JP3070969B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JP3070969B2
JP3070969B2 JP3110683A JP11068391A JP3070969B2 JP 3070969 B2 JP3070969 B2 JP 3070969B2 JP 3110683 A JP3110683 A JP 3110683A JP 11068391 A JP11068391 A JP 11068391A JP 3070969 B2 JP3070969 B2 JP 3070969B2
Authority
JP
Japan
Prior art keywords
filament
superconducting wire
substrate
intermediates
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3110683A
Other languages
Japanese (ja)
Other versions
JPH04341710A (en
Inventor
修 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3110683A priority Critical patent/JP3070969B2/en
Publication of JPH04341710A publication Critical patent/JPH04341710A/en
Application granted granted Critical
Publication of JP3070969B2 publication Critical patent/JP3070969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】請求項1及び請求項2の発明は、
Nb3Sn系化合物からなるフィラメントを有し、超電
導マグネットなどに使用されるNb3Sn系の超電導線
の製造方法に関するものである。
The invention of claims 1 and 2
The present invention relates to a method for producing an Nb 3 Sn-based superconducting wire having a filament made of an Nb 3 Sn-based compound and used for a superconducting magnet or the like.

【0002】[0002]

【従来の技術】図3ないし図5は例えば特開昭57−4
9121号公報に示されたものと同様の従来のNb3
n化合物超電導線の製造方法を工程順に示す横断面図で
ある。熱処理後の状態を示す図5において、1はNb3
Snフィラメント、2はNb3Snフィラメント1間に
介在しているCu−Sn合金である。また、多くの場
合、図5の超電導線の外周には、Ta又はNbからなる
バリヤを介して安定化銅が設けられるが、ここでは省略
した。
2. Description of the Related Art FIGS.
Conventional Nb 3 S similar to that shown in JP-A-9121
It is a cross-sectional view which shows the manufacturing method of an n-compound superconducting wire in a process order. In FIG. 5 showing the state after the heat treatment, 1 is Nb 3
The Sn filament 2 is a Cu—Sn alloy interposed between the Nb 3 Sn filaments 1. In many cases, stabilizing copper is provided on the outer periphery of the superconducting wire of FIG. 5 via a barrier made of Ta or Nb, but is omitted here.

【0003】次に、従来のNb3Sn化合物超電導線の
製造方法について説明する。まず、図3に示すように、
適切な太さ,肉厚のCuパイプ3の中にNb棒4を挿入
し、これに縮径加工を施してCu−Nb単心棒を製造す
る。次に、一定の長さに切断した多数のCu−Nb単心
棒と、別に準備したCu棒(図示せず)とを、別のCu
パイプ(図示せず)の中に整列して組み合わせて複合棒
とし、この複合棒に縮径加工(断面縮小加工)を施す。
この縮径加工の途中で、Cuの部分に切削加工などによ
り貫通孔を設け、この貫通孔に棒状のSn基体5を入れ
る。そして、再び縮径加工を施し、図4に示すように、
所定の径寸法に仕上げる。これにより、Sn基体5,フ
ィラメント中間体である多数本のNbフィラメント6及
びCuマトリックス7を有する複合体8が形成される。
この熱処理前の複合体8は、図6に示すように、半径方
向内側の内層及び半径方向外側の外層の断面が同じよう
になっている。
Next, a method of manufacturing a conventional Nb 3 Sn compound superconducting wire will be described. First, as shown in FIG.
An Nb rod 4 is inserted into a Cu pipe 3 having an appropriate thickness and thickness, and the diameter of the Nb rod 4 is reduced to produce a Cu-Nb single core rod. Next, a large number of Cu-Nb single rods cut to a certain length and a separately prepared Cu rod (not shown) were combined with another Cu rod.
A composite rod is arranged and assembled in a pipe (not shown), and the composite rod is subjected to diameter reduction processing (section reduction processing).
In the course of this diameter reduction processing, a through-hole is formed in the Cu portion by cutting or the like, and the rod-shaped Sn base 5 is inserted into this through-hole. Then, diameter reduction processing is performed again, and as shown in FIG.
Finish to the specified diameter. As a result, a composite 8 having the Sn base 5, a large number of Nb filaments 6, which are filament intermediates, and the Cu matrix 7 is formed.
As shown in FIG. 6, the composite 8 before the heat treatment has the same cross section of the inner layer on the radially inner side and the outer layer on the radially outer side.

