JPS60235309A - Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating - Google Patents

Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating

Info

Publication number
JPS60235309A
JPS60235309A JP59091416A JP9141684A JPS60235309A JP S60235309 A JPS60235309 A JP S60235309A JP 59091416 A JP59091416 A JP 59091416A JP 9141684 A JP9141684 A JP 9141684A JP S60235309 A JPS60235309 A JP S60235309A
Authority
JP
Japan
Prior art keywords
wire
alloy
superconducting
producing
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59091416A
Other languages
Japanese (ja)
Other versions
JPH0381246B2 (en
Inventor
修二 酒井
野口 弘二
芳之 鉄
佐藤 伊勢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59091416A priority Critical patent/JPS60235309A/en
Publication of JPS60235309A publication Critical patent/JPS60235309A/en
Publication of JPH0381246B2 publication Critical patent/JPH0381246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は超電導線材、特にエナメル絶縁被覆を施したN
b−Ti合金系超電導線の製造方法に関するものである
[Detailed Description of the Invention] [Background and Objectives of the Invention] The present invention relates to superconducting wires, particularly N with an enamel insulation coating.
The present invention relates to a method for manufacturing a b-Ti alloy superconducting wire.

超電導マグネット、特にN M R用超電導マグネット
においては、高い磁界均一性が要求さねている。高い磁
界均一性を得るためには、マグネットの巻線精度を向上
させることが最も有力々手段であるが、超電導線材自体
の寸法精度を向」ニさせることも、もう一つの有力な手
段である。
Superconducting magnets, especially superconducting magnets for NMR, require high magnetic field uniformity. In order to obtain high magnetic field uniformity, the most effective means is to improve the winding accuracy of the magnet, but another effective means is to improve the dimensional accuracy of the superconducting wire itself. .

超電導マグネットに使用される超電導線材は、通常絶縁
法としてエナメル被覆を施すのが最も一般的であるが、
現状のエナメル絶縁被覆技術では、土5μmの寸法公差
に押えることが、特にIKm以上の長尺線においては限
界である。それに対し、特にNMR用超用溝電導マグネ
ット用線材上2゜5μmの寸法精度が要求さtている。
The most common insulation method for superconducting wires used in superconducting magnets is enamel coating.
With the current enamel insulation coating technology, keeping the dimensional tolerance to 5 μm is the limit, especially for long wires of IKm or more. On the other hand, a dimensional accuracy of 2.5 .mu.m is particularly required for wire rods for NMR superconducting magnets.

まだ、マグネット巻線の精度を出すためには、高い張力
で巻線することが必要であるが、エナメル被覆時に超電
導安定化材であるCu部が鈍ってし捷い、超電導線材の
機械的強度が低下し、巻線張力を高くすることは不可能
である。
In order to achieve the precision of magnet winding, it is still necessary to wind the wire with high tension, but when covered with enamel, the Cu part, which is a superconducting stabilizing material, becomes dull and warps, which reduces the mechanical strength of the superconducting wire. decreases and it is impossible to increase the winding tension.

本発明の目的は、前記した従来技術の欠点を解消し、高
い寸法精度を有するエナメル絶縁被覆Nb−Ti合金系
超電導線材を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an enamel insulation coated Nb-Ti alloy superconducting wire having high dimensional accuracy.

〔発明の概要〕[Summary of the invention]

本発明の要旨は、1Nb−Ti合金系超電導線材にエナ
メル絶縁、例えばホルマール、ポリイミド等を被覆した
後、引抜き等により断面減少加工を施すことにある。
The gist of the present invention is to coat a 1Nb-Ti alloy superconducting wire with enamel insulation, such as formal or polyimide, and then subject the wire to a cross-sectional reduction process by drawing or the like.

