNbの周囲に分散して配置しているた
め、Nb棒(Nbフィラメント)配置についてのデッド
ゾーンがなくなり、そのためNbフィラメント間隔を長
く改良でき、Nb3Sn化合物生成によるフィラメント
の膨脹があっても、Nb3Sn化合物のフィラメント同
士が連接しなくなり、結果としてヒステリシスロスを小
さくでき、高性能超電導線が製造可能となる。
In the present invention, the arrangement of Sn is not concentrated, and is distributed around each Nb, so that there is no dead zone for the arrangement of Nb rods (Nb filaments), and therefore the Nb filaments are eliminated. interval can improve long, even if there is expansion of the filament due to Nb 3 Sn compound produced, no longer connected the filaments of Nb 3 Sn compound, as a result it is possible to reduce the hysteresis loss, high-performance superconducting wire is manufacturable.

【0013】[0013]

【実施例】以下、本発明を実施例によって説明する。 実施例1.図1は、複合線材としてNb棒の周囲にSn
棒を配置した態様を示すものである。図1において、1
はNb棒、2はSn棒、3はCu管である。直径10mm
のNb棒1に1.5mm厚のSn板をまきつけ、内面に凹
溝を有するCu管3に挿入した。これを引抜加工し、対
辺距離3.0mm、長さ1.0mの六角棒(複合線材)を2
53本製作した。このときの六角棒を束ねたときの断面
形状は図1の如くであり、Sn棒2は、Cu管3の内面
の凹溝に流れ、埋め込まれた形になっている。次にこの
253本を束ねて別の円形Cu管(シース材)に入れ、
引抜加工し、対辺距離3.5mm、長さ1.0mの六角棒を
55本製作した。これを別の円形Cu管にTaバリヤと
共に挿入し、引抜加工にて外径0.95mmの超電導素線
を作製した。加工中は軟化熱処理をせずとも、良好に加
工を進めることができた。
EXAMPLES The present invention will be described below with reference to examples. Example 1. Figure 1 shows Sn around the Nb rod as a composite wire.
It shows an embodiment in which a bar is arranged. In FIG. 1, 1
Is an Nb rod, 2 is an Sn rod, and 3 is a Cu tube. Diameter 10mm
A Sn plate having a thickness of 1.5 mm was sprinkled on the Nb rod 1 of No. 1 and inserted into a Cu tube 3 having a concave groove on the inner surface. This is drawn, and a hexagonal bar (composite wire) with a distance between opposite sides of 3.0 mm and a length of 1.0 m is 2
53 pieces were produced. The cross-sectional shape of the bundled hexagonal rods at this time is as shown in FIG. 1, and the Sn rods 2 are embedded in the concave groove on the inner surface of the Cu pipe 3. Next, bundle these 253 pieces and put them in another circular Cu tube (sheath material),
After drawing, 55 hexagonal rods with a distance of 3.5 mm and a length of 1.0 m were manufactured. This was inserted into another circular Cu tube together with a Ta barrier, and a superconducting wire having an outer diameter of 0.95 mm was produced by drawing. The processing could be favorably carried out without softening heat treatment during processing.

【0014】作製した素線から切り出した約1.5mの長
さのサンプルの両端を加熱してSn封止処理をし、Nb
3Sn化合物生成熱処理を行った。熱処理は675℃×
100時間であった。これにより得られたNb3Sn化
合物超電導線の臨界電流を測定した結果、12Tの磁場
中、約4.2°Kの温度で、臨界電流密度は非銅当たり
1040A/mm2と非常に高いものであった。また、走
査型電子顕微鏡観察を行った結果、生成されたNb3
n化合物同士の連接した部分が皆無であり、ヒステリシ
スロスが極小であることが判った。同じ熱処理を施した
サンプルのコイル状での有効フィラメント径測定結果
は、5μmであり臨界電流密度、ヒステリシスロス両特
性において優れた性能のNb3Sn化合物超電導線であ
ることが判った。
Both ends of a sample having a length of about 1.5 m, which was cut out from the prepared wire, was heated to perform Sn sealing treatment, and Nb
3 Sn compound formation heat treatment was performed. Heat treatment is 675 ° C
It was 100 hours. As a result of measuring the critical current of the Nb 3 Sn compound superconducting wire obtained by this, the critical current density was 1040 A / mm 2 per non-copper in a magnetic field of 12 T at a temperature of about 4.2 ° K. Met. In addition, Nb 3 S produced as a result of scanning electron microscope observation
It was found that there was no part where the n compounds were connected to each other, and the hysteresis loss was minimal. The result of measurement of the effective filament diameter in the coil shape of the sample subjected to the same heat treatment was 5 μm, and it was found that the Nb 3 Sn compound superconducting wire has excellent performance in both critical current density and hysteresis loss characteristics.