【0004】この後、複合体8に対して熱処理を行うこ
とにより、Sn基体5が拡散し、Nbフィラメント6と
反応して多数本の超電導フィラメント、即ちNb3Sn
フィラメント1が形成される。また、Sn基体5の拡散
により、Cuマトリックス7はCu−Sn合金2とな
る。このようにして、Nb3Sn化合物超電導線が製造
される。
Thereafter, a heat treatment is performed on the composite 8 so that the Sn substrate 5 diffuses and reacts with the Nb filament 6 to form a large number of superconducting filaments, ie, Nb 3 Sn.
A filament 1 is formed. Further, the Cu matrix 7 becomes the Cu—Sn alloy 2 due to the diffusion of the Sn base 5. Thus, an Nb 3 Sn compound superconducting wire is manufactured.

【0005】このようなNb3Sn化合物超電導線は、
Nb3Sn化合物の高融点金属成分であるNb及び低融
点金属成分であるCu,Snなど、総ての複合体構成材
が可塑性に富んでいるため、縮径加工が容易であり、量
産性及び製造信頼性に優れている。
[0005] Such an Nb 3 Sn compound superconducting wire is
Since all the composite components such as Nb, which is a high melting point metal component of the Nb 3 Sn compound, and Cu and Sn, which are low melting point metal components, are rich in plasticity, diameter reduction processing is easy, and mass productivity and mass production are improved. Excellent manufacturing reliability.

【0006】[0006]

【発明が解決しようとする課題】上記のように構成され
た従来のNb3Sn化合物超電導線においては、臨界電
流特性を向上させるために、Nbが占める割合を高くし
ているので、図6に拡大して示したように、複合体8で
Nbフィラメント6同志が互いに近接している。このよ
うな状態で熱処理を行うと、特にSn基体5に近い内層
では、隣接するNb3Snフィラメント1が互いにつな
がり、Nb3Snフィラメント1の断面積が大きくなっ
てしまうことがある。Nb3Snフィラメント1の断面
積が大きくなった場合、直流的使用状態においてその特
性を十分に発揮できても、交流電流を流したり、変動磁
界中で通電したりしたときに、ヒステリシス交流損失が
増大して電力損失が多大なものになってしまうという問
題点があった。
In the conventional Nb 3 Sn compound superconducting wire constructed as described above, the proportion occupied by Nb is increased in order to improve the critical current characteristics. As shown in an enlarged manner, in the composite 8, the Nb filaments 6 are close to each other. When the heat treatment is performed in such a state, the Nb 3 Sn filaments 1 adjacent to each other may be connected to each other in an inner layer close to the Sn base 5, and the cross-sectional area of the Nb 3 Sn filaments 1 may be increased. When the cross-sectional area of the Nb 3 Sn filament 1 becomes large, even when its characteristics can be sufficiently exhibited in a DC use condition, the hysteresis AC loss is reduced when an AC current is passed or a current is passed in a fluctuating magnetic field. There is a problem that the power loss increases and the power loss becomes large.

【0007】請求項1及び請求項2の発明は、上記のよ
うな問題点を解決することを課題としてなされたもの
で、ヒステリシス交流損失や臨界電流特性などのNb3
Sn系超電導線の電気的特性を向上させることができる
超電導線の製造方法を得ることを目的とする。
SUMMARY OF THE INVENTION The first and second aspects of the present invention have been made to solve the above problems, and include Nb 3, such as hysteresis AC loss and critical current characteristics.
An object of the present invention is to provide a method for manufacturing a superconducting wire that can improve the electrical characteristics of a Sn-based superconducting wire.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る超
電導線の製造方法は、基体に近い位置に配置されるフィ
ラメント中間体間の離隔距離を、基体から遠い位置に配
置されるフィラメント中間体間の離隔距離よりも長くす
るものである。請求項2の発明に係る超電導線の製造方
法は、フィラメント中間体の横断面形状を六角形にする
ものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a superconducting wire, wherein a distance between a filament intermediate member disposed at a position close to a substrate and a filament intermediate member disposed at a position distant from the substrate is increased. It is to be longer than the separation distance between the bodies. According to a second aspect of the present invention, there is provided a method for manufacturing a superconducting wire, wherein a cross-sectional shape of a filament intermediate is hexagonal.