本発明は1だ、断面減少加工後、安定化材であるCu部
の電気抵抗を小さくするために、350℃以下の温度で
加熱することも特徴の一つとしている。尚、本発明にお
けるNb−Ti合合金系超電導材上しては、Nb−Ti
の他、Nb−Ti、Nb−Tl−Ta、 Nb −T 
1−Hf等の3元系、更にはNb−’I”1−Zr−T
a等の4元系等が適用できる。
One of the features of the present invention is that after cross-section reduction processing, heating is performed at a temperature of 350° C. or lower in order to reduce the electrical resistance of the Cu portion, which is a stabilizing material. In addition, the Nb-Ti alloy superconducting material in the present invention includes Nb-Ti
In addition to Nb-Ti, Nb-Tl-Ta, Nb-T
Ternary systems such as 1-Hf, and even Nb-'I"1-Zr-T
A quaternary system such as a can be applied.

また、本発明において断面減少加工後、350℃以下の
温度で加熱するのは、加工により増大した、安定化材で
あるC11部の極低温下(例えば、液体ヘリウム温度4
.、2 K )での電気抵抗(ρa14.2K)を下げ
るためであるが、温度を350℃以下に制限したのは、
これ以上ではNb−’piの超電導特性が劣化するから
である。350℃以下の加熱は、Cuの再結晶温度以下
の温度で加熱する場合との2通りの方法があるが、前者
は寸法精度と機械的強度が特に要求される場合であり、
後者は寸法精度と低電気抵抗特性(ρat4.2K)が
要求される場合に適用される。前者の場合、再第4図は
、第2図に示しだ実施例の中で、断面減少率が5チの線
材を、更に加熱した場合の、加熱温度と引張り強さおよ
び電気抵抗の関係を示したもので、300℃以上で軟化
現象が見られる。
In addition, in the present invention, heating at a temperature of 350°C or lower after the cross-section reduction processing is performed under extremely low temperatures (for example, liquid helium temperature 4
.. , 2 K) to lower the electrical resistance (ρa 14.2 K), but the temperature was limited to 350 °C or less because
This is because if it exceeds this value, the superconducting properties of Nb-'pi will deteriorate. There are two methods for heating below 350°C: heating at a temperature below the recrystallization temperature of Cu, and the former is a case where dimensional accuracy and mechanical strength are particularly required;
The latter is applied when dimensional accuracy and low electrical resistance characteristics (ρat4.2K) are required. In the former case, Figure 4 shows the relationship between the heating temperature, tensile strength, and electrical resistance when the wire rod with a reduction in area of 5 inches is further heated in the example shown in Figure 2. As shown, a softening phenomenon is observed at 300°C or higher.

まだ、液体ヘリウム温度での電気抵抗(ρat42K)
は200℃から抵下しはじめる。よって、寸法精度、電
気抵抗特性の改善が要求される場合は、300〜350
℃、寸法精度、電気抵抗特性、機械的強度の改善が要求
される場合には200〜300℃に加熱することが望ま
しい。
Still, electrical resistance at liquid helium temperature (ρat42K)
starts to drop from 200℃. Therefore, if dimensional accuracy and improvement of electrical resistance characteristics are required, 300 to 350
℃, dimensional accuracy, electrical resistance characteristics, and mechanical strength are required, it is desirable to heat to 200 to 300°C.

軟化温度は、断面減少度に大きく左右され、断面減少度
が大きい場合は低温側へ移行し、反対に小さい場合は高
温側へ移行する傾向がある。よって、断面減少度と、要
求特性の関係から加熱温度を決定する必要がある。
The softening temperature is largely influenced by the degree of cross-section reduction, and when the degree of cross-section reduction is large, it tends to shift toward a low temperature side, whereas when it is small, it tends to shift toward a high temperature side. Therefore, it is necessary to determine the heating temperature based on the relationship between the degree of reduction in cross section and the required characteristics.

第3図に示した実施例では、加熱による寸法精度の変化
および超電導特性の著しい劣化は、’350℃までは見
られなかった。
In the example shown in FIG. 3, changes in dimensional accuracy and significant deterioration of superconducting properties due to heating were not observed up to 350°C.

寸法精度を機械的強度だけの改善が要求され、電気抵抗
特性の改善が要求されない場合は、断面減少加工の適用
だけで十分であり、加熱処理は必要としない。
If dimensional accuracy is required to be improved only in terms of mechanical strength, but not electrical resistance characteristics, it is sufficient to apply cross-sectional reduction processing, and heat treatment is not required.