【0015】なお、上記の断面縮小加工は、とくに制限
されるものではなく、スェージング、圧延、引抜加工、
その他の方法を適当に選択することができる。さらに、
上記の熱処理は675℃×100時間で行ったが、本発
明はこの熱処理条件に限定されるものではなく、例えば
500〜900℃×1000時間以下の条件で行うこと
ができる。好ましくは、600〜750℃×300時間
以下である。
The cross-section reduction process is not particularly limited, and may be swaging, rolling, drawing,
Other methods can be selected appropriately. further,
Although the above heat treatment was performed at 675 ° C. for 100 hours, the present invention is not limited to this heat treatment condition and can be performed, for example, at 500 to 900 ° C. for 1000 hours or less. Preferably, it is 600 to 750 ° C. × 300 hours or less.

【0016】実施例2.直径10mmのNb棒を外径1
5.5mm、内径10.5mmのCu管に入れ引抜加工し、対
辺距離3.0mm、長さ1.0mの六角棒(第1の複合線
材)を84本製作した。また直径10mmのSn棒を外径
15.5mm、内径10.5mmの別のCu管に入れ、引抜加
工し、同じく対辺距離3.0mm、長さ1.0mの六角棒
(第2の複合線材)を169本製作した。以上の合計2
53本を分散するように束ねて、別の円形Cu管(シー
ス材)に入れ引抜加工し、対辺距離3.5mm、長さ1.0
mの六角棒を55本作製した。これをさらに別に用意し
た円形Cu管にTaバリヤと共に挿入し、引抜加工し、
外径0.95mmの超電導素線を得た。素線の断面形状の
拡大図を図2に示す。図2から判るように、第1の複合
線材と第2の複合線材は、均等分散されて配置してい
る。加工中は、ブロンズ法のような軟化熱処理は必要と
せず、良好に加工を進めることができた。この素線の一
部を切り取り、675℃×100時間のNb3Sn化合
物生成熱処理を加えた。コイル状で熱処理したこのサン
プルを、12Tの磁界中、4.2°Kの温度で臨界電流
を測定した結果、1010A/mm2と高い臨界電流密度
を得た。実施例1と同様に、走査型電子顕微鏡観察で
は、生成されたNb3Sn化合物同士の連接はみあたら
ず、またヒステリシスロスについて、有効フィラメント
径は約5μmであり、臨界電流密度、ヒステリシスロス
両特性において優れた性能を有していることが実証され
た。
Example 2. Nb rod with a diameter of 10 mm has an outer diameter of 1
A hexagonal bar (first composite wire) having a distance of 3.0 mm and a length of 1.0 m was manufactured by placing it in a Cu tube of 5.5 mm and an inner diameter of 10.5 mm and drawing it. Also, a Sn rod with a diameter of 10 mm was put into another Cu pipe with an outer diameter of 15.5 mm and an inner diameter of 10.5 mm and was drawn, and a hexagonal rod with the opposite side distance of 3.0 mm and a length of 1.0 m (second composite wire rod) was also used. ) Were produced. Total 2 above
53 pieces are bundled so as to be dispersed, put into another circular Cu tube (sheath material), and drawn, and the distance between opposite sides is 3.5 mm and the length is 1.0.
55 hexagonal rods of m were produced. This was further inserted into a circular Cu tube prepared separately, together with a Ta barrier, and drawn out,
A superconducting wire having an outer diameter of 0.95 mm was obtained. An enlarged view of the cross-sectional shape of the wire is shown in FIG. As can be seen from FIG. 2, the first composite wire and the second composite wire are evenly distributed and arranged. During the processing, the softening heat treatment unlike the bronze method was not necessary, and the processing could be favorably performed. A part of this strand was cut out and subjected to a heat treatment for forming a Nb 3 Sn compound at 675 ° C. for 100 hours. The critical current of this coil-heat-treated sample was measured at a temperature of 4.2 ° K in a magnetic field of 12 T, and a high critical current density of 1010 A / mm 2 was obtained. In the same manner as in Example 1, in the scanning electron microscope observation, there was no connection between the produced Nb 3 Sn compounds, and regarding the hysteresis loss, the effective filament diameter was about 5 μm, and both the critical current density and the hysteresis loss characteristics were found. It has been proved that it has excellent performance in.