【0009】[0009]

【作用】請求項1の発明においては、基体に近い位置に
配置されたフィラメント中間体間の離隔距離を長くする
ことにより、隣接するフィラメントがつながるのを防止
する。請求項2の発明においては、フィラメント中間体
の横断面形状を六角形にすることにより、フィラメント
中間体間の離隔距離を短くすることなく、フィラメント
の表面積及び断面積を大きくする。
According to the first aspect of the present invention, adjacent filaments are prevented from being connected by increasing the separation distance between the filament intermediates arranged near the base. In the second aspect of the present invention, the surface area and the cross-sectional area of the filament are increased without reducing the separation distance between the filament intermediates by making the cross-sectional shape of the filament intermediate a hexagon.

【0010】[0010]

【実施例】以下、請求項1の発明の一実施例について説
明する。まず、図3と同様に、直径20mmのNb棒4
を外径31mm,内径21mmのCuパイプ3中に挿入
して引抜加工を行い、対辺距離6.0mmの六角単心棒
に仕上げた。また、同様のNb棒4を外径36mm,内
径21mmのCuパイプ3中に挿入して引抜加工を行
い、対辺距離6.0mmの六角単心棒に仕上げた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. First, similarly to FIG.
Was inserted into a Cu pipe 3 having an outer diameter of 31 mm and an inner diameter of 21 mm to perform a drawing process, thereby completing a hexagonal single-rod having a distance of 6.0 mm across sides. Further, a similar Nb rod 4 was inserted into a Cu pipe 3 having an outer diameter of 36 mm and an inner diameter of 21 mm to perform a drawing process, thereby completing a hexagonal single-core rod having a distance of opposite side of 6.0 mm.

【0011】これらの六角単心棒及び別のCuパイプ,
Cu棒を使用して、試作材A及び試作材Bの2種類の複
合棒を試作した。試作材Aは、外径31mmのCuパイ
プを用いて加工した六角単心棒を使用したものである。
試作材Bは、外径31mmのCuパイプを用いて加工し
た六角単心棒を外層に、外径36mmのCuパイプを用
いて加工した六角単心棒を内層に、それぞれ配置したも
のである。従って、試作材Bの内層では、外層に比べ
て、Nbが細くCuが厚くなっている。
These hexagonal single rods and another Cu pipe,
Two types of composite rods, trial material A and trial material B, were prototyped using Cu rods. Prototype material A uses a hexagonal single core rod processed using a Cu pipe having an outer diameter of 31 mm.
Prototype material B has a hexagonal single core rod processed using a Cu pipe with an outer diameter of 31 mm disposed on the outer layer, and a hexagonal single core rod processed using a Cu pipe with an outer diameter of 36 mm disposed on the inner layer. Therefore, in the inner layer of the prototype material B, Nb is thinner and Cu is thicker than the outer layer.

【0012】この後、組み立てた各複合棒に縮径加工を
施した。また、縮径加工の途中に、複合棒の横断面のC
uからなる部分に縦貫通孔を設け、その中に棒状のSn
基体5を入れて、フィラメント中間体であるNbフィラ
メント6の直径が外層で3μmになるまで、再び縮径加
工を施した。このようにして形成された各複合体8の全
体的な横断面形状は、図4に示したものとほぼ同様であ
る。
Thereafter, the assembled composite rods were subjected to diameter reduction processing. Also, during the diameter reduction processing, C of the cross section of the composite rod is
u is provided with a vertical through hole, and a rod-shaped Sn
The substrate 5 was placed, and the diameter was reduced again until the diameter of the Nb filament 6 as the filament intermediate became 3 μm in the outer layer. The overall cross-sectional shape of each composite 8 thus formed is substantially the same as that shown in FIG.