結晶温度以下でも安定化材であるC11部の電気抵抗(
ρat4.2K)を下げることは可能である。
The electrical resistance of the C11 part, which is a stabilizing material, even below the crystallization temperature (
It is possible to lower ρat4.2K).

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図は何れも、Nb−Tiからなる超電導材のフィラ
メント■を、Cuからなる安定化材■中に・−+ Q#
−1ロ1f 上 、・ −−11,跣烏姶判 ル冷女1
晦紺Hしてエナメル絶縁■を施しだもので、(a)はフ
ィラメント■が一本の場合であり、(b)はNb−’p
iを極細多芯化したものである。
In both figures, a filament of superconducting material made of Nb-Ti is placed in a stabilizing material made of Cu.
-1 ro 1f top , --11, 跣胏姀 LE cold woman 1
It is made of dark blue and has enamel insulation. (a) shows one filament, and (b) shows Nb-'p.
This is an ultra-fine multi-core version of i.

何れの構造の超電導線材もエナメル絶縁■を施した後、
ダイス引きにより断面減少加工され(必要に応じて更に
350℃以下の温度で加熱され)で所要寸法に仕上げら
れている。
After applying enamel insulation to superconducting wires of any structure,
The cross-section is reduced by drawing a die (further heated at a temperature of 350° C. or less if necessary) and finished to the required dimensions.

第2図は、ホルマール絶縁後の外径1.0 mm 、絶
縁厚約30μmの極細多芯線について、種々の断面減少
率で加工したときの断面減少率と、引張り強さ、寸法精
度および絶縁破壊電圧の関係を示したもので、断面減少
加工を加えることにより引張ゆ強さ、寸法精度は著しく
改善されることが判る。
Figure 2 shows the cross-sectional area reduction rate, tensile strength, dimensional accuracy, and dielectric breakdown of ultra-fine multifilamentary wires with an outer diameter of 1.0 mm and an insulation thickness of approximately 30 μm after formal insulation, processed at various area reduction rates. This shows the voltage relationship, and it can be seen that the tensile strength and dimensional accuracy are significantly improved by adding cross-section reduction processing.

絶縁破壊電圧は、断面減少率が25%までは殆ど劣化し
ないが、25%以上では劣化するので、断面減少率は2
5%以下に抑えることが望ましい。
The dielectric breakdown voltage hardly deteriorates until the area reduction rate is 25%, but it deteriorates when the area reduction rate exceeds 25%, so the area reduction rate is 2.
It is desirable to suppress it to 5% or less.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、エナ
メル絶縁被覆後、引抜き等の断面減少加工を施すことに
より、寸法精度および機械的強度を向上させることがで
きる。また、断面減少加工により悪化した電気抵抗特性
は、更に加熱処理することにより、寸法精度、超電導特
性を劣化させることなく回復させることができる等の利
点があり、その工業的な利用価値は犬である。
As is clear from the above description, according to the present invention, dimensional accuracy and mechanical strength can be improved by performing a cross-sectional reduction process such as drawing after enamel insulation coating. In addition, the electrical resistance properties deteriorated by the cross-section reduction process can be recovered by further heat treatment without deteriorating the dimensional accuracy and superconducting properties, and its industrial use value is infinite. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法の実施例による超電導線拐の
例を示す横断面図、第2図は本発明による超電導線材の
、エナメル絶縁被覆後の断面減少率と所要特性の関係を
示しだグラフ、第6図は本発明による超電導線材の加熱
温度ど所要特性の関係を示したグラフである。 1;超電導材のフィラメント、2;安定化材、6;エナ
メル絶縁被覆。 宛 1 図 第 2 目 見3図 力0大(5品度じC)(10台・聞)
Fig. 1 is a cross-sectional view showing an example of superconducting wire fabrication according to an embodiment of the method according to the present invention, and Fig. 2 shows the relationship between the cross-sectional area reduction rate after enamel insulation coating and the required properties of the superconducting wire according to the present invention. FIG. 6 is a graph showing the relationship between heating temperature and required characteristics of the superconducting wire according to the present invention. 1; Filament of superconducting material; 2; Stabilizing material; 6; Enamel insulation coating. Address 1 Diagram No. 2 Appearance 3 Diagram 0 large (5 grade Ji C) (10 units/listen)