【0017】実施例3.上記および下記の実施例におい
ては、使用した金属が各々Nb、Sn、Cu、Ta等純
金属の場合について述べているが、臨界電流密度向上の
ため、または加工性を良くするために別元素の添加があ
っても同様の効果がある。例えばNb基合金としては、
Nb−Ti(Ti5%以下)、Nb−Ta(Ta7%以
下)等、Sn基合金としてはSn−Ti(Ti5%以
下)、Sn−In(In10%以下)、Sn−Ta(T
a7%以下)等を用いることができる。
Embodiment 3. In the above and below examples, the metals used are pure metals such as Nb, Sn, Cu, and Ta, respectively. However, in order to improve the critical current density or to improve workability, another element is used. Even if added, the same effect can be obtained. For example, as an Nb-based alloy,
Sn-Ti (Ti 5% or less), Sn-In (In 10% or less), Sn-Ta (T 5% or less), Nb-Ta (Ta 7% or less), Sn-In (In 10% or less), Sn-Ta (T
a7% or less) or the like can be used.

【0018】実施例4.また、Nb3Sn化合物超電導
線の仕上がり線径、安定化銅の有無、拡散バリヤの材質
の如何にかかわらず、基本的に超電導化合物を構成する
Nbまたは上記のようなNb基合金、Snまたは上記の
ようなSn基合金、そしてCuの構成が本発明の如くで
あれば同様の効果を奏する。
Example 4. In addition, regardless of the finished wire diameter of the Nb 3 Sn compound superconducting wire, the presence or absence of stabilizing copper, and the material of the diffusion barrier, Nb which basically constitutes the superconducting compound or the above Nb-based alloy, Sn or the above If the Sn-based alloy as described above and the composition of Cu are as in the present invention, the same effect can be obtained.

【0019】実施例5.また実施例1および2では、1
回目253本、2回目55本を集束し、Cu管(シース
材)に入れ加工する例について述べたが、必要に応じて
集束は1回のみ、あるいは3回以上行っても同様の効果
が得られる。さらに上記の集束本数はとくに制限される
ものではなく、集束本数の多少にかかわらず、同様の効
果が得られる。
Example 5. In Examples 1 and 2, 1
The example of bundling 253 times and 55 times of the second time and putting it in a Cu pipe (sheath material) has been described, but the same effect can be obtained if the focusing is performed only once or three times or more. To be Furthermore, the number of bundles is not particularly limited, and the same effect can be obtained regardless of the number of bundles.

【0020】実施例6.また、実施例1においては、1
本のNbまたはNb基合金棒の周囲のSnまたはSn基
合金の配置の1例を述べたにすぎず、別の配置にしても
よい。例えば、NbまたはNb合金棒は1本ではなく、
密接して配置した複数本を用いることもできる。また、
図3のように円形のCu管3の中にNbまたはNb基合
金棒1およびSnまたはSn基合金棒2を配置しても同
様の効果が得られる。
Example 6. Further, in the first embodiment, 1
Only one example of the arrangement of Sn or Sn-based alloy around the Nb or Nb-based alloy rod of the book is described, and another arrangement may be adopted. For example, not one Nb or Nb alloy rod,
It is also possible to use a plurality of closely arranged ones. Also,
Similar effects can be obtained by disposing the Nb or Nb-based alloy rod 1 and the Sn or Sn-based alloy rod 2 in the circular Cu tube 3 as shown in FIG.

【0021】実施例7.実施例2では、第1および第2
の複合線材を六角形に成形して集束した場合について述
べたが、別の線材形状でも同様に効果がある。例えば、
図4のように第1および第2の複合線材各々を、円形の
Cu管3の中に配置しても同様の効果が得られる。ま
た、第1および第2の複合線材に含まれるNbまたはN
b合金棒およびSnまたはSn合金棒は、それぞれ密接
して配置した複数本であってもよい。
Example 7. In the second embodiment, the first and second
Although the case where the composite wire rod of (1) is formed into a hexagonal shape and then bundled is described, another wire shape is similarly effective. For example,
Similar effects can be obtained by arranging each of the first and second composite wires in the circular Cu tube 3 as shown in FIG. In addition, Nb or N contained in the first and second composite wires
The b alloy rod and the Sn or Sn alloy rod may be a plurality of rods arranged in close contact with each other.