【0013】ここで、試作材Aの横断面を拡大すると、
従来例の図6と同様に、内層及び外層の断面形状が同じ
になっている。一方、試作材Bの横断面を拡大すると、
図1に示すように、Sn基体5に近い位置、即ち内層の
Nbフィラメント6の直径が、Sn基体5から遠い位
置、即ち外層のNbフィラメント6の直径よりも小さく
なっており、Nbフィラメント6間のCuマトリックス
7の厚さは内層で厚くなっている。
Here, when the cross section of the trial material A is enlarged,
Similar to FIG. 6 of the conventional example, the cross-sectional shapes of the inner layer and the outer layer are the same. On the other hand, when the cross section of the trial material B is enlarged,
As shown in FIG. 1, the position near the Sn substrate 5, that is, the diameter of the inner layer Nb filament 6 is smaller than the position far from the Sn substrate 5, that is, the diameter of the outer layer Nb filament 6. Is thicker in the inner layer.

【0014】次に、これらの試作材A,Bからそれぞれ
切り出した短い試料に、750℃で40時間のNb3
n相生成熱処理を同時に施した。この結果、試作材Aか
らの試料では、熱処理後のフィラメント、即ちNb3
nフィラメント1(図5)にところどころつながりが見
られた。これは、内層でのSn濃度が高いことが主な原
因と考えられる。一方、試作材Bからの試料では、Nb
3Snフィラメント1のつながりは、全く認められなか
った。従って、ヒステリシス交流損失は、当然試作材B
の試料のほうが小さくなった。
Next, Nb 3 S at 750 ° C. for 40 hours was added to short samples cut out from these trial materials A and B, respectively.
An n-phase generation heat treatment was performed simultaneously. As a result, in the sample from prototype material A, the filament after heat treatment, that is, Nb 3 S
Some connections were found in n-filament 1 (FIG. 5). This is mainly because the Sn concentration in the inner layer is high. On the other hand, in the sample from prototype material B, Nb
No connection of 3 Sn filament 1 was observed at all. Therefore, the hysteresis AC loss is, of course,
Sample became smaller.

【0015】12Tの臨界電流(密度)特性は、試作材
Bの試料では、試作材Aの試料より4%の減少を示し
た。また、外層においても内層のごとくCuマトリック
ス7の肉厚を厚くすると、推定で約10%の臨界電流密
度の減少が見込まれることになる。このため、内層での
みCuマトリックス7の肉厚を厚くし、Nbフィラメン
ト6の離隔距離を長くする方が好ましい。
The critical current (density) characteristics of 12T showed a 4% decrease in the sample of the trial material B compared to the sample of the trial material A. Also, when the thickness of the Cu matrix 7 is increased in the outer layer as in the inner layer, the critical current density is estimated to be reduced by about 10%. For this reason, it is preferable to increase the thickness of the Cu matrix 7 only in the inner layer and to increase the separation distance between the Nb filaments 6.

【0016】なお、上記実施例の試作材Bでは内層,外
層のNbフィラメント6の横断面形状をほぼ円形とした
が、例えば六角形としてもよい。特に、内層のNbフィ
ラメント6の横断面形状を六角形にすることにより、断
面積を小さくすることなく、即ち同一断面積のまま、離
隔距離を長くすることができ、従って臨界電流特性を低
下させることなく、ヒステリシス交流損失を低減するこ
ともできる。また、上記実施例の試作材BではNbフィ
ラメント6の径を外層と内層との2区域に分けて変えた
が、複合体8を3区域以上に分けて、それぞれの区域に
異なるフィラメント中間体を配置してもよい。
In the trial material B of the above embodiment, the cross section of the inner layer and the outer layer of the Nb filament 6 is substantially circular, but may be hexagonal, for example. In particular, by making the cross-sectional shape of the inner layer Nb filament 6 hexagonal, the separation distance can be increased without reducing the cross-sectional area, that is, while keeping the same cross-sectional area, and thus the critical current characteristics are reduced. Without reducing the hysteresis AC loss. Further, in the trial material B of the above embodiment, the diameter of the Nb filament 6 was changed by dividing the outer layer and the inner layer into two sections. However, the composite 8 was divided into three or more sections, and a different filament intermediate was used in each section. It may be arranged.