Claims (1)

【特許請求の範囲】 1、Nl:l−’pi合金系超電導線材にエナメル絶縁
被覆を施しだ後、断面減少加工を施すことを特徴とする
Nb−’pi合金系超電導線材の製造方法。 2、Nb−4”i合金系超電導線材が単芯線である。 前記第1項記載の方法。 3、Nb−Ti合金系超電導線材が、極細多芯線である
前記第1項記載の方法。 4 断面減少率が25係以下である、前記第1項。 第2項捷たは第3項記載の方法。 5 Nb−’]’i合金系合金系超電導王制メル絶縁被
覆を施しだ後、断面減少加工を施し、しかる後、当該線
材350℃以下の温度で加熱処理することを特徴とする
Nb−’pi合金系超電導線材の製造法。 6、 加熱処理温度が300〜350℃である、前記第
5項記載の方法。 ク +n鼾bn剖冶面詰;0^八へり8八でイゑ2 曲
台2竺5項記載の方法。
[Claims] 1. A method for manufacturing a Nb-'pi alloy superconducting wire, which comprises applying an enamel insulation coating to the Nl:l-'pi alloy superconducting wire, and then subjecting the wire to cross-sectional reduction processing. 2. The method according to item 1 above, in which the Nb-4''i alloy superconducting wire is a single core wire. 3. The method described in item 1 above, wherein the Nb-Ti alloy superconducting wire is an ultrafine multifilamentary wire. 4. Item 1 above, wherein the area reduction rate is 25 factors or less. 2. The method according to Item 2 or 3. 5 After applying the Nb-']'i alloy-based superconducting mel insulation coating, A method for producing a Nb-'pi alloy superconducting wire, characterized in that the wire is subjected to reduction processing and then heat-treated at a temperature of 350°C or lower. 6. The method described in item 5.
JP59091416A 1984-05-08 1984-05-08 Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating Granted JPS60235309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59091416A JPS60235309A (en) 1984-05-08 1984-05-08 Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59091416A JPS60235309A (en) 1984-05-08 1984-05-08 Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating

Publications (2)

Publication Number Publication Date
JPS60235309A true JPS60235309A (en) 1985-11-22
JPH0381246B2 JPH0381246B2 (en) 1991-12-27

Family

ID=14025767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59091416A Granted JPS60235309A (en) 1984-05-08 1984-05-08 Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating

Country Status (1)

Country Link
JP (1) JPS60235309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183008A (en) * 1988-01-11 1989-07-20 Japan Atom Energy Res Inst Superconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497428A (en) * 1972-04-12 1974-01-23
JPS5743312A (en) * 1980-08-27 1982-03-11 Hitachi Ltd Method of producing composite superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497428A (en) * 1972-04-12 1974-01-23
JPS5743312A (en) * 1980-08-27 1982-03-11 Hitachi Ltd Method of producing composite superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183008A (en) * 1988-01-11 1989-07-20 Japan Atom Energy Res Inst Superconductor

Also Published As

Publication number Publication date
JPH0381246B2 (en) 1991-12-27

Similar Documents

Publication Publication Date Title
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4153986A (en) Method for producing composite superconductors
JPS60235309A (en) Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating
JPH0475642B2 (en)
US3857173A (en) Method of producing a composite superconductor
JPS60199522A (en) Manufacture of superconductive alloy wire
JPH0440806B2 (en)
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JPS6228526B2 (en)
JP3070969B2 (en) Superconducting wire manufacturing method
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPS5994307A (en) Method of producing compound superconductive wire
JPS59173903A (en) Compound superconductive conductor
JPH0430123B2 (en)
JPS6313286B2 (en)
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS6333244B2 (en)
JPS63150814A (en) Manufacture of nb-ti based fine multi-core superconductor
JPH05135636A (en) Manufacture of compound superconductive wire