【0022】実施例8.また、実施例2における第1お
よび第2の複合線材の配置を、図5のように、第2の複
合線材を第1の複合線材で囲むような配置に変更して
も、同様の効果が得られる。
Example 8. Further, even if the arrangement of the first and second composite wire rods in the second embodiment is changed to the arrangement in which the second composite wire rod is surrounded by the first composite wire rod as shown in FIG. 5, the same effect is obtained. can get.

【0023】実施例9.〜13.また、図6に示すよう
に、銅または銅基合金棒材(シース材)、例えば円形の
棒材中に、複数の円形の縦穴をあけて、その中にNb棒
1およびSn棒2を各々挿入し、前記実施例と同様の熱
処理および断面縮少加工を行ってもよい。図6は、同じ
大きさの円形縦穴を7ケ設け、Nb棒1およびSn棒1
を互いに隣接して配置した場合を示したが、その他、同
じ大きさの円形の縦穴を7ケ設け、その中にNb棒の周
囲にSnを設けた棒を挿入した場合(図7)、同じ大き
さの円形の縦穴を19ケ設け、その中にNb棒の周囲に
Snを設けた棒を挿入した場合(図8)、同じ大きさの
円形の縦穴を19ケ設け、その中にNb棒1およびSn
棒1を互いに隣接して挿入した場合(図9)、中央の大
きな円形の縦穴にNb棒1を挿入し、その周囲の小さな
円形の縦穴にSn棒を挿入した場合(図10)各々につ
いても同様の効果が得られる。なお、上記においては、
シース材の縦穴を円形としたが、その形状はとくに制限
されず、様々な形状とすることができる。また、上記に
おいては縦穴の数が7ケまたは19ケの場合について述
べたが、この数もとくに制限されず、必要に応じてこれ
以外の数にすることができる。
Example 9. ~ 13. Further, as shown in FIG. 6, a plurality of circular vertical holes are formed in a copper or copper-based alloy rod material (sheath material), for example, a circular rod material, and Nb rods 1 and Sn rods 2 are respectively formed therein. It may be inserted and subjected to the same heat treatment and cross-section reduction processing as in the above-mentioned embodiment. In FIG. 6, seven circular vertical holes of the same size are provided, and Nb rod 1 and Sn rod 1 are provided.
In addition to the above, the case where seven adjacent circular vertical holes having the same size are provided, and a rod provided with Sn around the Nb rod is inserted therein (FIG. 7) is the same. If you insert 19 circular holes of the same size and insert Sn around the Nb bar (Fig. 8), you will create 19 circular holes of the same size and insert the Nb bar into them. 1 and Sn
When the rods 1 are inserted adjacent to each other (Fig. 9), the Nb rod 1 is inserted in the large circular vertical hole in the center, and the Sn rods are inserted in the small circular vertical holes around it (Fig. 10). The same effect can be obtained. In the above,
Although the vertical hole of the sheath material is circular, its shape is not particularly limited and can be various shapes. Further, in the above, the case where the number of vertical holes is 7 or 19 has been described, but this number is not particularly limited, and may be any other number as necessary.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、Snの
配置を集中的なものではなく、Nb各々の周囲に分散的
に配置したので、Nb配置についてのデッドゾーンが解
消され、Nbフィラメント間隔を長くすることができ
た。従って、Nb3Sn化合物フィラメント同士の連接
が生じないため、有効フィラメント径が小さくなり、臨
界電流密度を高く保持しつつ、ヒステリシスロスを低く
改良でき、例えばパルスコイルの超電導線において発熱
量を小さく押さえることができる効果がある。また超電
導線の製造においても、硬質のブロンズマトリックス等
を使用せず、軟らかい純金属で構成しているので、製造
が容易でしかも安価に製造できる効果がある。
As described above, according to the present invention, the arrangement of Sn is not concentrated but distributed around Nb, so that the dead zone for Nb arrangement is eliminated, and Nb is eliminated. The filament interval could be lengthened. Therefore, since the Nb 3 Sn compound concatenation of filaments does not occur, the effective filament diameter is reduced, while maintaining a high critical current density, hysteresis loss can improve low, suppress small the amount of heat generated in the superconducting wire, for example a pulse coil There is an effect that can be. Further, also in the production of the superconducting wire, since it is made of soft pure metal without using a hard bronze matrix or the like, there is an effect that the production is easy and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるNb3Sn化合物超
電導複合線材を束ねたときの一部拡大横断面図である。
FIG. 1 is a partially enlarged cross-sectional view of a bundle of Nb 3 Sn compound superconducting composite wires according to an embodiment of the present invention.