【0017】次に、請求項2の発明の一実施例について
説明する。対辺距離19mmのNb六角棒(図示せず)
を、外径29mm,内径21mmのCuパイプ3に挿入
して引き抜き加工を行い、対辺距離6.0mmの六角単
心棒に仕上げた。次に、一定の長さに切断した多数の六
角単心棒及び別のCuパイプ,Cu棒を使用して、複合
棒を組み立てた。この後、従来と同様に、縮径加工を施
し、横断面のCuの部分に縦貫通孔を設けてSn基材5
を入れた。そして、Nbフィラメント6が対辺距離3μ
mの六角形になるまで、再度縮径加工を施した。
Next, one embodiment of the second aspect of the present invention will be described. Nb hexagonal bar with 19 mm acrossside distance (not shown)
Was inserted into a Cu pipe 3 having an outer diameter of 29 mm and an inner diameter of 21 mm to perform a drawing process, thereby completing a hexagonal single-core rod having a distance to the opposite side of 6.0 mm. Next, a composite rod was assembled using a number of hexagonal single rods cut to a certain length and another Cu pipe and Cu rod. Thereafter, as in the conventional case, diameter reduction processing is performed, and a vertical through-hole is provided in the Cu portion of the cross section to form the Sn base material 5.
Was put. Then, the Nb filament 6 has an opposite side distance of 3 μm.
The diameter was reduced again until a hexagon of m was obtained.

【0018】このときの横断面拡大図を図2に示す。N
bフィラメント6間のCuマトリックス7の厚さは、第
1実施例の試作材Aとほぼ同じである。また、Nbフィ
ラメント6の形状,寸法は、第1実施例の試作材Aで直
径3.0μmの近似円形であるのに対して、対辺寸法3.
0μmの六角形になっている。
FIG. 2 is an enlarged cross-sectional view at this time. N
The thickness of the Cu matrix 7 between the b filaments 6 is almost the same as that of the trial material A of the first embodiment. The shape and size of the Nb filament 6 are approximately circular with a diameter of 3.0 μm in the trial material A of the first embodiment, whereas the opposite side size is 3.0.
It is a hexagon of 0 μm.

【0019】この後、第1実施例と同様、短尺の試料に
対して750℃で40時間のNb3Sn生成熱処理を施
した。この結果、内層でところどころNb3Snフィラ
メント1のつながりが見られるものの、12T臨界電流
特性は、第1実施例の試作材Aの試料に比べて、5%も
の上昇が見られた。これは、Nbフィラメント6の表面
積及び断面積の増加による効果と考えられる。このよう
に、複合体8に横断面形状が六角形のNbフィラメント
6を配置することにより、Nbフィラメント6間の離隔
距離を短くすることなく、Nb3Snフィラメント1の
表面積及び断面積が大きくなり、従ってヒステリシス交
流損失を増大させることなく、臨界電流特性を向上させ
られる。
Thereafter, similarly to the first embodiment, the short sample was subjected to Nb 3 Sn generation heat treatment at 750 ° C. for 40 hours. As a result, although the connection of the Nb 3 Sn filaments 1 was observed in some places in the inner layer, the 12T critical current characteristics showed an increase of as much as 5% as compared with the sample of the trial material A of the first embodiment. This is considered to be an effect due to an increase in the surface area and cross-sectional area of the Nb filament 6. Thus, by arranging the Nb filaments 6 having a hexagonal cross section in the composite 8, the surface area and the cross-sectional area of the Nb 3 Sn filament 1 can be increased without reducing the separation distance between the Nb filaments 6. Therefore, the critical current characteristics can be improved without increasing the hysteresis AC loss.

【0020】なお、上記請求項1及び請求項2の発明の
実施例ではフィラメント中間体としてNbフィラメント
6を示したが、例えばNbTiやNbZなど、Nbを
主成分とする合金からなるものであってもよい。また、
同様に、基体はSnTiやSnInなどの合金からなる
ものでもよく、マトリックスはCuTiなどの合金から
なっていてもよい。また、上記各発明の実施例ではSn
基体5が1本の縦貫通孔にのみ配置されている複合体8
を示したが、複数本の縦貫通孔を設け、それぞれに基体
を配置してもよい。
[0020] In the embodiment of the invention described in claims 1 and 2 showed Nb filaments 6 as filaments intermediates, such as NbTi or NBZ r, be those made of an alloy mainly composed of Nb You may. Also,
Similarly, the substrate may be made of an alloy such as SnTi or SnIn, and the matrix may be made of an alloy such as CuTi. In each of the above embodiments, Sn is used.
Composite body 8 in which base member 5 is arranged only in one vertical through hole
However, a plurality of vertical through holes may be provided, and a base may be arranged in each of the vertical through holes.

【0021】[0021]

【発明の効果】以上説明したように、請求項1の発明の
超電導線の製造方法は、基体に近い位置に配置されるフ
ィラメント中間体間の離隔距離を、基体から遠い位置に
配置されるフィラメント中間体間の離隔距離よりも長く
するようにしたので、熱処理の後に隣接するフィラメン
トがつながるのを防止することができ、これによりヒス
テリシス交流損失を低減することができ、従って電力損
失を抑えることができ、また臨界電流特性の低下は最小
限に留どめることができ、この結果Nb3Sn系超電導
線の電気的特性を向上させることができ、このNb3
n系超電導線を使用する超電導マグネットなどの性能を
向上させることができるという効果を奏する。また、請
求項2の発明に係る超電導線の製造方法は、フィラメン
ト中間体の横断面形状を六角形にしたので、フィラメン
ト中間体間の離隔距離を短くすることなく、フィラメン
トの表面積及び断面積を大きくすることができ、これに
よりヒステリシス交流損失を大きくすることなく、臨界
電流特性を向上させることができ、この結果Nb3Sn
系超電導線の電気的特性を向上させることができ、この
Nb3Sn系超電導線を使用する超電導マグネットなど
の性能を向上させることができるという効果を奏する。
As described above, in the method for manufacturing a superconducting wire according to the first aspect of the present invention, the separation distance between the filament intermediates arranged at a position close to the substrate and the filament arranged at a position distant from the substrate is increased. The separation distance between the intermediates is longer than the distance between the intermediates, so that it is possible to prevent the adjacent filaments from being connected after the heat treatment, thereby reducing the hysteresis AC loss, and thus reducing the power loss. And the decrease in critical current characteristics can be kept to a minimum. As a result, the electrical characteristics of the Nb 3 Sn-based superconducting wire can be improved, and the Nb 3 S
This has the effect that the performance of a superconducting magnet or the like using an n-based superconducting wire can be improved. In the method for manufacturing a superconducting wire according to the second aspect of the present invention, since the cross-sectional shape of the filament intermediate is made hexagonal, the surface area and the cross-sectional area of the filament can be reduced without reducing the separation distance between the filament intermediates. The critical current characteristics can be improved without increasing the hysteresis AC loss, and as a result, Nb 3 Sn
The electrical characteristics of the superconducting wire can be improved, and the performance of a superconducting magnet or the like using the Nb 3 Sn superconducting wire can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の一実施例による複合体の横断
面を内層と外層とで比較して示す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing a cross section of a composite according to an embodiment of the present invention, comparing an inner layer and an outer layer.

【図2】請求項2の発明の一実施例による複合体の横断
面を内層と外層とで比較して示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a cross section of a composite according to an embodiment of the present invention in comparison between an inner layer and an outer layer.

【図3】従来のNb3Sn系超電導線の製造途中の状態
を示すCu−Nb単心棒の断面図である。
FIG. 3 is a cross-sectional view of a Cu-Nb single-core rod showing a state in the process of manufacturing a conventional Nb 3 Sn-based superconducting wire.

【図4】従来のNb3Sn系超電導線の製造途中の状態
を示す複合体の断面図である。
FIG. 4 is a cross-sectional view of a composite showing a state in which a conventional Nb 3 Sn-based superconducting wire is being manufactured.

【図5】従来のNb3Sn系超電導線の熱処理後の状態
を示す断面図である。
FIG. 5 is a cross-sectional view showing a state after heat treatment of a conventional Nb 3 Sn-based superconducting wire.

【図6】従来の製造方法による複合体の横断面を内層と
外層とで比較して示す拡大断面図である。
FIG. 6 is an enlarged cross-sectional view showing a cross section of a composite according to a conventional manufacturing method in comparison between an inner layer and an outer layer.