【図2】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.

【図3】本発明の一実施例におけるNb3Sn化合物超
電導複合線材を束ねたときの一部拡大横断面図である。
FIG. 3 is a partially enlarged cross-sectional view of a bundle of Nb 3 Sn compound superconducting composite wires according to an embodiment of the present invention.

【図4】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 4 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.

【図5】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 5 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.

【図6】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 6 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting wire according to an embodiment of the present invention.

【図7】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 7 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an example of the present invention.

【図8】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 8 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an example of the present invention.

【図9】本発明の一実施例におけるNb3Sn化合物超
電導素線の一部拡大横断面図である。
FIG. 9 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an example of the present invention.

【図10】本発明の一実施例におけるNb3Sn化合物
超電導素線の一部拡大横断面図である。
FIG. 10 is a partially enlarged cross-sectional view of a Nb 3 Sn compound superconducting element wire according to an example of the present invention.

【図11】従来の方法において製造されたNb3Sn化
合物超電導線の横断面図である。
FIG. 11 is a cross-sectional view of a Nb 3 Sn compound superconducting wire manufactured by a conventional method.

【図12】従来の方法における加工途中のNb3Sn化
合物超電導素線の横断面図である。
FIG. 12 is a cross-sectional view of a Nb 3 Sn compound superconducting element wire in the middle of processing by a conventional method.

【図13】従来の方法における加工途中のNb3Sn化
合物超電導素線の横断面図である。
FIG. 13 is a cross-sectional view of a Nb 3 Sn compound superconducting element wire in the middle of processing by a conventional method.

【符号の説明】[Explanation of symbols]

1 NbまたはNb合金棒 2 SnまたはSn合金棒 3 Cu管 4 拡散バリヤ 5 Nb3Snフィラメント 6 ブロンズマトリックス1 Nb or Nb alloy rod 2 Sn or Sn alloy rod 3 Cu tube 4 Diffusion barrier 5 Nb 3 Sn filament 6 Bronze matrix

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月1日[Submission date] June 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ように高い臨界電流密度(Jc)のものが得られたとし
ても、中央部のSn中にはNbが配置できないことがあ
いまって、Nbフィラメント間隔が小さくなるため、隣
接するNb3Sn化合物のフィラメント同士の連接が生
じ易くなり、ヒステリシスロスの増大が見られていた。
例えば、12TでJcが950A/mm2の線材では、ヒ
ステリシスロスに関して、有効フィラメント径は15〜
20μmであった。このような超電導線を使用した超電
導パルスコイルでは発熱量が大きく、強大な冷凍機を必
要としていた。
However, even if a high critical current density (Jc) is obtained as described above, the fact that Nb cannot be arranged in the Sn in the central portion is accompanied by the Nb filament spacing. Is smaller, the adjacent filaments of the Nb 3 Sn compound are likely to be connected to each other, and an increase in hysteresis loss has been observed.
For example, with a wire rod having a Jc of 950 A / mm 2 at 12T, the effective filament diameter is 15 to 15 in terms of hysteresis loss.
It was 20 μm. A superconducting pulse coil using such a superconducting wire generates a large amount of heat and requires a powerful refrigerator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1本のNbまたはNb基合金棒または密
接して配置した複数のNbまたはNb基合金棒、前記N
bまたはNb基合金棒の周囲に配置したSnまたはSn
基合金棒および必要によりこれらの周囲に配置したCu
またはCu基合金からなる複合線材を、複数本束ねてシ
ース材に挿入した後、断面縮小加工して素線を得、該素
線を熱処理することを特徴とする、Nb3Sn化合物超
電導線の製造方法。
1. One Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods, said N
Sn or Sn arranged around b or Nb-based alloy rod
Base alloy rods and, if necessary, Cu placed around them
Alternatively, a plurality of composite wire rods made of a Cu-based alloy are bundled and inserted into a sheath material, and then a cross-section reduction process is performed to obtain a wire, and the wire is heat-treated, which is a Nb 3 Sn compound superconducting wire. Production method.
【請求項2】 1本のNbまたはNb基合金棒または密
接して配置した複数のNbまたはNb基合金棒および必
要によりこれらの周囲に配置したCuまたはCu基合金
からなる第1の複合線材と、1本のSnまたはSn基合
金棒または密接して配置した複数のSnまたはSn基合
金棒および必要によりこれらの周囲に配置したCuまた
はCu基合金からなる第2の複合線材と、を分散するよ
うに配置してシース材に挿入した後、断面縮小加工して
素線を得、該素線を熱処理することを特徴とする、Nb
3Sn化合物超電導線の製造方法。
2. A first composite wire comprising one Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods and, if necessary, Cu or a Cu-based alloy disposed around them. Dispersing one Sn or Sn-based alloy rod or a plurality of closely arranged Sn or Sn-based alloy rods and, if necessary, a second composite wire made of Cu or a Cu-based alloy disposed around them. And then inserted into the sheath material, the cross-section is reduced to obtain a wire, and the wire is heat-treated.
3 Method for producing Sn compound superconducting wire.
【請求項3】 銅または銅基合金棒材に設けた複数の縦
穴に、1本のNbまたはNb基合金棒または密接して配
置した複数のNbまたはNb基合金棒と、1本のSnま
たはSn基合金棒または密接して配置した複数のSnま
たはSn基合金棒と、を別々または一体に挿入し、断面
縮小加工して素線を得、該素線を熱処理することを特徴
とする、Nb3Sn化合物超電導線の製造方法。
3. One Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods and one Sn or Nb in a plurality of vertical holes provided in a copper or copper-based alloy rod material. Characterized in that a Sn-based alloy rod or a plurality of Sn or Sn-based alloy rods arranged in close contact with each other are separately or integrally inserted, a cross-section is reduced to obtain a strand, and the strand is heat-treated. A method for producing a Nb 3 Sn compound superconducting wire.
JP01289393A 1993-01-28 1993-01-28 Method for producing Nb (3) Sn compound superconducting wire Expired - Lifetime JP3602151B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01289393A JP3602151B2 (en) 1993-01-28 1993-01-28 Method for producing Nb (3) Sn compound superconducting wire
CA002114333A CA2114333A1 (en) 1993-01-28 1994-01-27 Tyrosine kinase inhibitors and benzoylacrylamide derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01289393A JP3602151B2 (en) 1993-01-28 1993-01-28 Method for producing Nb (3) Sn compound superconducting wire

Publications (2)

Publication Number Publication Date
JPH06223653A true JPH06223653A (en) 1994-08-12
JP3602151B2 JP3602151B2 (en) 2004-12-15

Family

ID=11818076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01289393A Expired - Lifetime JP3602151B2 (en) 1993-01-28 1993-01-28 Method for producing Nb (3) Sn compound superconducting wire

Country Status (2)

Country Link
JP (1) JP3602151B2 (en)
CA (1) CA2114333A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094436A (en) * 2010-10-28 2012-05-17 Hitachi Cable Ltd Precursor of niobium-tin superconducting wire rod, niobium-tin superconducting wire rod using the same, and niobium-tin superconducting wire rod manufacturing method
JP2013206532A (en) * 2012-03-27 2013-10-07 Japan Superconductor Technology Inc PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD BY INTERNAL Sn METHOD, Nb3Sn SUPERCONDUCTING WIRE ROD, AND MANUFACTURING METHODS THEREFOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094436A (en) * 2010-10-28 2012-05-17 Hitachi Cable Ltd Precursor of niobium-tin superconducting wire rod, niobium-tin superconducting wire rod using the same, and niobium-tin superconducting wire rod manufacturing method
JP2013206532A (en) * 2012-03-27 2013-10-07 Japan Superconductor Technology Inc PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD BY INTERNAL Sn METHOD, Nb3Sn SUPERCONDUCTING WIRE ROD, AND MANUFACTURING METHODS THEREFOR

Also Published As

Publication number Publication date
CA2114333A1 (en) 1994-07-29
JP3602151B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US4917965A (en) Multifilament Nb3 Al superconducting linear composite articles
JPS61194155A (en) Production of nb3sn superconductive wire
US5127149A (en) Method of production for multifilament niobium-tin superconductors
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4153986A (en) Method for producing composite superconductors
JP3602151B2 (en) Method for producing Nb (3) Sn compound superconducting wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JPH09167531A (en) Manufacture of multi-conductor nb3sn superconducting wire
JP3070969B2 (en) Superconducting wire manufacturing method
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
RU2088993C1 (en) Method of production of multiple-fiber alloyed super- conductor based on intermetallic compound nb*003sn
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP2003115226A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTIVE WIRE
JPS62270756A (en) Manufacture of superconductive nb3sn wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH04129106A (en) Manufacture of superconductive wire material made of nb3-sn compound
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPH09171727A (en) Manufacture of metal-based superconductive wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9