【符号の説明】[Explanation of symbols]

1 Nb3Snフィラメント(フィラメント) 5 Sn基体(基体) 6 Nbフィラメント(フィラメント中間体) 7 Cuマトリックス(マトリックス) 8 複合体Reference Signs List 1 Nb 3 Sn filament (filament) 5 Sn substrate (substrate) 6 Nb filament (filament intermediate) 7 Cu matrix (matrix) 8 composite

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Snを主成分とする基体と、この基体の
まわりに配置されたNbを主成分とする多数のフィラメ
ント中間体と、これらのフィラメント中間体の間に介在
したCuを主成分とするマトリックスとを有する複合体
に熱処理を施し、前記基体を拡散させて前記フィラメン
ト中間体をNb3Sn系化合物からなるフィラメントに
するNb3Sn系の超電導線の製造方法において、前記
基体に近い位置に配置されるフィラメント中間体間の離
隔距離を、前記基体から遠い位置に配置されるフィラメ
ント中間体間の離隔距離よりも長くすることを特徴とす
る超電導線の製造方法。
1. A substrate mainly composed of Sn, a plurality of filament intermediates mainly composed of Nb disposed around the substrate, and a main component composed of Cu interposed between these filament intermediates. subjected to heat treatment composite having a matrix of a method of manufacturing a Nb 3 Sn based superconducting wire to the filament intermediates by diffusing said substrate to filament consisting of Nb 3 Sn compound, a position closer to the base A method for manufacturing a superconducting wire, characterized in that the separation distance between the filament intermediates arranged in the substrate is longer than the separation distance between the filament intermediates disposed far from the substrate.
【請求項2】 Snを主成分とする基体と、この基体の
まわりに配置されたNbを主成分とする多数のフィラメ
ント中間体と、これらのフィラメント中間体の間に介在
したCuを主成分とするマトリックスとを有する複合体
に熱処理を施し、前記基体を拡散させて前記フィラメン
ト中間体をNb3Sn系化合物からなるフィラメントに
するNb3Sn系の超電導線の製造方法において、前記
フィラメント中間体の横断面形状を六角形にすることを
特徴とすることを特徴とする超電導線の製造方法。
2. A substrate mainly composed of Sn, a plurality of filament intermediates mainly composed of Nb disposed around the substrate, and a main component composed of Cu interposed between these filament intermediates. to a heat treatment to the composite body having a matrix, the method for producing Nb 3 Sn based superconducting wire to the filament intermediates by diffusing said substrate to filament consisting of Nb 3 Sn compound, the filament intermediate A method for manufacturing a superconducting wire, characterized in that a cross-sectional shape is hexagonal.
JP3110683A 1991-05-16 1991-05-16 Superconducting wire manufacturing method Expired - Fee Related JP3070969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110683A JP3070969B2 (en) 1991-05-16 1991-05-16 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110683A JP3070969B2 (en) 1991-05-16 1991-05-16 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH04341710A JPH04341710A (en) 1992-11-27
JP3070969B2 true JP3070969B2 (en) 2000-07-31

Family

ID=14541805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110683A Expired - Fee Related JP3070969B2 (en) 1991-05-16 1991-05-16 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP3070969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321626A (en) * 2015-11-25 2016-02-10 西部超导材料科技股份有限公司 Method for preparing Nb<3>Sn superconducting wire by low magnetic hysteresis loss internal tin process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321626A (en) * 2015-11-25 2016-02-10 西部超导材料科技股份有限公司 Method for preparing Nb<3>Sn superconducting wire by low magnetic hysteresis loss internal tin process
CN105321626B (en) * 2015-11-25 2017-03-22 西部超导材料科技股份有限公司 Method for preparing Nb3Sn superconducting wire by low magnetic hysteresis loss internal tin process

Also Published As

Publication number Publication date
JPH04341710A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
KR20180021390A (en) Fabrication of reinforced superconducting wire
US4665611A (en) Method of fabricating superconductive electrical conductor
JP3070969B2 (en) Superconducting wire manufacturing method
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPH0554741A (en) Manufacture of compound superconducting wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPS59191208A (en) Method of producing nb3sn superconductive conductor
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP2007305311A (en) Nb3sn superconductive wire, and its manufacturing method
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPS5933653B2 (en) Method for producing stabilized superconductor
JPS60235308A (en) Method of producing compound superconductive wire
JPS62211359A (en) Manufacture of nb3sn superconductor element wire
JPS60250509A (en) Method of producing nb3sn composite superconductive wire
JPH0135451B2 (en)
JPH0358123B2 (en)
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS60241611A (en) Method of producing nb3sn superconductive wire
JPS6228526B2 (en)
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH08287752A (en) Manufacture of superconducting wire material
JPS60235309A (en) Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating
JPS5994307A (en) Method of producing compound superconductive wire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees